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SOBOLEV ESTIMATES FOR THE LOCAL EXTENSION OF

BOUNDARY HOLOMORPHIC FORMS ON REAL

HYPERSURFACES IN Cn

Sanghyun Cho

Abstract. Let M be a smooth real hypersurface in complex space of
dimension n, n ≥ 3, and assume that the Levi-form at z0 on M has at
least (q+1)-positive eigenvalues, 1 ≤ q ≤ n− 2. We estimate solutions of
the local ∂̄-closed extension problem near z0 for (p, q)-forms in Sobolev
spaces. Using this result, we estimate the local solution of tangential
Cauchy-Riemann equation near z0 in Sobolev spaces.

1. Introduction

For a set D ⊂ Cn, we denote the vector space of smooth (p, q)-forms on
D by

∧p,q
(D). Let M be a smooth real hypersurface in Cn with a smooth

defining function ρ, and let Bp,q(M) be the restriction of
∧p,q(Cn) to M which

are pointwise orthogonal to the ideal generated by ∂̄ρ. In the sequel, we let
z0 ∈ M be a fixed point and V be a neighborhood of z0 in Cn where ρ is
defined. For each open set U ⊂ V , z0 ∈ U , we set U− = {z ∈ U ; ρ(z) ≤ 0} and
U+ = {z ∈ U ; ρ(z) ≥ 0}.

If there exists a neighborhood U ⊂ V , z0 ∈ U , such that for any α ∈
Bp,q(M ∩ U) with ∂̄bα = 0 on M∩ U , there exists a smooth (p, q)-form α̃ ∈
∧p,q

(U−) with ∂̄α̃ = 0 in U− and (α̃ − α) ∧ ∂̄ρ = 0 on M ∩ U , then we say
one-sided weak ∂̄-closed extension problem is locally solvable.

The ∂̄-closed extension problem and the local solvability of the tangential
Cauchy-Riemann equation for functions were first introduced in two papers
by Hans Lewy [17, 18]. For the case when M is the boundary of a smoothly
bounded domain Ω in Cn, the global ∂̄-closed extension problem for forms from
M to the domain Ω was studied by J. J. Kohn and H. Rossi [14], who first
introduced the ∂̄b-complex. They showed that a global ∂̄-closed extension exists
for any (p, q)-form from the boundary M = bΩ to the domain Ω in a complex
manifold if Ω satisfies the condition Z(n− q−1) at all points of bΩ. Analogous
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result was obtained by Henkin and Leiterer [13] using kernel methods. For the
case when Ω is a bounded pseudoconvex domain in Cn, Shaw and Boas [19, 3]
constructed a two-sided ∂̄-closed extension for ∂̄b-closed forms near bΩ using
the L2-Cauchy problem for ∂̄, and solved ∂̄b-problem on the boundary.

For the local extension problem, Andreotti and Hill [1] solved the local weak
∂̄-closed extension problem when the Levi-form at z0 ∈ M satisfies the condi-
tion Y (q). Under the same assumption, Boggess and Shaw [4] proved the same
result using integral kernel method. Recall that we say M satisfies condition
Y (q) at z0 if the Levi form of M at z0 has either max{n− q, q+1} eigenvalues
of the same sign or min{n− q, q + 1} positive and min{n− q, q + 1} negative
eigenvalues. Thus when (n − q) > (q + 1), we need (q + 1) mixed (positive
and negative) eigenvalues for the condition Y (q) to be satisfied. In [8], Cho
and Choi proved the one-sided smooth extension problem (without estimates)
when the Levi-form at z0 ∈ M has at least (q + 1) positive eigenvalues.

Note that the estimates of the solutions of these extension problems in vari-
ous spaces, such as Ck, Lp, Lipschitz or Sobolev spaces, have many applications
in the study of complex analysis. For example, function theories on a bounded
domain D ⊂ Cn or the embeddability of abstract CR structures [5, 6, 15, 21].

For a setW ⊂ Cn, we denote the Sobolev norm of order s onW by ‖·‖s,W . In
[10], the author proved the local extension problem, with estimates in Sobolev
spaces, for ∂̄b-closed (0, 1)-forms on real hypersurfaces M in Cn when the Levi-
form at z0 ∈ M has two positive eigenvalues. Therefore, it is natural to ask
the local extension problem, with estimates in Sobolev spaces, for (p, q)-forms
when the Levi-form at z0 ∈ M has at least (q + 1) positive eigenvalues (not
mixed). In this case, the condition Y (q) is not satisfied when n − q > q + 1.
The following theorem answers this problem.

