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SOBOLEV ESTIMATES FOR THE LOCAL EXTENSION OF
BOUNDARY HOLOMORPHIC FORMS ON REAL
HYPERSURFACES IN C™*

SANGHYUN CHO

ABSTRACT. Let M be a smooth real hypersurface in complex space of
dimension n, n > 3, and assume that the Levi-form at zp on M has at
least (q+ 1)-positive eigenvalues, 1 < ¢ < n —2. We estimate solutions of
the local d-closed extension problem near zg for (p, q)-forms in Sobolev
spaces. Using this result, we estimate the local solution of tangential
Cauchy-Riemann equation near zp in Sobolev spaces.

1. Introduction

For a set D C C", we denote the vector space of smooth (p,q)-forms on
D by APY(D). Let M be a smooth real hypersurface in C" with a smooth
defining function p, and let BP¢(M) be the restriction of A”*?(C") to M which
are pointwise orthogonal to the ideal generated by dp. In the sequel, we let
zop € M be a fixed point and V be a neighborhood of zy in C™ where p is
defined. For each openset U C V, zg € U, weset U~ = {z € U; p(z) < 0} and
Ut ={z€U;p(z) > 0}.

If there exists a neighborhood U C V, zy € U, such that for any a €
BP4(M N U) with dya = 0 on M N U, there exists a smooth (p, q)-form & €
APUU™) with & = 0in U~ and (& — a) Adp = 0 on M N U, then we say
one-sided weak O-closed extension problem is locally solvable.

The 0-closed extension problem and the local solvability of the tangential
Cauchy-Riemann equation for functions were first introduced in two papers
by Hans Lewy [17, 18]. For the case when M is the boundary of a smoothly
bounded domain €2 in C”, the global 0-closed extension problem for forms from
M to the domain  was studied by J. J. Kohn and H. Rossi [14], who first
introduced the dy-complex. They showed that a global 0-closed extension exists
for any (p, ¢)-form from the boundary M = b2 to the domain € in a complex
manifold if €2 satisfies the condition Z(n— ¢ —1) at all points of b2. Analogous
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result was obtained by Henkin and Leiterer [13] using kernel methods. For the
case when  is a bounded pseudoconvex domain in C", Shaw and Boas [19, 3]
constructed a two-sided O-closed extension for dy-closed forms near b§) using
the L2-Cauchy problem for 9, and solved dy-problem on the boundary.

For the local extension problem, Andreotti and Hill [1] solved the local weak
O-closed extension problem when the Levi-form at zy € M satisfies the condi-
tion Y'(¢). Under the same assumption, Boggess and Shaw [4] proved the same
result using integral kernel method. Recall that we say M satisfies condition
Y (q) at zp if the Levi form of M at zy has either max{n —q,q+ 1} eigenvalues
of the same sign or min{n — ¢, ¢ + 1} positive and min{n — ¢, ¢ + 1} negative
eigenvalues. Thus when (n — ¢) > (¢ + 1), we need (¢ + 1) mixed (positive
and negative) eigenvalues for the condition Y (¢q) to be satisfied. In [8], Cho
and Choi proved the one-sided smooth extension problem (without estimates)
when the Levi-form at zp € M has at least (¢ + 1) positive eigenvalues.

Note that the estimates of the solutions of these extension problems in vari-
ous spaces, such as C*, LP, Lipschitz or Sobolev spaces, have many applications
in the study of complex analysis. For example, function theories on a bounded
domain D C C™ or the embeddability of abstract CR structures [5, 6, 15, 21].

For aset W C C", we denote the Sobolev norm of order s on W by ||-||s,w. In
[10], the author proved the local extension problem, with estimates in Sobolev
spaces, for Oy-closed (0, 1)-forms on real hypersurfaces M in C” when the Levi-
form at zp € M has two positive eigenvalues. Therefore, it is natural to ask
the local extension problem, with estimates in Sobolev spaces, for (p, ¢)-forms
when the Levi-form at zp € M has at least (¢ + 1) positive eigenvalues (not
mixed). In this case, the condition Y (g) is not satisfied when n — ¢ > ¢ + 1.
The following theorem answers this problem.

