SOBOLEV ESTIMATES FOR THE LOCAL EXTENSION OF BOUNDARY HOLOMORPHIC FORMS ON REAL HYPERSURFACES IN \mathbb{C}^n

SANGHYUN CHO

ABSTRACT. Let M be a smooth real hypersurface in complex space of dimension $n, n \geq 3$, and assume that the Levi-form at z_0 on M has at least (q+1)-positive eigenvalues, $1 \leq q \leq n-2$. We estimate solutions of the local $\bar{\partial}$ -closed extension problem near z_0 for (p,q)-forms in Sobolev spaces. Using this result, we estimate the local solution of tangential Cauchy-Riemann equation near z_0 in Sobolev spaces.

1. Introduction

For a set $D \subset \mathbb{C}^n$, we denote the vector space of smooth (p,q)-forms on D by $\bigwedge^{p,q}(D)$. Let \mathcal{M} be a smooth real hypersurface in \mathbb{C}^n with a smooth defining function ρ , and let $\mathcal{B}^{p,q}(\mathcal{M})$ be the restriction of $\bigwedge^{p,q}(\mathbb{C}^n)$ to \mathcal{M} which are pointwise orthogonal to the ideal generated by $\bar{\partial}\rho$. In the sequel, we let $z_0 \in \mathcal{M}$ be a fixed point and V be a neighborhood of z_0 in \mathbb{C}^n where ρ is defined. For each open set $U \subset V$, $z_0 \in U$, we set $U^- = \{z \in U; \rho(z) \leq 0\}$ and $U^+ = \{z \in U; \rho(z) \geq 0\}$.

If there exists a neighborhood $U \subset V$, $z_0 \in U$, such that for any $\alpha \in \mathcal{B}^{p,q}(\mathcal{M} \cap U)$ with $\bar{\partial}_b \alpha = 0$ on $\mathcal{M} \cap U$, there exists a smooth (p,q)-form $\tilde{\alpha} \in \bigwedge^{p,q}(U^-)$ with $\bar{\partial}\tilde{\alpha} = 0$ in U^- and $(\tilde{\alpha} - \alpha) \wedge \bar{\partial}\rho = 0$ on $\mathcal{M} \cap U$, then we say one-sided weak $\bar{\partial}$ -closed extension problem is locally solvable.

The $\bar{\partial}$ -closed extension problem and the local solvability of the tangential Cauchy-Riemann equation for functions were first introduced in two papers by Hans Lewy [17, 18]. For the case when \mathcal{M} is the boundary of a smoothly bounded domain Ω in \mathbb{C}^n , the global $\bar{\partial}$ -closed extension problem for forms from \mathcal{M} to the domain Ω was studied by J. J. Kohn and H. Rossi [14], who first introduced the $\bar{\partial}_b$ -complex. They showed that a global $\bar{\partial}$ -closed extension exists for any (p, q)-form from the boundary $\mathcal{M} = b\Omega$ to the domain Ω in a complex manifold if Ω satisfies the condition Z(n-q-1) at all points of $b\Omega$. Analogous

 $\odot 2013$ The Korean Mathematical Society

Received January 19, 2012; Revised September 19, 2012.

²⁰¹⁰ Mathematics Subject Classification. Primary 32W05; Secondary 32W10.

 $Key\ words\ and\ phrases.$ tangential Cauchy-Riemann equation, boundary holomorphic forms.

result was obtained by Henkin and Leiterer [13] using kernel methods. For the case when Ω is a bounded pseudoconvex domain in \mathbb{C}^n , Shaw and Boas [19, 3] constructed a two-sided $\bar{\partial}$ -closed extension for $\bar{\partial}_b$ -closed forms near $b\Omega$ using the L^2 -Cauchy problem for $\bar{\partial}$, and solved $\bar{\partial}_b$ -problem on the boundary.

For the local extension problem, Andreotti and Hill [1] solved the local weak $\bar{\partial}$ -closed extension problem when the Levi-form at $z_0 \in \mathcal{M}$ satisfies the condition Y(q). Under the same assumption, Boggess and Shaw [4] proved the same result using integral kernel method. Recall that we say \mathcal{M} satisfies condition Y(q) at z_0 if the Levi form of \mathcal{M} at z_0 has either max{n-q, q+1} eigenvalues of the same sign or min{n-q, q+1} positive and min{n-q, q+1} negative eigenvalues. Thus when (n-q) > (q+1), we need (q+1) mixed (positive and negative) eigenvalues for the condition Y(q) to be satisfied. In [8], Cho and Choi proved the one-sided smooth extension problem (without estimates) when the Levi-form at $z_0 \in \mathcal{M}$ has at least (q+1) positive eigenvalues.

