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COMPLETE SYSTEM OF FINITE ORDER FOR
CR MAPPINGS BETWEEN REAL ANALYTIC
HYPERSURFACES OF DEGENERATE LEVI FORM

SunNGg-YeoN KiM

ABSTRACT. We prove that the germ of a CR mapping f between real
analytic real hypersurfaces has a holomorphic extension and satisfies
a complete system of finite order if the source is of finite type in the
sense of Bloom-Graham and the target is k-nondegenerate under cer-
tain generic assumptions on f.

Introduction

This paper is concerned with construction of a complete system for CR
mappings and with the real analyticity and the finiteness of CR mappings
between real analytic CR manifolds of degenerate Levi form.

Let M and M’ be germs of real analytic(C*“) real hypersurfaces in C*t!
and C¥*', 1 < n < N, respectively, and F = (f1,... , f¥N*Y): M - M
be a continuously differentiable CR mapping. Then F is a solution of an
overdetermined system

(1) Liff=0 i=1,.,n,j=1.,N+1
roF =10

where  {L;}i=1,..n is a basis of the CR structure bundle H°(M) :=
TH(C* YN CT (M) of M and 7 is a C¥ defining function of M.

It is well known that if M and M’ are Levi-nondegenerate hypersurfaces
in C"*! and F: M — M’ is a CR equivalence, then F extends holomor-
phically to a neighborhood of M ([12], [14], [16]).

Moreover, F is determined by 2-jet at a point. This follows from the
fact that F' preserves the complete set of Chern-Moser invariants and thus
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F satisfies the complete system of third order in the sense of Definition 5,
see [5] and [7].

Let r be a C¥ defining function of M such that dr # 0 on M and
tet {L;}j=1,2,..n be a C* basis of HY(M). For an n-tuple of integers
@ = (Q,..,an) let L = L§'--- L&, We say that M is k-nondegenerate
at p € M if the vectors {L%rz(p) : |a| < k} span C"*!, where rz =

or  _or
92" 7 Bz )

The smallest such integer k& does not depend on the choice of the basis
L1, ...,L, and the defining function r. M is l-nondegenerate at p if and
only if M is of nondegenerate Levi form at p.

In this paper we study the analyticity and finite determination of CR
mappings to C* hypersurface which is k-nondegenerate at a reference point.
Our main results are the following:

THEOREM 1. Let M and M’ be C¥ real hypersurfaces through the origin
of C*1 and CN*1 1 < n < N, respectively, and let F : M — M’ be a CR
mapping such that F(0) = 0. Let {L;};=1,.n be a C* basis of H"Y(M).
Suppose that M is of finite type at 0 in the sense of Bloom-Graham and
M’ is k-nondegenerate at 0. Suppose further that there exists a positive
integer K such that

2 (L (o F) (0): b < K}

span CV*1. Then F extends holomorphically to a neighborhood of 0 € M
if Fe C¥.

THEOREM 2. Let M and M’ be C¥ real hypersurfaces in C**! and
CN+1 1 < n < N, respectively as in Theorem 1 and let F : M — M' be
a CR mapping as in Theorem 1. Then F is determined by 4K-jet at 0.
Moreover, F satisfies a complete system of order 4K + 1.

If M and M’ are of same dimension and k-nondegenerate, then a CR
equivalence F' between M and M’ extends holomorphically to a neighbor-
hood of M if F is sufficiently differentiable([6],{2]) and is determined by
(k% + k)-jet at a point([7]). A basic idea in [7] is to construct, by differen-
tiating (1) repeatedly, a complete system of finite order, which determines
all the derivatives of F of order greater than or equal to k* + k + 1. More
recently Zaitsev showed that F is determined by 4k-jet at a point by using
the Segre varieties([17]).



Complete systern and holomorphic extension of CR mapping 89

Suppose M and M’ are in normal coordinates at O(see §2). Then (2)
span C¥*1 if and only if the image

(3) {(a{{(z),--- ,ag(z)) 1z e Ch}

is not contained in a hyperplane of C, where aJK yj=1.,N, are K-th
!

é (F(z, 0),F(0_)) ,j=1,..N.

In [10], Hayashimoto showed using the method of complete system that
if M and M’ are real hypersurfaces in C*+! and if M’ is of nondegenerate
Levi form, then F extends holomorphically to a neighborhood of M and is
determined by a finite jet at a point under the condition that the image

(4) {(af'(2), - ,aK(2)) : z € C"}
is not contained in a hyperplane of C™, which is equivalent to our hypotheses
in Theorem 1.