Theorem 1.1. Let M be a smooth hypersurface in C™, n > 3, with smooth
defining function p and suppose that the Levi-form at zg € M has at least
(g+1) positive eigenvalues, 1 < ¢ < n—2. Then there is a neighborhood Uy of
2o such that for any a € B4 M N Uy), satisfying Opae = 0 on M N Uy, there
exists & € N\P"(Uy) such that & =0 on Uy and (& —a)AOp =0 on MNUy.
Also, if U CC Uy is a neighborhood of zy and if we let x € C§°(Uy) with x =1
on U, then for each real s > 0, & satisfies the estimate:

(1.1) 18l s43,0- < Csllxallypag e

We note that the estimate (1.1) is comparable to the case when ¢ = 1 in
[10]. We also note that there are well-known non-solvability results of tangential
Cauchy-Riemann equation for n = 2 [18] and for ¢ = n—1 [11]. Note, however,
that the local 9-closed extension problem and the local solvability of 9), equation
are closely related [19, 3]. Using the results of Theorem 1.1, we solve the local
Jp-equation in Sobolev spaces.

Theorem 1.2. Let M, z9 € M and Uy be as in Theorem 1.1. Also, assume
that M is pseudoconver near zg € M. Then there is a neighborhood W of
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20, W CC M N Uy, such that for any o € BP9(M N Uy) satisfying Oy = 0
on M N Uy and for each real s > 0, there exists us € BPa=)(W) such that
Opus = a on W and satisfies the estimate:

HUSHS,W < CSHO[||S+(’T+17MOU07'

Remark 1.3. In Theorem 1.1, the differentiability assumption @ € C'°° can be
weakened to v € H*T 5 (MNUp) to get & € H*t2 (M NUp), and similarly for
Theorem 1.2.

Note that the weak extension problem is a Cauchy problem to preserve the
boundary values in tangential direction. This means that we have to solve 0*-
equation instead of O-equation. Let D be a smoothly bounded pseudoconvex
domain in C* and let o € B”9(bD), where 0 <p <k and 1 < ¢ <k — 1. Note
that a necessary and sufficient condition for the extension problem to be solved
is:

(1.2) /bDampzo

for every v € A\*PF"71(D)n Ker(9) ([7], Theorem 9.2.1). We also note that
(1.2) is equivalent to the condition dyax = 0 for ¢ < k — 2.

2. Preliminaries

Let Q be a domain in C* with smooth boundary and let 9 be the Cauchy-
Riemann operator on €2 and let N, ;) denote the Neumann operator for (p, q)-
forms. We also let CP¢(Q) be the collection of forms ¢ € A”?(Q) such that
¢ A Or = 0 on bS2, where 7 is a smooth defining function for Q. Let I be an
open ball in R? and let |I| denote the diameter of I, and let Hy (2 x I) be the
Sobolev space of order s on €2 and of order [ in I with the norm denoted by
I - 1ls,;- We state a theorem (Theorem 1.7 in [9]) for the smooth dependence of
solutions of the O-Neumann problem with respect to a parameter 7 € 1.

Theorem 2.1. Let {0, },er be a smooth family of diffeomorphic strongly pseu-
doconvex domains in C* and suppose that {a, },er is a family of (p,q)-forms
on {0, }rer such that o, € R(0,), the range of O,, for each T € I, where
|I| is sufficiently small. Then for each real number s > —1/2 and for each
nonnegative integer 1, there is Cs; > 0 such that the Neumann solution U, of
OU, = a, and the canonical solution u, = 0*U, of Qur = o, on each Q,
T € I, satisfy

l

(2.1) U s 1,00 [ullss1/20 < Coa D llellsrizrr,
r=0

where & € Hopy—p (2 x I), 0 < r <1, and where U := {ur}rer and o :=
{aT}TEI'
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Let (M, p) be as in Section 1, and assume that the Levi-form at zg € M
has k > 1 positive eigenvalues. To prove the solvability of the local extension
problem, we need to construct a smooth family of strongly convex domains
near zg € M which are foliated in the side p < 0 and make up a neighborhood
U, of zg € M. We first prove the following lemma, which describes the local
geometry of M near zp in terms of local coordinates.