Theorem 1.1. Let M be a smooth hypersurface in Cn, n ≥ 3, with smooth

defining function ρ and suppose that the Levi-form at z0 ∈ M has at least

(q+1) positive eigenvalues, 1 ≤ q ≤ n− 2. Then there is a neighborhood U0 of

z0 such that for any α ∈ Bp,q(M∩ U0), satisfying ∂̄bα = 0 on M∩ U0, there

exists α̃ ∈
∧p,q(U−

0 ) such that ∂̄α̃ = 0 on U−
0 and (α̃−α)∧ ∂̄ρ = 0 on M∩U0.

Also, if U ⊂⊂ U0 is a neighborhood of z0 and if we let χ ∈ C∞
0 (U0) with χ = 1

on U , then for each real s ≥ 0, α̃ satisfies the estimate:

(1.1) ‖α̃‖s+ 1
2
,U− ≤ Cs‖χα‖s+ q+1

2
,M.

We note that the estimate (1.1) is comparable to the case when q = 1 in
[10]. We also note that there are well-known non-solvability results of tangential
Cauchy-Riemann equation for n = 2 [18] and for q = n−1 [11]. Note, however,
that the local ∂̄-closed extension problem and the local solvability of ∂̄b equation
are closely related [19, 3]. Using the results of Theorem 1.1, we solve the local
∂̄b-equation in Sobolev spaces.

Theorem 1.2. Let M, z0 ∈ M and U0 be as in Theorem 1.1. Also, assume

that M is pseudoconvex near z0 ∈ M. Then there is a neighborhood W of
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z0, W ⊂⊂ M ∩ U0, such that for any α ∈ Bp,q(M ∩ U0) satisfying ∂̄bα = 0
on M ∩ U0 and for each real s ≥ 0, there exists us ∈ B(p,q−1)(W ) such that

∂̄bus = α on W and satisfies the estimate:

‖us‖s,W ≤ Cs‖α‖s+ q+1

2
,M∩U−

0

.

Remark 1.3. In Theorem 1.1, the differentiability assumption α ∈ C∞ can be

weakened to α ∈ Hs+ q+1

2 (M∩U0) to get α̃ ∈ Hs+ 1
2 (M ∩U0), and similarly for

Theorem 1.2.

Note that the weak extension problem is a Cauchy problem to preserve the
boundary values in tangential direction. This means that we have to solve ∂̄∗-
equation instead of ∂̄-equation. Let D be a smoothly bounded pseudoconvex
domain in Ck and let α ∈ Bp,q(bD), where 0 ≤ p ≤ k and 1 ≤ q ≤ k − 1. Note
that a necessary and sufficient condition for the extension problem to be solved
is:

(1.2)

∫

bD

α ∧ ψ = 0

for every ψ ∈
∧k−p,k−q−1

(D)∩Ker(∂̄) ([7], Theorem 9.2.1). We also note that
(1.2) is equivalent to the condition ∂̄bα = 0 for q ≤ k − 2.

2. Preliminaries

Let Ω be a domain in Ck with smooth boundary and let ∂̄ be the Cauchy-
Riemann operator on Ω and let N(p,q) denote the Neumann operator for (p, q)-

forms. We also let Cp,q(Ω) be the collection of forms φ ∈
∧p,q

(Ω) such that
φ ∧ ∂̄r = 0 on bΩ, where r is a smooth defining function for Ω. Let I be an
open ball in Rd and let |I| denote the diameter of I, and let Hs,l(Ω× I) be the
Sobolev space of order s on Ω and of order l in I with the norm denoted by
‖ · ‖s,l. We state a theorem (Theorem 1.7 in [9]) for the smooth dependence of
solutions of the ∂̄-Neumann problem with respect to a parameter τ ∈ I.

Theorem 2.1. Let {Ωτ}τ∈I be a smooth family of diffeomorphic strongly pseu-

doconvex domains in Ck and suppose that {ατ}τ∈I is a family of (p, q)-forms

on {Ωτ}τ∈I such that ατ ∈ R(∂̄τ ), the range of ∂̄τ , for each τ ∈ I, where

|I| is sufficiently small. Then for each real number s ≥ −1/2 and for each

nonnegative integer l, there is Cs,l > 0 such that the Neumann solution Uτ of

�Uτ = ατ and the canonical solution uτ = ∂̄∗Uτ of ∂̄uτ = ατ on each Ωτ ,

τ ∈ I, satisfy

(2.1) ‖U‖s+1,l, ‖u‖s+1/2,l ≤ Cs,l

l
∑

r=0

‖α‖s+l−r,r,

where α ∈ Hs+l−r,r(Ω × I), 0 ≤ r ≤ l, and where U := {uτ}τ∈I and α :=
{ατ}τ∈I.
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Let (M, ρ) be as in Section 1, and assume that the Levi-form at z0 ∈ M
has k ≥ 1 positive eigenvalues. To prove the solvability of the local extension
problem, we need to construct a smooth family of strongly convex domains
near z0 ∈ M which are foliated in the side ρ ≤ 0 and make up a neighborhood
U−
0 of z0 ∈ M. We first prove the following lemma, which describes the local

geometry of M near z0 in terms of local coordinates.