In [2|, Baouendi, Jacobowitz and Treves replace the holomorphic struc-
ture on a neighborhood of M by a new one whose real analytic structure
is the same as the standard one. Then they extend each f7 as a collection
of holomorphic functions(in one variable in the case of hypersurface) to a
wedge with edge M using some identity that involves CR vector fields and
a defining function of M. By the edge of the wedge theorem F is real
analytic on M and hence extends holomorphically to a neighborhood of M
under the original holomorphic structure.

In this paper, we express F' in terms of the derivatives of F on M. We
use this identity to prove Theorem 1 by the same argument as in §3 of [2].
To prove Theorem 2 we use the method of Segre variety as in [15], [1] and
[17].

Holomorphic continuation of a CR mapping to a neighborhood of C¥
CR submanifold has been studied by many authors. In (3], Baouendi and
Rothschild showed the holomorphic continuation of a CR. mapping between
' real hypersurfaces of same dimension under certain nondegeneracy con-
ditions.

To state their result we fix notations and definitions first:

Let M = {r = 0} ¢ C**! be in normal coordinates. We can write
r{(2,0),(Z,0)) = >, aa(2)Z% where z € C*. Then M is said to be essen-
tially finite at O if the C-vector space O|z]/ (an(z)} is of finite dimension,
where (aq(2)) is the ideal generated by {a,(z)} in O[2]. The essential type
of M at 0 is the dimension of the complex vector space O|z]/ (aq(2)).

Suppose that F : M — M'isa C¥, K € NU{co}, CR mapping between
C™ real hypersurfaces in C™*!. Then there exists a (formal) holomorphic
change of coordinates on a neighborhood of M such that F = J(Z) +
O(|Z/ %) if K < oc and F = J(Z) + O(|Z|I+1) for all | if K = oo, where

order Taylor series expansion of
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Z = (z,2p41) € C"*and J(Z) = (j1(2), ..., fn+1(Z)) is an (n+ 1)-tuple of
(formal) holomorphic functions in Z. We say that F is of finite multiplicity
at 0 if Ofz]/ (J(z,0)) is of finite dimension. The multiplicity of F' at 0 is
defined by the dimension of the complex vector space Ofz]/ (J(z,0)).

THEOREM 3. ([3]) Let F : M — M’ be a smooth CR mapping, where M
and M’ are.C* hypersurfaces in C**1. Let 0 € M and F(0) = 0. If either
one of the following two conditions is satisfied, then F' is the restriction of
a holomorphic mapping from a neighborhood of 0 in C*+1 into C™+1,

i) The mapping H is of finite multiplicity at 0, and M’ is essentially
finite at 0.
ii) M is essentially finite at 0 and F satisfies

dF(CToM) ¢ HY'(M") & HY'(M")  (Hopf Lemma property).
From Theorem 1 and Theorem 2 we have the following

COROLLARY 4. Let F: M — M’ be a CR mapping, where M and M’ are
C¥ hypersurfaces in C**!. Let F(0} = 0. Suppose M’ is k-nondegenerate
at 0. Then F satisfies a complete system of finite order if one of the following
conditions is satisfied:

i) The mapping F is of finite multiplicity at 0.
ii) M is essentially finite at 0 and F satisfies

(5) dF(CToM) ¢ HyY(M") @ Hy' (M),

In case i) F satisfies a complete system of order 4k - (mult Fy) + 1 and in
case ii) F satisfies a complete system of order 4k - (ess type My) -+ 1, where
(mult Fy) is the multiplicity of F at 0 and (ess type Mp) is the essential
type of M at Q.

After finishing this paper, the author was informed of the B. Lamel’s
result[11], in which he proved the real analyticity of F' in Theorem 1 in
more general situation(generic CR manifolds) using ideas similar to ours.

The author thanks Professor Chong-kyu Han for introducing me the
method of complete system and Segre variety and for many valuable dis-
cussions during the preparation of this paper.
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1. E. Cartan’s equivalence problem and the complete systems

In this section we briefly explain E. Cartan’s equivalence problem and
the notion of complete system.

For a € manifold M with a geometric structure, construct a principal
fiber bundle P with the structure group G over M such that any structure
preserving map f lifts to f for which the following diagram commutes:

. p
©) e

M —1
E. Cartan’s equivalence problem is to find necessary and sufficient condi-
tions for the existence of f.
Suppose there exists a unique torsion-free connection w on M. Then
there is a unique vector-valued 1-form

) w: T(P) — R¥

which is an isomorphism at each point ,where K = dimmM +dimG = dimP,
such that there exists a local structure preserving map f: My — M;if and
only if f,{w2) = wy. Such w is called a complete set of invariants for the
equivalence problem. In this case, f satisfies

82 fa u 8 fb - B
(8) prr i h3; (:r:, f. Bk - bk = 1,...,n)
for all ¢, = 1,...,n, where h¢; is a C* function in its arguments.