Lemma 2.2. Let M be a smooth hypersurface in C™ and assume that the Levi-
form at zg € M has k > 1 positive eigenvalues. There is a special coordinate
z=1(z1,...,2n) defined in a neighborhood of zy and new defining function p of
M which can be written, in new coordinates, by

k n—1
(2.2) p(z) = lzal® = 14Dzl + Y il + O(|z — 20f)
=1 i=k+1

Proof. Let p be a smooth defining function of M. By a standard method
of holomorphic coordinate changes, we have special coordinates u = (u’,u”),
u = (u1,...,uk), v = (Wgt1,.-.,Un), u(zo) = 0 and the Taylor expansion
near zg = 0 can be written as:

k

p(u) =t + 1 + Y |uil* + Z Ailug? +chwn+zcwwn+0 Jul?),

i=1 i=k+1

where each )\; is a real number and O(|u|?®) is the remainder whose first and
second derivatives vanishes at 0. Set r(u) = p(u)-(1—=Y_p_; chtk— D pey Cklk),
where (1 —2Re Y ;_, cpux) > 1/2 in a neighborhood of the origin. Therefore,
r is a new local defining function of M near zp € M and can be written as

= crupun)+ ZE Ukl +Z|uz|2+ Z Ailuil*+O(Jul?).
k=1 k=1 =

i=k+1

Set wj = u; for j < n, and wy, = up — Y _p_; CkURU,. In w coordinates, r(w)
has the representation:

k n—1
r(w) = wp + o0+ Y [wil*+ D Nifwil® + O(jwf)
=1 i=k+1

Set #(w) = r(w) - (1 + (wy, + Wy)/2), where 1 + (wy, + ©5)/2) > 1/2 near
zo = 0. Then #(w) can be written as:

n—1
1
F(w) = wy, + @0p + 2(w +02) + |wn|? + Z lw; |* + Z i|wi|* 4+ O(Jw]?)
i=k+1

By setting

1 - .
un:wn—i—awi and u; = wj;, j<mn,
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7 can be written, in u-coordinates, by:

k n—1
F(i1) = i + T + G|+ Y|P+ > Nl + O(lal?).
i=1 i=k+1

Finally, we set z, = 4, + 1 and z; = 4, for j < n, and denote 7 by p. Then
z(z0) = (0,...,0,1) and in z-coordinates, the local defining function p can be
written as:

n—1

k
p(z) = |za)> =1+ Z |z:]® + Z M| zi2 + O(|z — 20/%)
i=1 i=h+1

near zo = z(z9) = (0,...,0,1). O

Set z = (2/,2"), where 2’ = (z1,...,2;) and 2" = (2g41,...,2n). In the
following proposition, we regard 2/ € C"~* as a parameter variable near t{ :=
2y = (0,...,0,1) € C"* and construct a family of strongly convex domains.
In Section 3, we will apply Theorem 2.1 to this parameter family of domains.

Proposition 2.3. Let (M, p) and zo be as in Lemma 2.2. Then there exist
a small open ball I := By, (ty) C C"* for a small o9 > 0 and a family of
bounded strongly convex domains {Qn }iner in CF, and Qu is diffeomorphic to

Qq for each t" € I with diameters being strictly bounded from below (say, by
17/48

o, '), and foliate into the part p < 0 making up a neighborhood Uy of z.
Proof. For a sufficiently small o > 0 to be determined, let B, (tj) C C" % be a
ball of radius o > 0 centered at tj. For any fixed t"" = (tx41,...,tn) € Bo(t))
and for each |2'| < o4, set p(2/,t") = p(2/,thits - stn_1,tn — 0/321). In
view of (2.2), we can write

k
A" t") = (Jtal® = 1) = 20" *Re(21fn) + 03 |21* + Y |z
=1
(2.3) .
+ ) At + O(|z — 2of?).
i=k+1
For t” € B,(t(), we set
n—1
rin(2) = (1= [tal®) + 20 *Re(z1tn) — Y Ailtil* + O(1z — 20/*).
i=k+1

Then when t” =t = (0,...,0,1), i.e., at the center of the ball B, (t), we have

i (z') = 20 3Re(z1) + O(Z'|*) > 0
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for an appropriate z; (say, at Rez; = 0%/%) provided ¢ > 0 is sufficiently small.
Therefore, it follows that

k
Q= {2 € Byaya(z); o3z |? + Z |z < o (')}

i=1
is a non-empty strongly convex domain contained in the side of p < 0. Note
that ;7 is a small deformation of a ball whose radius is bigger than or equal
to o17/48 . Also we see that zg € by C M and €y is the central slice of the

side p < 0.