Lemma 2.2. Let M be a smooth hypersurface in Cn and assume that the Levi-

form at z0 ∈ M has k ≥ 1 positive eigenvalues. There is a special coordinate

z = (z1, . . . , zn) defined in a neighborhood of z0 and new defining function ρ of

M which can be written, in new coordinates, by

(2.2) ρ(z) = |zn|
2 − 1 +

k
∑

i=1

|zi|
2 +

n−1
∑

i=k+1

λi|zi|
2 +O(|z − z0|

3).

Proof. Let ρ be a smooth defining function of M. By a standard method
of holomorphic coordinate changes, we have special coordinates u = (u′, u′′),
u′ = (u1, . . . , uk), u

′′ = (uk+1, . . . , un), u(z0) = 0 and the Taylor expansion
near z0 = 0 can be written as:

ρ(u) = un + ūn +

k
∑

i=1

|ui|
2 +

n−1
∑

i=k+1

λi|ui|
2 +

n
∑

k=1

ckukūn +

n
∑

k=1

c̄kūkun +O(|u|3),

where each λi is a real number and O(|u|3) is the remainder whose first and
second derivatives vanishes at 0. Set r(u) = ρ(u)·(1−

∑n
k=1 ckuk−

∑n
k=1 c̄kūk),

where (1 − 2Re
∑n

k=1 ckuk) > 1/2 in a neighborhood of the origin. Therefore,
r is a new local defining function of M near z0 ∈ M and can be written as

r(u) = (un−

n
∑

k=1

ckukun)+(ūn−

n
∑

k=1

c̄kūkūn)+

k
∑

i=1

|ui|
2+

n−1
∑

i=k+1

λi|ui|
2+O(|u|3).

Set wj = uj for j < n, and wn = un −
∑n

k=1 ckukun. In w coordinates, r(w)
has the representation:

r(w) = wn + w̄n +

k
∑

i=1

|wi|
2 +

n−1
∑

i=k+1

λi|wi|
2 +O(|w|3).

Set r̃(w) = r(w) · (1 + (wn + w̄n)/2), where 1 + (wn + w̄n)/2) > 1/2 near
z0 = 0. Then r̃(w) can be written as:

r̃(w) = wn + w̄n +
1

2
(w2

n + w̄2
n) + |wn|

2 +

k
∑

i=1

|wi|
2 +

n−1
∑

i=k+1

λi|wi|
2 +O(|w|3).

By setting

ũn = wn +
1

2
w2

n and ũj = wj , j < n,
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r̃ can be written, in ũ-coordinates, by:

r̃(ũ) = ũn + ũn + |ũn|
2 +

k
∑

i=1

|ũi|
2 +

n−1
∑

i=k+1

λi|ũi|
2 +O(|ũ|3).

Finally, we set zn = ũn + 1 and zj = ũj for j < n, and denote r̃ by ρ. Then
z(z0) = (0, . . . , 0, 1) and in z-coordinates, the local defining function ρ can be
written as:

ρ(z) = |zn|
2 − 1 +

k
∑

i=1

|zi|
2 +

n−1
∑

i=k+1

λi|zi|
2 +O(|z − z0|

3)

near z0 = z(z0) = (0, . . . , 0, 1). �

Set z = (z′, z′′), where z′ = (z1, . . . , zk) and z′′ = (zk+1, . . . , zn). In the
following proposition, we regard z′′ ∈ Cn−k as a parameter variable near t′′0 :=
z′′0 = (0, . . . , 0, 1) ∈ Cn−k and construct a family of strongly convex domains.
In Section 3, we will apply Theorem 2.1 to this parameter family of domains.

Proposition 2.3. Let (M, ρ) and z0 be as in Lemma 2.2. Then there exist

a small open ball I := Bσ0
(t′′0) ⊂ Cn−k for a small σ0 > 0 and a family of

bounded strongly convex domains {Ωt′′}t′′∈I in Ck, and Ωt′′ is diffeomorphic to

Ωt′′
0
for each t′′ ∈ I with diameters being strictly bounded from below (say, by

σ
17/48
0 ), and foliate into the part ρ ≤ 0 making up a neighborhood U−

0 of z0.