The concept of complete system is the generalization of the equation (3).
We define the notion of complete system in jet-theoretical setting using the
same notations as in [13].

Let J9(M, RN) be the ¢g-th order jet space of M x RY. Consider a system
of differential equations of order ¢ for unknown functions u = (ul,--- ,ul¥)
of independent variables = = (z*,--- ,2"™)

(9) Ax(z,u®) =0, A=1,....1,

where 19 is the g-th jet of u.
A complete system of order k is defined as follows.

DEFINITION 5. We say that (4) satisfies a complete system of order % if
there exist C'™ functions Hj‘,(:c,u(p) : p < k) in their arguments such that
for any C* solution u of (4),

(10) u% = Hz,uP : p < k)
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for alla =1,..., N and for all multi-indices J with |Ji = k.

Let ¢ = duf — 377 ) u}; dz?, a=1,..,N, |I| £ k- 2, be the contact
1-forms defined on J’“ 1(M ]RN ) and SA JE=1(M,RY) be the zero set

of (4) and the derivatives of (4) in the space of partial derivatives of u up
to order k — 1. If (4) satisfies a complete system of order &, then f is a

alll
solution of (4) if and only if z — ( f (), [I} £ k1) is a maximal integral

manifold of the distribution
¢7=0,a=1,.,N  |I|<k-2

and

ki3
du— > Hfda! =0, |I| =k —
=1

where Hy ;= D;H$%. In particular, we have

PROPOSITION 6. Suppose (4) satisfies a complete system of order k, then
a solution f of (4) is uniquely determined by (k — 1)-jet at a point and is
C* if f € C*. Furthermore, if (4) is C*, then each H% is C* and f € C.

2. Proof of theorems and corollary

Let M, M’ and F be as in Theorem 1.

In this section we use a, 3,7, - - - for n-tuples of integers and o/, 3, '
for N-tuples of integers.

We say that M is in normal coordinates if M is defined by

(11) Znt1 = R(2,Z) + Zn+1 P(2,Z,Znt1)

where z € C" and R, P are holomorphic in their arguments such that
R(z,0) = R(0,Z)=0

and

P(z,0,Zn41) = P(0,Z,Zn+1) = L. ([3})

Since the smallest integer K which satisfies the hypotheses of Theorem
1 is independent of choice of {L;}i=1,...» and defining function v/, we may
assume that M and M’ are in normal coordinates.

Now assume that M’ is defined by

(12) CN+1 = R’(C:'Z) +EN+1P’(C7-C-)EN+1):
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where ¢ € CV. Write

N
(13) R'(¢,Q) = _Z QG+ Y aw(C

'] >2

LEMMA 7. There exist ®;, j = 1,..., N + 1, which are holomorphic in
their arguments such that

(14) F =2;L"F,h < K)
forallj=1,.,N+1.
Proof. Let F = (f,g) = (f%,---, f", g). Then we have
(15) 9= Za, (DF + 3 aulDF +3P' (1, 7.9)
|| =2

Applying L7, || > 0, to (15} we have

N
(16) 0= Ta,(NF+ Y. Taw(Pf* +I" GPU.T.9)-
Jj=1 le’{>2
Since I7g(0) = 0 for all v, we have
(17) L' (rz o F) (0) = L a1(F)0), - , Tan(F)(0),0)

for all v with || > 0.

By the hypothesis of Theorem 1, there exist v, I = 1,...,N, such
that |'n| < K and {2 (r} 0 F) (D)}; 1,..,~ together with 'rz o F(O)
(0,---,0,1) span C¥+1. Then by the 1mp1101t function theorem we can
solve the system

N .
9=> (NF+ > aw(F)f* +3P(£,7.,7)

J=1 le’|>2
N .

0=>"T"a;,(HF + 3 T'aw(Df* +T" GP(1,F.5),
i=1 |af{>2

l=1,..,N, for f4,j=1,.,N, and g = f¥*! in terms of I'F, |y| < K.
This implies that there exist ®;, = 1,..., N + 1, which are holomorphic in
their arguments such that

(18) F=®;(L"F, |7 < K)
forallj=1,..,N+1. O
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Proof of Theorem 1

In [4], Baouendi and Treves showed that if M is of finite type in the
sense of Bloom-Graham, then there is one side of M to which every CR
distribution extends as a holomorphic function. Then by Lemma 7 together
with Lemma 2.2 and Lemma 2.4 of [2] F is C* on M and hence extends
holomorphically to a neighborhood of M.