For any t" = (tk+1,.-..tn) € Bs(t(), we note that |t,, — 1| < 0. Hence ¥, is

a small (of size less than o) perturbation of r;’,,. Therefore, as for the rf/, case,
0

it follows that 77, (z") > 0 for some 2’ and hence for each ¢ € B, (tj),

k
Qi = {2/ € C*; 0?32, > + Z 2> < rin(2)}

=1

is a nonempty strongly convex domain in C* contained in the side of {z; p(2) <
0} and bQ;» C M, and the diameter of Q; is bigger than or equal to o*7/48 pro-
vided o is sufficiently small. Let us fix o = oy satisfying the above conditions,
and set I := By, (t)) C C"~* and

(2.4) Uy o= |J @ x {t"}.

t''el

This proves the proposition. (I

Remark 2.4. Note that Rez; < o'/3 if 2/ € Qu, which forces that |2/| < o'/3,
that is, Q¢ C Byr/24(20) C Byi/a(z0) provided o is sufficiently small. Also, in
view of our construction, we may take ¢ sufficiently small so that Theorem 2.1
holds for I = B,, and U; C Baé/“ (20).

Remark 2.5. With the special coordinates z = (2/,t"”) defined in (2.3), set
tn, =1+ %07/24, and for each |t;| < o3 j =k+1,....n—1, set I =
(tks1,- - tn_1,1n). For each |2/| < ¢'/3, we then have 8, (') ~ —g7/?4,
and hence j(2/,#") > 0. Set D, := {t" € C"%;|t;] < ¢'/3, k+1 < j <
n—1, |tn —in| < o}. Then for each t” € D, and |2/| < ¢!/3, it follows that
per(2') > 0, and hence Qq is an empty set when t” € D).

3. O-closed extension for (p, q)-forms

To prove the local extension theorem, we use the local decomposition of the
set U, considered in (2.4) and use Proposition 2.3 with k£ = ¢+ 1. We will solve
the ¥-equation to correct the terms and use the estimates (2.1) on parameter
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variables z” = t" € I, where I is defined as in (2.4). Set £ = {1,...,¢+ 1}
and K¢ ={q+2,...,n}. For a smooth function f defined in C", we define

q+1 n
_ 0 = 0
okf= E 8_2f'd2j and Ok f = E —f_dgj.
j=1 "

J=q+2

We can extend this definition for arbitrary smooth forms.

Since p does not play any important role in the estimates, we set p =0, i.e.,
we consider only the cases of /\O’q(W), where W is an appropriate set. We
recall that || - ||s 5w is the Sobolev space of order s in 2’ € C4T! variables and
of order k in 2" € I C C"~97! variables. We also note that A”%(Q,~) and
AP4(b92,) are defined on Q,» C CIT1) and that every summation will be over
strictly increasing indices. In the sequel, the constants, such as Cs or Cs,
depend only on s or k£ and can vary line-to-line while we estimate.

Proposition 3.1. Let M be a smooth real hypersurface in C*, n > 3, with
smooth defining function p defined in a neighborhood V' of zg € M, and suppose
that the Levi-form at zo has at least (¢ + 1) positive eigenvalues, 1 < g <n—2.
Then there is a neighborhood Uy, zo € Uy, such that for any o € B&I(MNUy),
there are &; € N (Uy), 0 < j < q+1, such that (G; —a) Adp =0 on MNUj
and Oa; can be written as

(3.1) dé; = > of dz" A dz?
IcK,JcKe
[+ J|=q+1,|J|>j

on Uy for some smooth functions OZJI.J. Also, if U CC Uy is a neighborhood of
zo and if we let x € C§°(Up) with x = 1 on U, then for each real s > 0, &;
satisfy the estimate

(32) 2 lls13,0- < Cslixall 4 aq
foreach 0 <j<qg+1.