Proof. For a sufficiently small σ > 0 to be determined, let Bσ(t
′′
0 ) ⊂ Cn−k be a

ball of radius σ > 0 centered at t′′0 . For any fixed t′′ = (tk+1, . . . , tn) ∈ Bσ(t
′′
0)

and for each |z′| < σ1/4, set ρ̃(z′, t′′) = ρ(z′, tk+1, . . . , tn−1, tn − σ1/3z1). In
view of (2.2), we can write

ρ̃(z′, t′′) = (|tn|
2 − 1)− 2σ1/3Re(z1 t̄n) + σ2/3|z1|

2 +

k
∑

i=1

|zi|
2

+

n−1
∑

i=k+1

λi|ti|
2 +O(|z − z0|

3).

(2.3)

For t′′ ∈ Bσ(t
′′
0 ), we set

rσt′′(z
′) := (1− |tn|

2) + 2σ1/3Re(z1t̄n)−

n−1
∑

i=k+1

λi|ti|
2 +O(|z − z0|

3).

Then when t′′ = t′′0 = (0, . . . , 0, 1), i.e., at the center of the ball Bσ(t
′′
0), we have

rσt′′
0
(z′) = 2σ1/3Re(z1) +O(|z′|3) > 0
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for an appropriate z1 (say, at Rez1 = σ3/8) provided σ > 0 is sufficiently small.
Therefore, it follows that

Ωt′′
0
:= {z′ ∈ Bσ1/4(z′0);σ

2/3|z1|
2 +

k
∑

i=1

|zi|
2 < rσt′′

0
(z′)}

is a non-empty strongly convex domain contained in the side of ρ ≤ 0. Note
that Ωt′′

0
is a small deformation of a ball whose radius is bigger than or equal

to σ17/48. Also we see that z0 ∈ bΩt′′
0
⊂ M and Ωt′′

0
is the central slice of the

side ρ ≤ 0.
For any t′′ = (tk+1, . . . , tn) ∈ Bσ(t

′′
0 ), we note that |tn− 1| < σ. Hence rσt′′ is

a small (of size less than σ) perturbation of rσ
t
′′

0

. Therefore, as for the rσ
t
′′

0

case,

it follows that rσt′′ (z
′) > 0 for some z′ and hence for each t′′ ∈ Bσ(t

′′
0),

Ωt′′ := {z′ ∈ C
k;σ2/3|z1|

2 +

k
∑

i=1

|zi|
2 < rσt′′ (z

′)}

is a nonempty strongly convex domain in Ck contained in the side of {z; ρ(z) <
0} and bΩt′′ ⊂ M, and the diameter of Ωt′′ is bigger than or equal to σ17/48 pro-
vided σ is sufficiently small. Let us fix σ = σ0 satisfying the above conditions,
and set I := Bσ0

(t′′0) ⊂ Cn−k and

(2.4) U−
0 :=

⋃

t′′∈I

Ωt′′ × {t′′}.

This proves the proposition. �

Remark 2.4. Note that Rez1 . σ1/3 if z′ ∈ Ωt′′ , which forces that |z′| . σ1/3,
that is, Ωt′′ ⊂ Bσ7/24 (z0) ⊂ Bσ1/4(z0) provided σ is sufficiently small. Also, in
view of our construction, we may take σ0 sufficiently small so that Theorem 2.1
holds for I = Bσ0

and U−
0 ⊂ B

σ
1/4
0

(z0).

Remark 2.5. With the special coordinates z = (z′, t′′) defined in (2.3), set
t̃n = 1 + 1

2σ
7/24, and for each |tj | < σ1/3, j = k + 1, . . . , n − 1, set t̃′′ =

(tk+1, . . . , tn−1, t̃n). For each |z′| < σ1/3, we then have rσ
t̃′′
(z′) ≈ −σ7/24,

and hence ρ̃(z′, t̃′′) > 0. Set D̃
′′

σ := {t′′ ∈ Cn−k; |tj | < σ1/3, k + 1 ≤ j ≤

n − 1, |tn − t̃n| < σ}. Then for each t′′ ∈ D̃
′′

σ and |z′| < σ1/3, it follows that

ρ̃t′′(z
′) > 0, and hence Ωt′′ is an empty set when t′′ ∈ D̃

′′

σ .

3. ∂̄-closed extension for (p, q)-forms

To prove the local extension theorem, we use the local decomposition of the
set U−

0 considered in (2.4) and use Proposition 2.3 with k = q+1. We will solve
the ϑ-equation to correct the terms and use the estimates (2.1) on parameter
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variables z′′ = t′′ ∈ I, where I is defined as in (2.4). Set K = {1, . . . , q + 1}
and Kc = {q + 2, . . . , n}. For a smooth function f defined in Cn, we define

∂̄Kf =

q+1
∑

j=1

∂f

∂z̄j
dz̄j and ∂̄Kcf =

n
∑

j=q+2

∂f

∂z̄j
dz̄j .

