EXTENSION OF HOLOMORPHIC MAPPINGS IN BANACH MANIFOLDS

YASUO MATSUDA

1. Introduction

J. Kajiwara, M. Nishihara, L. Li and M. Yoshida[4] discussed extension of holomorphic mappings from a separable Fréchet space, with the bounded approximation property, into a Banach complex Lie group. M. Yoshida[9] investigated the extension of holomorphic mappings from domains over locally convex spaces where the Levi problem was affirmatively solved.

On the other hand, P. K. Ban[1] proved that a Banach manifold \mathcal{X} with the weak disc property has the holomorphic extension property and P. K. Ban[1,2] proved that any holomorphic mapping $f: \Omega \to \mathcal{X}$ can be extended to a holomorphic mapping \tilde{f} of the envelope of holomorphy $\hat{\Omega}$ of the domain Ω into \mathcal{X} .

Let Ω be a Riemann domain over a complex manifold manifold \mathcal{M} modelled with a Banach space B with Schauder basis. $\tilde{\Omega}$ be its pseudoconvex hull and \mathcal{X} be a Banach manifold with weak disc property. In the present paper we generalize the above theorem of Ban[1] to Riemann domains over a complex manifold \mathcal{M} , where the Levi problem is not necessarily solved and prove that any holomorphic mapping $f: \Omega \to \mathcal{X}$ is extended to a holomorphic mapping $\tilde{f}: \tilde{\Omega} \to \mathcal{X}$.

2. Ban's theory

In this section, we discuss an extension of holomorphic mappings with values in a Banach manifold \mathcal{X} with the weak disc property.

We use the notations

(1)
$$\mathbf{D} = \{z \in C; |z| < 1\},\$$

Received July 20, 1997 Revised Sep 9, 1997

and

$$\mathbf{D}^* = \{z \in D; z \neq 0\}.$$

Let \mathcal{X} be a Banach manifold and let $H(\mathbf{D}, \mathcal{X})$ be the space of holomorphic maps from \mathbf{D} into \mathcal{X} equipped with the compact open topology. The manifold \mathcal{X} is said to satisfy the weak disc condition, if every sequence $\{f_n\}$ of $H(\mathbf{D}, \mathcal{X})$ which converges in $H(\mathbf{D}^*, \mathcal{X})$, converges in $H(\mathbf{D}, \mathcal{X})$ too.

The following theorem was proved by P. K. Ban[1]:

THEOREM 1. Let (Ω, φ) be a Riemann domain over a Banach space with a Schauder basis and let $(\hat{\Omega}, \hat{\varphi})$ be the envelope of holomorphy of the domain (Ω, φ) in the sense of Malgrange[5]. Let \mathcal{X} be a Banach manifold satisfying the weak disc condition. Then every holomorphic mapping from Ω to \mathcal{X} can be extended holomorphically to $\hat{\Omega}$.

3. Envelopes of holomorphy

Let E and F be Hausdorff C-linear spaces. A continuous function f on an open subset Ω of E is said to be holomorphic if, for any finite dimensional C-linear subspace S of E, the restriction $f|\Omega \cap S$ is holomorphic in the open subset $\Omega \cap S$ of the finite dimensional complex space S. A continuous mapping $h: \Omega \to F$ is said to be holomorphic if, for any C-linear continuous mapping $\chi: F \to C$, which is naturally holomorphic by definition, the composite mapping $\chi \circ h: E \to C$ is holomorphic.

Let \mathcal{M} be a Hausdorff space. Then, \mathcal{M} is called a *complex manifold* modelled with E, if there exists a collection $\{(U_i, \chi_i); i \in I\}$ of holomorphic mappings χ_i of an open subsets U_i of \mathcal{M} onto an open subset V_i of E such that there holds

$$(3) \qquad \qquad \cup_{i\in I} U_i = \mathcal{M}$$

and that, for any $i, j \in I$, the composite map $\chi_i \circ (\chi_j | V_i \cap V_j)^{-1}$: $U_i \cap U_j \to U_i \cap U_j$ is holomorphic. In this case, each (U_i, χ_i) is called a *chart* and the collection $\{(U_i, \chi_i); i \in I\}$ of charts is called an *atlas*.