Proof. Let us take Uy C B_1/2 C V as defined in (2.4) where special frames are
defined on V. By shrinking0 I if necessary, we may assume that Theorem 2.1
holds on Up. Using Theorem 2.1, we shall construct &; inductively satisfying
(3.1) and (3.2). From Lemma 9.3.3 in [7], there is ag := Fa € A" 4(Uy),
Ea=a and 0Ea = O(p>) on M N Uy such that for each real s, we have

(3.3) laolls v < Cslixalls—1/2,.m-

Thus (3.1) and (3.2) hold for j = 0.
Let U CC Uy be a neighborhood of zy and choose a smooth cut-off function
x € C§°(Up) with x = 1 on U. Replacing &g by xd&o, we may assume that
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ao € C§°(Uy). Let us write

dag = agdz® + Z > Bhdz' ndz + > B},dz' ndz?
J=q+2 |I|=¢ [I]4+]J|=q+1, |J|>2
IcK ICK,JCK*¢
— OéO +ﬁ1 T E2,
and set

¢ =0a’ on Uy, and gO:O on UJ.

Since dag = O(poo) on M N UO, it follows that g% € C*°(Up). Similarly, if we
deﬁne B, = E%, = 0 on Uy, it follows that B}, E?, € C°°(Uy). Note that
g° comes from the components of dxdg. By (3.3), for each real s > —1 and
nonnegative integer k, there are C's,k and Cj j such that

(3.4) ”gO”s,k,U* < C’S,kH&OHerl,k,U* < Cs,kHX04||s+k+1/2,M-

To remove o term in déyg, we try to solve dxcug(-, 2”) = ¢°(-,2"") in Q.» and
set a1 (-, 2") = ao(+,2") — uop(+, 2") for each z” € I. However, to preserve the
boundary condition, it is required that uo(-,2”) € C*%(Q.n) for each 2" € I.
This means that we have to solve G,C equation rather than Ox-equation. Since
g°(-,2") is a (0,q + 1)-form in Q,» C CI* it becomes a top degree problem
in C9! and hence it is required to satisfy (1.2), that is,

(3.5)
Fr(z") = A °(2")Ah(-) =0, forevery he Clr1,0) (C) Nker(x).

To prove (3.5), we consider the coefficients of the terms of dz* A dz in
0269 = 0, where [ € K¢. Note that these terms are coming from Oxea® 4 O 5.
Thus we obtain that

O[O g+1 ) 1
(3.6) %22(1)“]1%, l=q+2,...,n.
J=1I|=¢
IcK
In view of (3.5) and (3.6), it follows, for [ € K¢, that

OFy, " 0 / 0 "
Sy ge— L2V AR
7, (") 9 Jous? (- 2")
-/ ia%c,z")m
Q.n 6Zl

/ Z q-‘r] 1aﬁll Ah

= g=1I]=
ICIC

q+1

- [LE e gt =

2! j= 11)=
ICIC
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because h(:) is holomorphic in .~. Here, the first and the second equalities
hold because ¢° is supported in €., C C%!, and the fourth equality holds
because 8}, = 0 on b2, (and hence we can perform integration by parts).
Therefore, Fy,(2") is holomorphic in C"~9~1. Moreover, in view of Remark 2.5,
it follows that F,(z”) = 0 for 2 € D, (since .~ becomes the empty set),
provided o is sufficiently small. Here, [); is the tube defined in Remark 2.5.
Thus we see that (3.5) holds.