Proof of Theorem 2
Let ® = (q)l, e, (I)N+1) and Q(Z,E,fn.H) = R(Z,7)+—Z-n+1p(z,f,7n+1).
Since F' is holomorphic on a neighborhood of M, we can write (14} as

F (Z, Q(Z,E, ‘_z-ﬂ+1)) =& (jK?(Eifn+1)1jK+lQ(za E:En+l))

(19) =9 (Z,E, Eﬂ"{-l!jxﬁ(zyzn-i-l)) .
Let 7 = x and Zn41 = Xn+1- Then we can extend (19) as
(20) F (Z, Q(Z, X Xﬂ+1)) =& (Z, X Xn+1,jK_F-(X, Xn+1)) .

Passing to the K-th jet and taking its complex conjugate, we have
(21) JKF (X:@(Xa Z, zn+1)) = QK (X:' 2y Zn+1:j2KF(Z, z'rH—l)) y

where X is holomorphic in its arguments.
Substituting for JEXF in (20), we have

(22) F (w! Q(’UJ, X @(Xa Z, zﬂ+1))) =T (Z, Zn+1y X w,j2KF(z, zn+1)) 1
where w € C" and ¥ is holomorphic in its arguments.

Also, we have
(23)

J2KF ('UJ, Q(w: X:@(X: Z, Zn+1))) = ‘IlzK (Z, Zn+1 X w,j4KF(z, zn-i-l)) 1
where ¥2K is holomorphic in its arguments.

On the other hand, we have

(24) F (’LL,Q(’U,, T, G(T:W,wn+1))) =¥ (w3 Wnt1, Ty u:j2KF(w1wﬂ+l)) 3

where v € C™.

LEMMA 8. There exist (p,pn+1) € C**+! sufficiently close to 0 and holo-
morphic functions x = x(2, zZn+1), 7 = 7(u,un+1) defined on a neighbor-
hood V of O such that

(25) Pny1 = Q (P, X G(X) 2, zn+l))
and )
(26) Unt1 =@ (u, 7 @(Ta D, pn+1))

onV,
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Proof. It’s enough to show that there exist (p, pp+1) € Cn*!and x°, 70 €
C™ which are sufficiently small such that

(27) aixj [Q (2. x: QX 2, 20+1))] ’

for some j =1,...,n and

)

= .x%,0) #0
0.0 aXJ_(px ) #

(28)

% [Q (u‘l T _Q—(Ta D, pn+1))]

for some § = 1,...,n. Then by implicit function theorem we can prove the
lemma.,
But

aQ
A g('fﬂ,p:pn+1) #0
17— j

oQ
Y
and
6—Tj(T 1Py Prt1) = o7, (T ,P)+Pn+1a,rj (7°, D) Pnt1)-
Since M is of finite type in the sense of Bloom-Graham, R # 0. Hence

we can choose (p, pri1) € C**! and x9, 0 € C™ sufficiently close to 0 which
satisfy the above conditions. O

Then substituting for ¥ = x(z,2p+1) and 7 = 7(u, p4+1) in (23) and
(24), respectively, and substituting for JKF(p,pps1) in (24), we have

(29) F(u: un+1) =H (J4KF(Z: Zn+1)s Zy Zn415 25 Znt 1, Y, Untl, Uy ﬁ'n,+1) 3

where H is holomorphic in its arguments.

Passing through (4K + 1)-jet and taking (u, un41) = (2, 2n4+1) € M, we
have
(30) J4K+1F(z’ Z’n+1) =H (J4KF(Zs zn+1)a 2y Zn+1:797n+1) *

where H’ is holomorphic in its arguments.
Proof of Corollary 4

Let M and M’ be as in Corollary 4 Suppose M is essentially finite at
0 and F: M — M’ satisfies

(31)  dF(CToM) ¢ HY*(M')® HY'(M') (Hopf Lemma property).
0

In [3], Baouendi and Rothschild showed that F is of finite multiplicity at 0
and

(32) (ess type M) = (mult Fy) - (ess type Mp).
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If M’ is k-nondegenerate at 0, then

(33) O}/ (aa(C)) = O[¢]/ (1, 5 6n) -

Hence (ess type My} =1 and (mult Fy) = (ess type My).
Thus to prove Corollary 4, it’s enough to show that if F is of finite
multiplicity at 0, then M is of finite type and

(34) {27 (r3 0 F)(0): 4| < K}
span C", where K = k- (mult ).