204

A pair (Ω, φ) of a Hausdorff space Ω and a local homeomorphism φ of Ω into the complex manifold \mathcal{M} modelled with the Hausdorff complex linear space E is called an *open set over* \mathcal{M} and is called a *domain* over \mathcal{M} when Ω is connected. We can canonically induce a complex structure on the Hausdorff space Ω so that the mapping φ is a locally biholomorphic mapping of the domain Ω into the base manifold \mathcal{M} . A continuous mapping f of Ω into a Hausdorff complex linear space F is said to be holomorphic if, for any subset O of Ω such that the restriction $\varphi|O$ is a homeomorphism of O onto an open subset $\varphi(O)$ of \mathcal{M} , the composite mapping $f \circ (\varphi|\varphi(O))^{-1}: O \to F$ is holomorphic.

Let (Ω, φ) and (Ω', φ') be open sets over the complex manifold \mathcal{M} . The open set (Ω', φ') is said to be *larger than* the open set (Ω, φ) and written in the notation $(\Omega, \varphi) \prec (\Omega', \varphi')$ if there exists a locally biholomorphic mapping $\tau : \Omega \to \Omega'$ with $\varphi' \circ \tau = \varphi$.

Let (Ω, φ) be a domain over the complex manifold \mathcal{M}, \mathcal{X} be a complex manifold and $\mathcal{F} := \{f_i : i \in I\}$ be a family of holomorphic mappings of Ω into the complex manifold \mathcal{X} . Let (Ω', φ') be a domain over the complex manifold $\mathcal{M}, \mathcal{F}' := \{f'_i : i \in I\}$ be a family of holomorphic mappings of Ω' into the complex manifold \mathcal{X} and λ' be a locally biholomorphic mapping of $\Omega \to \Omega'$. If there holds $\varphi' \circ \lambda = \varphi$ and $f'_i \circ \lambda = f_i (i \in I)$, the family \mathcal{F}' of mappings of Ω' into \mathcal{X} is called a holomorphic extension of $\mathcal F$ to the triple $(\lambda, \Omega', \varphi')$ or briefly to the domain (Ω', φ') . If the holomorphic extension $\hat{\mathcal{F}}$ of \mathcal{F} to the triple $(\hat{\lambda}, \hat{\Omega}, \hat{\varphi})$ is also a homolomorphic extension of any family \mathcal{F}' , which is a holomorphic extension of \mathcal{F} to a triple $(\lambda', \Omega', \varphi')$ as above, the triple $(\hat{\lambda}, \hat{\Omega}, \hat{\varphi})$ is called the envelope of holomorphy of the domain (Ω, φ) with respect to the family \mathcal{F} of holomorphic mappings. When F = Cand \mathcal{F} is the family of holomorphic functions on Ω , the envelope of holomorphy with respect to the family \mathcal{F} is called briefly the *envelope* of holomorphy. An envelope of holomorphy with respect to a family $\{f\}$, consisting of a single mapping f, the envelope of holomorphy with respect to the family $\{f\}$ is called a *domain of holomorphy* of f.

Now, we construct domains of holomorphy of a family of holomorphic mappings in the manifold \mathcal{X} by the method of Malgrange[5]:

Yasuo Matsuda

THEOREM 2. Let E be a Hausdorff C-linear space, \mathcal{M} be a complex manifold modelled with E, (Ω, φ) be a domain over the complex manifold \mathcal{M}, \mathcal{X} be a complex manifold and $\mathcal{F} = \{f_i; i \in I\}$ be a family of holomorphic mappings of Ω into \mathcal{X} . Then, there exists uniquely an envelope of holomorphy $(\hat{\Omega}, \hat{\varphi})$ of the domain (Ω, φ) over the complex manifold \mathcal{M} with respect to the family \mathcal{F} .