Set ug(-,2") = — xx 5;CN(’§+170) xic g°(-,2"), 2" € I, where N(’E’S) is the
Neumann operator for (r, s)-forms and *x is the Hodge star operator on .
for each 2" € I. Then we have dxcug (-, 2") = g°(+, 2”") and uo(-, 2”") € C*4(Q.n)
for each 2z € I. We also note that wug(+, 2”) depends smoothly on z” € I and
satisfies the estimate (2.1) including the parameter variable z” € I. Thus for
each real s > —1/2 and nonnegative integer k, it follows from (2.1) and (3.4)
that

k
(3.7) HUOHeré,k,U* S Z Hgolls-i-k—r,r,U* S lléollsti4mu- S |\Xa||s+§+k,/v1-
r=0

Note that ug A dxp = 0 on M N Uy because ug(-,2") € C*(Q,») for each
2" € I. We have to correct ug so that the corrected one, g, belongs to C%4(),
that is, % A dp = 0 on M N Uy. Since ug A Oxcp = 0 on M N Uy, we can write

UO(') Z”) = 60('3 Z”) A 5’Cp('a Z”) + p(a Z”)’yo('a ZH)
for some &6°(-, 2") € C%9(Q,~) and ~°(-,2") € COIFL(Q,), 2” € I. We may

assume that §° A9k p and p° are disjoint, and hence it follows from the estimate
in (3.7) that

(3.8) 10%0or g - < ol g g S Xy 11001

for each real s > —% and nonnegative integer k.
Set @g = ug + 6° A Oxcep. Then one obtains that

tig A Op = (6" A Icp + py° + 6° A Oxep) AOp =0,

on M N Uy, and hence iy € C*(U; ). Now we set &1 = &g — @p. Then it
follows that (a3 — ) Adp = —tg Adp =0 on U N M, and we can write

n
(3.9) Oay = Y > Bpdz' ndZ + > B2,dzt A dz’!
l=q+2|I|=¢ []+|J|=q+1, |J|>2
ICK IcK,jcKe

for some smooth functions 5}, and $2,. In view of (3.3), (3.7) and (3.8), one
obtains that

(3.10) stz 0,0- S Ixallst 342,04

for each real s > —% and nonnegative integer k.
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By induction, assume that there are &; € /\O’q(UJ), j > 0, satisfying (3.1)
and (3.2), and that for each real s > 0, the estimate

(3.11) @lls+1,0- < Cslixallsy g

holds and (&; — a) Adp = 0 on M N Uy. By (3.7), (3.10) and the Sobolev
interpolation theorem, we see that (3.1), (3.2) and (3.11) hold for j = 1.

If we replace &; by xé&;, we may assume that &; € C§°(Up) as before. Let
us write:

_ . - o -
da; = > 7 dzt AdzT + > Eittazt pdz’
[T|=q—j+1,|J|=j [T|+|J|=q+1,|J|>j+1
ICK,JCK° ICK,JCK*
= B9 4+ FITL

For each fixed J with |J| =j > 1, set
Bl = Z 87 ,dz".

[T|=q—j+1
IcK
If we consider the terms in 5264]- with |J| = j > 1, J C K¢, we see that
Bila., = B5(-,2") is a smooth J-closed (0,¢ — j + 1)-form in Q.r C Catl,
Since Y = — xx Jx*x, it follows that #xcf) is a Yc-closed (¢ + 1,7)-form in
Q. C CT*L for each 2" € By, (2() = 1.
Set

u?](a ZN) = T *K 5ICN(’2+1,]‘) *Kc ﬂjj(a ZN))

where NX is the Neumann operator for (¢ + 1,7)-forms on the strongly

(g+1.5) _
pseudoconvex domains Q,» C CI*t'. Thus o/ (-, 2") € C*779(Q,), varying
smoothly on z” € I, and for each real s > 0 and nonnegative integer k, it
follows from (2.1) and (3.11) that

(3.12)
k

lullsr s no— S DB sthrrv- SN0 lsrri1,0- S Ixellgpppizr ape
2 2
r=0
Here, we need s > 0 (rather than s > —1/2) because ﬂf} may contain terms in
Okej—1 that can be estimated only in Sobolev s-norm in Cat! for s > 0.

As for the j =1 case, we have to correct v/, so that the corrected one, @7,
belongs to C%4~J(Uy), that is, @', A 9p = 0 on M N Uy. Since u’; A Ocp =0 on
M N Uy, we can write

uJ ('7 Z”) = 5?](5 ZN) A 5’CP('5 ZN) + p(7 Z”)’Y.j}('a ZN) ZN el
for some 6?}(_-,z”_) € CO9=I=1(Qn) and (-, 2") € CO97I (), 2" € 1. Set
@’y = u’y + 6% A Oxep. Then it follows that

@y N Dp = (5§A5,Cp+m§+6§A5,ccp)Aép:()
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on M N Uy for each J C K¢ with |J| = j, and hence @; := Y~ ;e = ﬁf, A
dz’? € C%4(Uy N Q). Also, one obtains that

Oy = > (BJ, + Oxcet) + (6{, A 5;Ccp)) A dz?