We can extend this definition for arbitrary smooth forms.
Since p does not play any important role in the estimates, we set p = 0, i.e.,

we consider only the cases of
∧0,q

(W ), where W is an appropriate set. We
recall that ‖ · ‖s,k,W is the Sobolev space of order s in z′ ∈ Cq+1 variables and
of order k in z′′ ∈ I ⊂ Cn−q−1 variables. We also note that

∧p,q(Ωz′′) and
∧p,q

(bΩz′′) are defined on Ωz′′ ⊂ Cq+1, and that every summation will be over
strictly increasing indices. In the sequel, the constants, such as Cs or Cs,k,
depend only on s or k and can vary line-to-line while we estimate.

Proposition 3.1. Let M be a smooth real hypersurface in Cn, n ≥ 3, with
smooth defining function ρ defined in a neighborhood V of z0 ∈ M, and suppose

that the Levi-form at z0 has at least (q+1) positive eigenvalues, 1 ≤ q ≤ n− 2.
Then there is a neighborhood U0, z0 ∈ U0, such that for any α ∈ B0,q(M∩U0),

there are α̃j ∈
∧0,q

(U−
0 ), 0 ≤ j ≤ q+1, such that (α̃j −α)∧ ∂̄ρ = 0 on M∩U0

and ∂̄α̃j can be written as

(3.1) ∂̄α̃j =
∑

I⊂K,J⊂Kc

|I|+|J|=q+1,|J|≥j

αj
IJdz̄

I ∧ dz̄J

on U−
0 for some smooth functions αj

IJ . Also, if U ⊂⊂ U0 is a neighborhood of

z0 and if we let χ ∈ C∞
0 (U0) with χ = 1 on U , then for each real s ≥ 0, α̃j

satisfy the estimate

(3.2) ‖α̃j‖s+ 1
2
,U− ≤ Cs‖χα‖s+ j

2
,M

for each 0 ≤ j ≤ q + 1.

Proof. Let us take U0 ⊂ B
σ
1/4
0

⊂ V as defined in (2.4) where special frames are

defined on V . By shrinking I if necessary, we may assume that Theorem 2.1
holds on U0. Using Theorem 2.1, we shall construct α̃j inductively satisfying

(3.1) and (3.2). From Lemma 9.3.3 in [7], there is α̃0 := Eα ∈
∧0,q

(U0),
Eα = α and ∂̄Eα = O(ρ∞) on M∩ U0 such that for each real s, we have

(3.3) ‖α̃0‖s,U−

0

≤ Cs‖χα‖s−1/2,M.

Thus (3.1) and (3.2) hold for j = 0.
Let U ⊂⊂ U0 be a neighborhood of z0 and choose a smooth cut-off function

χ ∈ C∞
0 (U0) with χ = 1 on U . Replacing α̃0 by χα̃0, we may assume that
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α̃0 ∈ C∞
0 (U0). Let us write

∂̄α̃0 = α0
Kdz̄

K +

n
∑

j=q+2

∑

|I|=q
I⊂K

β1
Ildz̄

I ∧ dz̄j +
∑

|I|+|J|=q+1, |J|≥2
I⊂K,J⊂Kc

E2
IJdz̄

I ∧ dz̄J

:= α0 + β1 + E2,

and set
g0 = α0 on U−

0 , and g0 = 0 on U+
0 .

Since ∂̄α̃0 = O(ρ∞) on M∩ U0, it follows that g
0 ∈ C∞(U0). Similarly, if we

define β1
Il = E2

IJ = 0 on U+
0 , it follows that β1

Il, E
2
IJ ∈ C∞(U0). Note that

g0 comes from the components of ∂̄Kα̃0. By (3.3), for each real s ≥ −1 and

nonnegative integer k, there are C̃s,k and Cs,k such that

(3.4) ‖g0‖s,k,U− ≤ C̃s,k‖α̃0‖s+1,k,U− ≤ Cs,k‖χα‖s+k+1/2,M.

To remove α0 term in ∂̄α̃0, we try to solve ∂̄Ku0(·, z
′′) = g0(·, z′′) in Ωz′′ and

set α̃1(·, z
′′) = α̃0(·, z

′′) − u0(·, z
′′) for each z′′ ∈ I. However, to preserve the

boundary condition, it is required that u0(·, z
′′) ∈ C0,q(Ωz′′) for each z′′ ∈ I.

This means that we have to solve ∂̄∗K-equation rather than ∂̄K-equation. Since
g0(·, z′′) is a (0, q + 1)-form in Ωz′′ ⊂ C

q+1, it becomes a top degree problem
in Cq+1 and hence it is required to satisfy (1.2), that is,
(3.5)

Fh(z
′′) :=

∫

Ωz′′

g0(·, z′′) ∧ h(·) = 0, for every h ∈ C∞
(q+1,0)(C

q+1) ∩ ker(∂̄K).