Proof. Let a be a point of the manifold \mathcal{M} , U be a neighborhood of the point a and $\mathcal{G} = \{g_i; i \in I\}$ be a family of holomorphic mappings of U into the complex manifold \mathcal{X} with the same set I of indices as that of the family \mathcal{F} . Let (\mathcal{G}, U) and (\mathcal{G}', U') be two such pairs of families of holomorphic mappings of U and U' into \mathcal{X} indexed by the set I of indices. We say that they are equivalent, if there exists a neighborhood W of the point a so that $W \subset U \cap V$ and that $g_i|W = g'_i|W$ on Wfor any $i \in I$. Let \mathcal{S}_a be the set of equivalence classes by the above equivalence relation between the set of pairs of such (\mathcal{G}, U) . An element \mathcal{G}_a of \mathcal{S}_a is called a germ of a family indexed by I at a of holomorphic mappings into \mathcal{X} .

We put

(4)
$$S := \bigcup_{a \in \mathcal{M}} S_a$$

and induce a topology on S so that, for point $a \in \mathcal{M}$, for an element \mathcal{G}_a of \mathcal{S}_a and a representative (\mathcal{G}, U) of the equivalence class \mathcal{G}_a , the set $\{\mathcal{G}_x; x \in U\}$ forms a neighborhood of \mathcal{G}_a and call S the sheaf of germs of families indexed by I of holomorphic mappings in \mathcal{X} over \mathcal{M} .

We define a canonical mapping $\pi: S \to \mathcal{M}$ by putting

(5)
$$\pi(g_a) = a$$
 (for any $a \in \mathcal{M}$).

Then, we can introduce canonically a complex structure on S so that (S, π) is an open set over the complex manifold \mathcal{M} .

Now, we define a holomorphic mapping $\psi : \Omega \to S$ as follows:

Let x be a point of Ω . There exists a neighborhood U of x in Ω and a neighborhood V of $\varphi(x)$ in \mathcal{M} such that $\varphi|U: U \to V$ is a biholomorphic mapping of U onto V. We put

(6)
$$\psi(x) := \{f_{\iota} \circ (\varphi|U)^{-1}; \iota \in I\}_{\varphi(x)} \in \mathcal{S}_{\varphi(x)} \subset \mathcal{S}.$$

206

By construction, the mapping $\psi : \Omega \to \mathcal{M}$ is locally biholomorphic. Since Ω is connected, its image $\psi(\Omega)$ by the continuous mapping ψ is also connected.

Let $\hat{\Omega}$ be the connected component of S containing the domain $\psi(\Omega)$, $\hat{\varphi}$ be the restriction of π to the connected set $\hat{\Omega}$ and $\tau : \Omega \to \hat{\Omega}$ be the mapping induced canonically by $\psi : \Omega \to S \supset \hat{\Omega}$. Then, the pair $(\hat{\Omega}, \hat{\varphi})$ is a domain over \mathcal{M} . Let \hat{x} be a point of $\hat{\Omega}$. It is nothing but a germ $\{g_i; i \in I\}_y$ of a family $\{g_i; i \in I\}$ of holomorphic mappings indexed by I of a neighborhood V of a point y of the complex manifold \mathcal{M} into the complex manifold \mathcal{X} . By definition, there holds $y = \hat{\varphi}(\hat{x})$. We put

(7)
$$\hat{\mathcal{F}}(\hat{x}) := \{\hat{f}_i(\hat{x}); i \in I\} := \{g_i(y); i \in I\}$$

Then, by construction, $\hat{\mathcal{F}}$ is the maximal holomorphic extension of \mathcal{F} and $(\tau, \hat{\Omega}, \hat{\varphi})$ is the desired envelope of holomorphy of the domain (Ω, φ) over the complex manifold \mathcal{M} of the family of holomorphic mappings indexed the set I as we will show it below:

At first, we show that the family $\hat{\mathcal{F}}$ is a holomorphic continuation of the family \mathcal{F} to $(\psi, \hat{\Omega}, \hat{\varphi})$

For any point $x \in \Omega$, $\psi(x) = \{(f_i \circ (\varphi|U)^{-1}); i \in I\}_x \in S_x \subset S$ for a neighborhood U of x such that $\varphi|U$ is biholomorphic. Then we have

(8)
$$(\hat{\mathcal{F}} \circ \psi)(x) = \{f_i(x); i \in I\} = \mathcal{F}(x)$$

and the family $\hat{\mathcal{F}}$ is a holomorphic extension of \mathcal{F} to $\hat{\Omega}$.