JCKe,|J|=j
(3.13) = .
=Y Bpady + BT
JCKe | T|=j

Set &j41 = &; —u; € C(Up). Note that we may assume that 5{, A Oxp and
p} are disjoint. Therefore, it follows, from the estimates in (3.11) and (3.12),
and by the Sobolev interpolation theorem, that
(3.14) lagallss s - S Ixell iz uq

for each real s > 0. Also, (&;41 — &;) A Op = —ii; Adp = 0 on M N Uy since
a; € CO1(UpN Q). In view of (3.13), we can write:

_ o B o B
0bj11 = E ﬂ}}r dzl ndz? + E E}j dzl A dz?
[I1=q—j,|J|=j+1 [+ J|=g+1,|J| >j+2
ICK,JCK*® ICK,JCK*®

for some smooth functions 6}'}1 and E}jQ This fact, together with the estimate
in (3.14), proves the inductive step. If we proceed up to j = ¢ + 1, then the
proof of the proposition is completed. (I

Remark 3.2. When n = ¢+1+k, 1 <k < g, the above inductive step will stop
at the (k4 1)-th step, thus proving dax41 = 0. This proves Theorem 1.1 with
better estimates.

Now we are ready to prove the weak O-closed extension problem (Theo-
rem 1.1). We recall that Uy = U, c; Q. x {2”} as defined in (2.4).
Proof of Theorem 1.1. In view of Proposition 3.1, there exists cg+1 € /\O’q(UO_)
which can be written as:

(3.15) Oagir= Yy Hydz’
\J]\gchrl

for some smooth functions Hy on U, . If we consider the coefficients of dz; Adz7
of 0?ay41 = 0, we see that

OH

0z;
for 1 <i < g+ 1. Hence H;(-,2") is a holomorphic function on €, for each
2" el

Also note that (cg+1—a)Adp = 0 on MNUy. Therefore, d(ag41—a)Adp =0

and hence Oagy1 A dp =0 on M N Uy since dpae = 0 on M N Uy. Considering

=0
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the coefficients of dz; A dz7 of day+1 A p, one obtains, from (3.15), that

dp

0z; H;=0
for 1 <i < qg+1on MNUy. Since dxcp # 0 on bS),~, at least one of 0p/0z;, for
1 <i < g+1,is not equal to zero, and hence H;(-,2"”) = 0 on bQ,~. Thus it
follows that Hy(-,2") =0 on Q,~ because H(-,2") is a holomorphic function
on Q. for each 2” € I. In view of (3.15), we thus obtain that day41 = 0.
If we set & = agt1, then & satisfies the estimates (1.1) from the estimates in
(3.2). This proves Theorem 1.1. O

Proof of Theorem 1.2. Let U be the neighborhood constructed in Theorem
1.1. Then there is a weak O-closed extension & of a onto U, satisfying the
estimate (1.1). By the lemma in Section 4 of [2], we can construct a small
pseudoconvex domain B CC U, with the property that W := BN M is a
neighborhood of zg € M.

For each real s > 0, set @is = 9*NEa, where NP denotes the weighted
O-Neumann operator in B with weight e~tsl=” for sufficiently large ts > 0
depending on s. Then we have 0ii, = & in B, and it follows that

(3.16) aslls,z < Csllalls, s

Set ug = Tiiy, where 7 is the projection in AP?~ (M) onto B»7~1(M) defined
by first restricting a (p, ¢—1)-form ¢ in C™ to M, then projecting the restriction
to BP9~ (M). Then Oyus = o on W and if we use the estimates (1.1) and
(3.16), and the trace theorem in Sobolev spaces, then we obtain that

usllsw < Csl[Dtsl[s—1 p < Csllallsrz,5 < Cslixall ot v

for each real s > 0. This completes the proof of Theorem 1.2. (I
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