To prove (3.5), we consider the coefficients of the terms of dz̄K ∧ dz̄l in
∂̄2α̃0 = 0, where l ∈ Kc. Note that these terms are coming from ∂̄Kcα0+ ∂̄Kβ

1.
Thus we obtain that

(3.6)
∂α0

K

∂z̄l
=

q+1
∑

j=1

∑

|I|=q
I⊂K

(−1)q+j−1 ∂β
1
Il

∂z̄j
, l = q + 2, . . . , n.

In view of (3.5) and (3.6), it follows, for l ∈ Kc, that

∂Fh

∂z̄l
(z′′) =

∂

∂z̄l

∫

Cq+1

g0(·, z′′) ∧ h

=

∫

Ωz′′

∂

∂z̄l
α0
K(·, z

′′) ∧ h

=

∫

Ωz′′

q+1
∑

j=1

∑

|I|=q
I⊂K

(−1)q+j−1 ∂β
1
Il

∂z̄j
∧ h

=

∫

Ωz′′

q+1
∑

j=1

∑

|I|=q
I⊂K

(−1)q+jβ1
Il ∧

∂h

∂z̄j
= 0
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because h(·) is holomorphic in Ωz′′ . Here, the first and the second equalities
hold because g0 is supported in Ωz′′ ⊂ Cq+1, and the fourth equality holds
because β1

Il = 0 on bΩz′′ (and hence we can perform integration by parts).
Therefore, Fh(z

′′) is holomorphic in C
n−q−1. Moreover, in view of Remark 2.5,

it follows that Fh(z
′′) = 0 for z′′ ∈ D̃

′′

σ (since Ωz′′ becomes the empty set),

provided σ is sufficiently small. Here, D̃
′′

σ is the tube defined in Remark 2.5.
Thus we see that (3.5) holds.

Set u0(·, z
′′) = − ∗K ∂̄KN

K
(q+1,0) ∗K g0(·, z′′), z′′ ∈ I, where NK

(r,s) is the

Neumann operator for (r, s)-forms and ∗K is the Hodge star operator on Ωz′′

for each z′′ ∈ I. Then we have ∂Ku0(·, z
′′) = g0(·, z′′) and u0(·, z

′′) ∈ C0,q(Ωz′′)
for each z′′ ∈ I. We also note that u0(·, z

′′) depends smoothly on z′′ ∈ I and
satisfies the estimate (2.1) including the parameter variable z′′ ∈ I. Thus for
each real s ≥ −1/2 and nonnegative integer k, it follows from (2.1) and (3.4)
that

(3.7) ‖u0‖s+ 1
2
,k,U− .

k
∑

r=0

‖g0‖s+k−r,r,U− . ‖α̃0‖s+1+k,U− . ‖χα‖s+ 1
2
+k,M.

Note that u0 ∧ ∂̄Kρ = 0 on M∩ U0 because u0(·, z
′′) ∈ C0,q(Ωz′′) for each

z′′ ∈ I. We have to correct u0 so that the corrected one, ũ0, belongs to C0,q(Ω),
that is, ũ0 ∧ ∂̄ρ = 0 on M∩ U0. Since u0 ∧ ∂̄Kρ = 0 on M∩ U0, we can write

u0(·, z
′′) = δ0(·, z′′) ∧ ∂̄Kρ(·, z

′′) + ρ(·, z′′)γ0(·, z′′)

for some δ0(·, z′′) ∈ C0,q(Ωz′′) and γ0(·, z′′) ∈ C0,q+1(Ωz′′ ), z′′ ∈ I. We may
assume that δ0∧∂̄Kρ and ργ

0 are disjoint, and hence it follows from the estimate
in (3.7) that

(3.8) ‖δ0‖s+ 1
2
,k,U− . ‖u0‖s+ 1

2
,k,U− . ‖χα‖s+ 1

2
+k,M

for each real s ≥ − 1
2 and nonnegative integer k.

Set ũ0 = u0 + δ0 ∧ ∂̄Kcρ. Then one obtains that

ũ0 ∧ ∂̄ρ =
(

δ0 ∧ ∂̄Kρ+ ργ0 + δ0 ∧ ∂̄Kcρ
)

∧ ∂̄ρ = 0,

on M ∩ U0, and hence ũ0 ∈ C0,q(U−
0 ). Now we set α̃1 = α̃0 − ũ0. Then it

follows that (α̃1 − α) ∧ ∂ρ = −ũ0 ∧ ∂ρ = 0 on U ∩M, and we can write

(3.9) ∂̄α̃1 =

n
∑

l=q+2

∑

|I|=q
I⊂K

β̃1
Ildz̄

I ∧ dz̄l +
∑

|I|+|J|=q+1, |J|≥2
I⊂K,J⊂Kc

β̃2
IJdz̄

I ∧ dz̄J

for some smooth functions β̃1
Il and β̃

2
IJ . In view of (3.3), (3.7) and (3.8), one

obtains that

(3.10) ‖α̃1‖s+ 1
2
,k,U− . ‖χα‖s+ 1

2
+k,M

for each real s ≥ − 1
2 and nonnegative integer k.
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By induction, assume that there are α̃j ∈
∧0,q