Next, we prove the maximality of the extension.

Let (Ω', φ') be a domain over the complex manifold $\mathcal{M}, \mathcal{G} = \{g_i; i \in I\}$ be a family of holomorphic mappings, with the same set I of indices, on Ω' and ξ be a locally biholomorphic mapping of Ω in Ω' such that $\varphi' \circ \xi = \varphi$ and $g_i \circ \xi = f_i$ for any $i \in I$. We define a mapping $\sigma : \Omega' \to \tilde{\Omega}$ as follows: Let x be a point of Ω' . Since (Ω', φ') is a domain over the complex manifold \mathcal{M} , there exists a neighborhood Uof x and a neighborhood V of $\varphi'(x)$ such that $\varphi'|U$ is a biholomorphic mapping of U onto $V \subset \mathcal{M}$. We define the value of σ at x as the germ $\{g_i \circ (\varphi'|U)^{-1}; i \in I\}_{\varphi'(x)}$ of families of holomorphic mappings. Since Ω' is connected, $\sigma(\Omega')$ is a connected set containing $\psi(\Omega)$. Hence, we have $\sigma(\Omega')$ subset $\tilde{\Omega}$. So $\sigma: \Omega' \to \hat{\Omega}$ is a locally biholomorphic mapping with $\hat{\varphi} \circ \sigma = \varphi'$ and $\hat{\mathcal{F}} \circ \sigma = \mathcal{G}$. In this way, we can prove that $\hat{\mathcal{F}}$ is a holomorphic extension of the holomorphic extension \mathcal{G} of \mathcal{F} to $\hat{\Omega}$.

Lastly, we prove uniqueness of the maximal holomorphic extension. Let $(\tau', \hat{\Omega}', \hat{\varphi}')$ be another domain of maximal extension. Since $(\hat{\Omega}, \hat{\varphi})$ is a maximum, there exists a local biholomorphic mapping $\chi : \hat{\Omega}' \to \hat{\Omega}$ with $\chi \circ \tau' = \tau$ and $\hat{\varphi} \circ \chi = \hat{\varphi}'$ and since $\hat{\Omega}', \hat{\varphi}'$ is also a maximum, there exists a local biholomorphic mapping $\chi' : \hat{\Omega} \to \hat{\Omega}'$ with $\chi' \circ \tau = \tau'$ and $\hat{\varphi} \circ \chi' = \hat{\varphi}$. Then, the mapping $\chi' \circ \chi$ is the identity mapping on the non-empty open set $\chi'(\Omega)$ and $\chi \circ \chi'$ is also the identity mapping on the non-empty open set $\chi(\Omega)$. By the theorem of identity, that is, by the principle of the uniqueness of continuation of holomorphic mappings, $\chi' \circ \chi$ and $\chi \circ \chi'$ are identity mappings, respectivel y, on Ω' and Ω , what was to be proved.

4. Pseudoconvex hull

Let E be a sequentially complete locally convex space, (Ω, φ) be a domain over the space E and \mathcal{P} be the family $\{(\lambda_j, \Omega_j, \varphi_j); j \in P\}$ of triples such that each (Ω_j, φ_j) is a pseudoconvex domain over E and that each λ_j is a locally biholomorphic map of Ω in Ω_j with $\varphi = \varphi_j \circ \lambda_j$. In finite dimensional case, Kajiwara[3] defined a pseudoconvex hull of a domain over a holomorphically convex manifold. The colleague Ohgai[8], to whom the author would like to express his hearty gratitude for her fruitful discussions, constructed the Durchshnitt $(\tilde{\Omega}, \tilde{\varphi})$ as the minimum of the family \mathcal{P} :

THEOREM 3. Let E be a sequentially complete locally convex space and (Ω, φ) be a domain over E. Then there exists uniquely a minimum pseudoconvex domain $(\tilde{\Omega}, \tilde{\varphi})$ over E between domains larger than (Ω, φ) .