Let F = (f,9) = (f',---, f" g) and (2) be the ideal of O[z] generated
by z.

LEMMA 9. If F is of finite multiplicity at 0, then
(35) det (ihf (2, o)) Z0,
Oz bi=1,...m

where b7, j = 1,...,n, are the (mult Fp)-th order Taylor series expansion of
.

Proof. Since we only deal with the Taylor series expansion of F', we may
regard that F is smooth. ol

Since M and M’ are in normal coordinates, —Q&—ag(O) = 0 for all . Hence
F is of finite multiplicity at 0 if and only if
(36) dimcOlz]/ (£1(2,0), -+, f(2,0)) = d < o,
where d = (mult Fp).

Now let 2* € (2)%. We denote 8 = (b1, ,by) < & = (ay,--- ,an) if
b; <ajforalj=1,..,nand 8 # a.

If |a| > d, then we can choose 8,1 =1,...,d, suchthat 0 < 8, < By --- <
fBa = e Suppose z* & (f1(z,0),--- , f*(2,0)). Then
(37) sp<{1,2% :1=1,..,d} >N (f}z,0),--- , f(2,0)) = {0},

where sp < {1,z : | = 1,..,d} > is the C-vector space spanned by
{1,z :1=1,...,d}. Thus

d = dimcO[z]/ (f1(z,0),--- , f*(,0))
= dimesp < {1,727 : 1 = 1,..,d} >
+dimesp < {27 iy # B,1=1,...,d} > / (f'(2,0),--+ , f(2,0))
>d+ 1.
Hence we conclude that

(38) (2)* < (12,0, , f"(2,0)).
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Then we have
(hY(2,0),-+ ,h*(2,0)) € (f1(z,0), -, f*(2,0)) + (2)*"
C (£1(%0),-, f1(2,0))

and
(39)  fi(2,0) - M(2,0) € ()™ C (2) - (f1(2,0),--+, f"(2,0))
for all j = 1,...,n. Thus by Nakayama's Lemma (see [3])
(40) (A (2,00, , B (2,8)) = (f1(2,0),--- , f*(2,0))
which implies
(41) dimcO[2]/ (h'(2,0),--- ,h"(2,0)) < o0,
But in [3], it is proved that (35) holds if (41) holds. 0

Let h = (hl,--- ,A"). By Lemma 9 we can show by following the same
argument of the proof of Theorem 2 of [3] with & in place of F' and with "=
modulo (£)*(mult Fo)+1 ., (p)lmult Fo}+1» iy place of "=" that M is essentially
finite at 0 and hence of finite type at 0.

Now suppose there is a vector s = (s1,--- ,8,) € C" such that

(42) Z s;a;(R)(z,0) = 0.
i=1
By Lemma 9 there exists zp € C™ sufficiently close to 0-and a neighborhood
U of z such that h(-,0) : U - h(U,0) ¢ C" is a biholomorphic map onto
an open set h(U,0) of C*. Thus
n

(43) > 5050 =0

j=1

for all ¢ € h(U,0). But 3°7_; sja;(¢) is holomorphic in ¢, 37, s;0;(¢) =0
on C".

Let
d i 8
(44) L=— 4 _—  4=1,..,n,
708G Thy O0an T
, o . s .
where Ty = E, j=1,..,n+ 1. Since M’ is in normal coordinates, we
¥]
have

(45) r7(0) = (0,---,0,1)
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and
3|Tial 81 a
46 L(r)(0 =
(46) (rp)(0) = (ao O, 2 (0,0
for all |y| > 0.
This implies that M’ is k-nondegenerate at 0 if and only if
n
(47) > 558i(Q) #0
j=1

for all § = (3,---,8,) # 0. Hence we conclude that

(48)

Es:,av,dT )(z,0) =0

if and only if s = 0.

Now let

a’j(f)(z: 0) = anza
Z CaZ® + E a2,

|| =m; || >m

where 3-\q (e, Caz® # 0. Then a;(f)(z,0) = a;(h)(z,0) modulo Tt
Henceif 3 5, sja;(h)(2,0) # 0, then 37_; s;0;(f)(2,0) # 0 modulo T+,
where m = max(my,- - ,my) < k- (mult Fp), which implies that the image

(49)

{{(af (2),--- ,af(z)) 1 z € C"}

is not contained in a hyperplane of C" for K = k- (mult Fy) or equivalently

(50)

{I7 (rz o F)(0) : 7| < K}

span C*H1 where K = k- (mult Fp).

i
(2]

[4)
(5]
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