(U−
0 ), j ≥ 0, satisfying (3.1)

and (3.2), and that for each real s ≥ 0, the estimate

(3.11) ‖α̃j‖s+ 1
2
,U− ≤ Cs‖χα‖s+ j

2
,M,

holds and (α̃j − α) ∧ ∂̄ρ = 0 on M ∩ U0. By (3.7), (3.10) and the Sobolev
interpolation theorem, we see that (3.1), (3.2) and (3.11) hold for j = 1.

If we replace α̃j by χα̃j , we may assume that α̃j ∈ C∞
0 (U0) as before. Let

us write:

∂̄α̃j =
∑

|I|=q−j+1,|J|=j
I⊂K,J⊂Kc

βj
IJdz̄

I ∧ dz̄J +
∑

|I|+|J|=q+1,|J|≥j+1
I⊂K,J⊂Kc

Ej+1
IJ dz̄I ∧ dz̄J

:= βj + Ej+1.

For each fixed J with |J | = j ≥ 1, set

βj
J =

∑

|I|=q−j+1
I⊂K

βj
IJdz̄

I .

If we consider the terms in ∂̄2α̃j with |J | = j ≥ 1, J ⊂ Kc, we see that

βj
J |Ω̄z′′

= βj
J (·, z

′′) is a smooth ∂̄K-closed (0, q − j + 1)-form in Ωz′′ ⊂ Cq+1.

Since ϑK = − ∗K ∂̄K∗K, it follows that ∗Kβ
j
J is a ϑK-closed (q + 1, j)-form in

Ωz′′ ⊂ Cq+1 for each z′′ ∈ Bσ0
(z′′0 ) = I.

Set

ujJ(·, z
′′) = − ∗K ∂̄KN

K
(q+1,j) ∗K β

j
J (·, z

′′),

where NK
(q+1,j) is the Neumann operator for (q + 1, j)-forms on the strongly

pseudoconvex domains Ωz′′ ⊂ Cq+1. Thus ujJ(·, z
′′) ∈ C0,q−j(Ωz′′ ), varying

smoothly on z′′ ∈ I, and for each real s ≥ 0 and nonnegative integer k, it
follows from (2.1) and (3.11) that
(3.12)

‖ujJ‖s+ 1
2
,k,U− .

k
∑

r=0

‖βj
J‖s+k−r,r,U− . ‖α̃j‖s+k+1,U− . ‖χα‖s+k+ j+1

2
,M.

Here, we need s ≥ 0 (rather than s ≥ −1/2) because βj
J may contain terms in

∂̄Kc ũj−1 that can be estimated only in Sobolev s-norm in Cq+1 for s ≥ 0.

As for the j = 1 case, we have to correct ujJ so that the corrected one, ũjJ ,

belongs to C0,q−j(U0), that is, ũ
j
J ∧ ∂̄ρ = 0 on M∩ U0. Since u

j
J ∧ ∂̄Kρ = 0 on

M∩ U0, we can write

ujJ(·, z
′′) = δjJ(·, z

′′) ∧ ∂̄Kρ(·, z
′′) + ρ(·, z′′)γjJ (·, z

′′) z′′ ∈ I

for some δjJ(·, z
′′) ∈ C0,q−j−1(Ωz′′) and γjJ(·, z

′′) ∈ C0,q−j(Ωz′′), z′′ ∈ I. Set

ũjJ = ujJ + δjJ ∧ ∂̄Kcρ. Then it follows that

ũjJ ∧ ∂̄ρ =
(

δjJ ∧ ∂̄Kρ+ ργjJ + δjJ ∧ ∂̄Kcρ
)

∧ ∂̄ρ = 0
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on M∩ U0 for each J ⊂ Kc with |J | = j, and hence ũj :=
∑

J⊂Kc,|J|=j ũ
j
J ∧

dz̄J ∈ C0,q(U0 ∩ Ω). Also, one obtains that

∂̄ũj =
∑

J⊂Kc,|J|=j

(

βj
J + ∂̄Kc ũjJ + ∂̄

(

δjJ ∧ ∂̄Kcρ
))

∧ dz̄J

:=
∑

J⊂Kc,|J|=j

βj
J ∧ dz̄J + Ẽj+1.