Proof. By definition, for any $j \in \mathcal{P}$, each pseudoconvex domain (Ω_j, φ_j) over E is larger than the original domain (Ω, φ) , that is, there exits a local biholomorphic map $\lambda_j : \Omega \to \Omega_j$ with $\varphi = \varphi_j \circ \lambda_j$

Now, we introduce a semi-order in \mathcal{P} . For $j, k \in P$, we write $(\Omega_j, \varphi_j) \prec (\Omega_j, \varphi_j)$ if there exits a local biholomorphic map $\lambda_j^k : \Omega_j \to \Omega_k$ with $\varphi_j = \varphi_k \circ \lambda_j^k$.

In the previous paper[7], the author proved that the semi-ordered set \mathcal{P} is inductive, and hence, by the theorem of Zorn, there exists a minimal element of \mathcal{P} and we can prove that it is also the minimum element of \mathcal{P} .

We call the above domain $(\tilde{\Omega}, \tilde{\varphi})$ or the triple $(\tilde{\lambda}, \tilde{\Omega}, \tilde{\varphi}) \in \mathcal{P}$ the *pseudoconvex hull* of the domain (Ω, φ) over E.

5. Continuation to pseudoconvex hulls

THEOREM 4. Let B be a Banach space with Schauder base, \mathcal{M} be a complex manifold modelled with B, (Ω, φ) be a domain over \mathcal{M}, \mathcal{X} be a Banach manifold with the disc propery, and $\mathcal{F} := \{f_i; i \in I\}$ be a family of holomorphic mappings of the domain Ω into the complex manifold \mathcal{X} . The envelope of holomorphy $(\hat{\Omega}_{\mathcal{F}}, \hat{\varphi}_{\mathcal{F}})$ of the domain (Ω, φ) with respect to the family \mathcal{F} is a pseudoconvex domain over the complex manifold \mathcal{M} .

Proof. We prove the pseudoconvexity of the domain $(\hat{\Omega}_{\mathcal{F}}, \hat{\varphi}_{\mathcal{F}})$ over the manifold \mathcal{M} . For this purpose, it suffices to prove its local pseudoconvexity:

Let (U, χ, V) be a holomorphic chart of \mathcal{M} such that χ is a biholomorphic mapping of a domain $U \subset \mathcal{M}$ onto an open convex set V of B, which is of course a domain of holomorphy in the complex Banach space B.

We put

(9)
$$W := (\chi \circ \hat{\varphi}_{\mathcal{F}})^{-1}(V)$$

and

(10)
$$\xi := (\chi \circ \hat{\varphi}_{\mathcal{F}}) | (\chi \circ \hat{\varphi}_{\mathcal{F}})^{-1} (V).$$

Let $(\hat{\nu}, \hat{W}, \hat{\xi})$ be the envelope of holomorphy of the open set (W, ξ) over the Banach space B with a Schauder base. By the previous paper [6,7], $(\hat{\nu}, \hat{W}, \hat{\xi})$ coincides with the pseudoconvex hull $(\tilde{\nu}, \tilde{W}, \tilde{\xi})$ of the open set (W, ξ) over B.

Yasuo Matsuda

For any $i \in I$, each $h_i := f_i | W \to \mathcal{X}$ is continued to a holomorphic mapping $\hat{h}_i : \tilde{W} \to \mathcal{X}$ by Theorem 1. Since the domain $(\hat{\Omega}_{\mathcal{F}}, \hat{\varphi}_{\mathcal{F}})$ is the simultaneous existence domain of holomorphic mappings of \mathcal{F} , there holds $(\tilde{W}, \tilde{\xi}) \prec (\hat{\Omega}_{\mathcal{F}}, \hat{\varphi}_{\mathcal{F}})$ and hence $(W, \xi) = (\tilde{W}, \tilde{\xi})$. Thus, (W, ξ) is pseudoconvex and, by definition, the domain $(\hat{\Omega}_{\mathcal{F}}, \hat{\varphi}_{\mathcal{F}})$ is pseudoconvex.

As a corollary we have the following main theorem:

MAIN THEOREM. Let B be a Banach space with Schauder base, \mathcal{M} be a complex manifold modelled with B, (Ω, φ) be a domain over \mathcal{M} , \mathcal{X} be a Banach manifold with the disc propery, and $(\tilde{\lambda}, \tilde{\Omega}, \tilde{\varphi})$ be the pseudoconvex hull of the domain (Ω, φ) . Then a holomorphic mapping f of Ω into \mathcal{X} is continued to a holomorphic mapping of $\tilde{\Omega}$ into \mathcal{X} .

Proof. By Theorem 4, the envelope of holomorphy $(\hat{\lambda}, \hat{\Omega}_f, \hat{\varphi}_f)$ of the domain (Ω, φ) with respect to the family $\{f\}$, consisting of a single mapping f, is pseudonconvex. Let \hat{f} be the continuation of the mapping f to the domain $\tilde{\Omega}_f$. Since $(\tilde{\Omega}, \tilde{\varphi})$ is the smallest pseudoconvex domain larger than $(\Omega, \varphi) \prec (\hat{\Omega}_f, \hat{\varphi}_f)$, we have $(\tilde{\Omega}, \tilde{\varphi}) \prec (\hat{\Omega}_f, \hat{\varphi}_f)$. By definition, there exists a locally biholomorphic mapping $\tau : \tilde{\Omega} \to \tilde{\Omega}_f$ such that $\tilde{\varphi} = \tau \circ \tilde{\varphi}_f$ and that $\tau \circ \tilde{\lambda} = \hat{\lambda}$. Then the mapping $\tilde{f} := \hat{f} \circ \tau$ is a holomorphic mapping of the pseudoconvex hull $\tilde{\Omega}$ into the manifold \mathcal{X} satisfying $\tilde{f} \circ \tilde{\lambda} = \hat{f} \circ \tau \circ \tilde{\lambda} = \hat{f} \circ \hat{\lambda} = f$. Hence the mapping \tilde{f} is a holomorphic continuation of the mapping f to $\tilde{\Omega}$.

References

- 1 P K Ban, Some remarks on holomorphic extension in infinite dimensions, Colloquium Mathematicum 167 (1994), 155-159
- 2 _____, Banach hyperbolicity and extension of holomorphic maps, Acta Math Vietnam 16 (1991), 187-200
- 3 J. Kajiwara, Some results on the equivalence of complex analytic fibre bundles, Mem Fac Sci. Kyushu Univ Ser. A 19 no. 1 (1959), 37-48
- 4 J Kajiwara, L Li, M Nishihara, M Yoshida, On the Lew problem for holomorphic mappings of Riemann domains over infinite dimensional spaces into a complex Lie group, Res Bull Fukuoka Inst Tech 26 no 2 (1994), 151-161
- 5. B Malgrange, On the theory of functions of several complex valiables, Tata Inst Fund Res Bombay, 13, 1958.

210

Extension of holomorphic mappings in Banach manifolds

- 6. Y. Matsuda, Extension of Holomorphic Mappings, Proceeding of the the Third International Colloquium on Finite or Infinite dimensional complex analysis, Seoul, Korea, July 31-August 2 (1995), 89-96
- Extension of Holomorphic Mappings in Infinite Dimension, Proceeding of the International Colloquium on Differential Equations 6 (1996), VSP(N-etherland Utrecht) 159-164
- 8 S. Ohgai, A note on envelope of holomorphy, Kumamoto J 13 (1979), 37-42
- 9. M Yoshida, On the Continuation of Holomorphic Mapping, Irish Mathematical Society Bulletin 35 (1955), 12-23

Graduate School of Mathematics Kyushu University 33 Fukuoka 812-81, Japan