(3.13)

Set α̃j+1 = α̃j − ũj ∈ C∞(U0). Note that we may assume that δjJ ∧ ∂̄Kρ and

ργjJ are disjoint. Therefore, it follows, from the estimates in (3.11) and (3.12),
and by the Sobolev interpolation theorem, that

(3.14) ‖α̃j+1‖s+ 1
2
,U− . ‖χα‖s+ j+1

2
,M

for each real s ≥ 0. Also, (α̃j+1 − α̃j) ∧ ∂̄ρ = −ũj ∧ ∂̄ρ = 0 on M∩ U0 since
ũj ∈ C0,q(U0 ∩Ω). In view of (3.13), we can write:

∂̄α̃j+1 =
∑

|I|=q−j,|J|=j+1
I⊂K,J⊂Kc

βj+1
IJ dz̄I ∧ dz̄J +

∑

|I|+|J|=q+1,|J|≥j+2
I⊂K,J⊂Kc

Ej+2
IJ dz̄I ∧ dz̄J

for some smooth functions βj+1
IJ andEj+2

IJ . This fact, together with the estimate
in (3.14), proves the inductive step. If we proceed up to j = q + 1, then the
proof of the proposition is completed. �

Remark 3.2. When n = q+1+k, 1 ≤ k ≤ q, the above inductive step will stop
at the (k + 1)-th step, thus proving ∂α̃k+1 = 0. This proves Theorem 1.1 with
better estimates.

Now we are ready to prove the weak ∂̄-closed extension problem (Theo-
rem 1.1). We recall that U−

0 =
⋃

z′′∈I Ωz′′ × {z′′} as defined in (2.4).

Proof of Theorem 1.1. In view of Proposition 3.1, there exists αq+1 ∈
∧0,q

(U−
0 )

which can be written as:

(3.15) ∂̄αq+1 =
∑

J⊂Kc

|J|=q+1

HJdz̄
J

for some smooth functions HJ on U−
0 . If we consider the coefficients of dz̄i∧dz̄

J

of ∂̄2αq+1 = 0, we see that

∂HJ

∂z̄i
= 0

for 1 ≤ i ≤ q + 1. Hence HJ(·, z
′′) is a holomorphic function on Ωz′′ for each

z′′ ∈ I.
Also note that (αq+1−α)∧∂̄ρ = 0 onM∩U0. Therefore, ∂̄(αq+1−α)∧∂̄ρ = 0

and hence ∂̄αq+1 ∧ ∂̄ρ = 0 on M∩ U0 since ∂̄bα = 0 on M∩ U0. Considering
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the coefficients of dz̄i ∧ dz̄
J of ∂̄αq+1 ∧ ∂̄ρ, one obtains, from (3.15), that

∂ρ

∂z̄i
HJ = 0

for 1 ≤ i ≤ q+1 on M∩U0. Since ∂̄Kρ 6= 0 on bΩz′′ , at least one of ∂ρ/∂z̄i, for
1 ≤ i ≤ q + 1, is not equal to zero, and hence HJ(·, z

′′) = 0 on bΩz′′ . Thus it
follows that HJ(·, z

′′) ≡ 0 on Ωz′′ because HJ(·, z
′′) is a holomorphic function

on Ωz′′ for each z′′ ∈ I. In view of (3.15), we thus obtain that ∂̄αq+1 = 0.
If we set α̃ = αq+1, then α̃ satisfies the estimates (1.1) from the estimates in
(3.2). This proves Theorem 1.1. �

Proof of Theorem 1.2. Let U−
0 be the neighborhood constructed in Theorem

1.1. Then there is a weak ∂̄-closed extension α̃ of α onto U−
0 satisfying the

estimate (1.1). By the lemma in Section 4 of [2], we can construct a small
pseudoconvex domain B ⊂⊂ U−

0 with the property that W := B ∩ M is a
neighborhood of z0 ∈ M.

For each real s ≥ 0, set ũs = ∂̄∗NB
s α̃, where NB

s denotes the weighted

∂̄-Neumann operator in B with weight e−ts|z|
2

for sufficiently large ts > 0
depending on s. Then we have ∂̄ũs = α̃ in B, and it follows that

(3.16) ‖ũs‖s,B ≤ Cs‖α̃‖s,B.

Set us = τũs, where τ is the projection in
∧p,q−1

(M) onto Bp,q−1(M) defined
by first restricting a (p, q−1)-form φ inCn toM, then projecting the restriction
to Bp,q−1(M). Then ∂̄bus = α on W and if we use the estimates (1.1) and
(3.16), and the trace theorem in Sobolev spaces, then we obtain that

‖us‖s,W ≤ Cs‖Dũs‖s− 1
2
,B ≤ Cs‖α̃‖s+ 1

2
,B ≤ Cs‖χα‖s+ q+1

2
,U−

0
∩M

for each real s ≥ 0. This completes the proof of Theorem 1.2. �
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