Note that the estimates of the solutions of these extension problems in various spaces, such as C^k , L^p , Lipschitz or Sobolev spaces, have many applications in the study of complex analysis. For example, function theories on a bounded domain $D \subset \mathbb{C}^n$ or the embeddability of abstract CR structures [5, 6, 15, 21].

For a set $W \subset \mathbb{C}^n$, we denote the Sobolev norm of order s on W by $\|\cdot\|_{s,W}$. In [10], the author proved the local extension problem, with estimates in Sobolev spaces, for $\bar{\partial}_b$ -closed (0, 1)-forms on real hypersurfaces \mathcal{M} in \mathbb{C}^n when the Leviform at $z_0 \in \mathcal{M}$ has two positive eigenvalues. Therefore, it is natural to ask the local extension problem, with estimates in Sobolev spaces, for (p, q)-forms when the Levi-form at $z_0 \in \mathcal{M}$ has at least (q + 1) positive eigenvalues (not mixed). In this case, the condition Y(q) is not satisfied when n - q > q + 1. The following theorem answers this problem.

Theorem 1.1. Let \mathcal{M} be a smooth hypersurface in \mathbb{C}^n , $n \geq 3$, with smooth defining function ρ and suppose that the Levi-form at $z_0 \in \mathcal{M}$ has at least (q+1) positive eigenvalues, $1 \leq q \leq n-2$. Then there is a neighborhood U_0 of z_0 such that for any $\alpha \in \mathcal{B}^{p,q}(\mathcal{M} \cap U_0)$, satisfying $\overline{\partial}_b \alpha = 0$ on $\mathcal{M} \cap U_0$, there exists $\tilde{\alpha} \in \bigwedge^{p,q}(U_0^-)$ such that $\overline{\partial}\tilde{\alpha} = 0$ on U_0^- and $(\tilde{\alpha} - \alpha) \wedge \overline{\partial}\rho = 0$ on $\mathcal{M} \cap U_0$. Also, if $U \subset \subset U_0$ is a neighborhood of z_0 and if we let $\chi \in C_0^{\infty}(U_0)$ with $\chi = 1$ on U, then for each real $s \geq 0$, $\tilde{\alpha}$ satisfies the estimate:

(1.1)
$$\|\tilde{\alpha}\|_{s+\frac{1}{2},U^{-}} \leq C_{s} \|\chi\alpha\|_{s+\frac{q+1}{2},\mathcal{M}}.$$

We note that the estimate (1.1) is comparable to the case when q = 1 in [10]. We also note that there are well-known non-solvability results of tangential Cauchy-Riemann equation for n = 2 [18] and for q = n - 1 [11]. Note, however, that the local $\bar{\partial}$ -closed extension problem and the local solvability of $\bar{\partial}_b$ equation are closely related [19, 3]. Using the results of Theorem 1.1, we solve the local $\bar{\partial}_b$ -equation in Sobolev spaces.

Theorem 1.2. Let $\mathcal{M}, z_0 \in \mathcal{M}$ and U_0 be as in Theorem 1.1. Also, assume that \mathcal{M} is pseudoconvex near $z_0 \in \mathcal{M}$. Then there is a neighborhood W of

 $z_0, W \subset \mathcal{M} \cap U_0$, such that for any $\alpha \in \mathcal{B}^{p,q}(\mathcal{M} \cap U_0)$ satisfying $\bar{\partial}_b \alpha = 0$ on $\mathcal{M} \cap U_0$ and for each real $s \geq 0$, there exists $u_s \in \mathcal{B}^{(p,q-1)}(W)$ such that $\bar{\partial}_b u_s = \alpha$ on W and satisfies the estimate:

$$||u_s||_{s,W} \le C_s ||\alpha||_{s+\frac{q+1}{2},\mathcal{M}\cap U_0^-}.$$

Remark 1.3. In Theorem 1.1, the differentiability assumption $\alpha \in C^{\infty}$ can be weakened to $\alpha \in H^{s+\frac{q+1}{2}}(\mathcal{M} \cap U_0)$ to get $\tilde{\alpha} \in H^{s+\frac{1}{2}}(\mathcal{M} \cap U_0)$, and similarly for Theorem 1.2.

Note that the weak extension problem is a Cauchy problem to preserve the boundary values in tangential direction. This means that we have to solve $\bar{\partial}^*$ -equation instead of $\bar{\partial}$ -equation. Let D be a smoothly bounded pseudoconvex domain in \mathbb{C}^k and let $\alpha \in \mathcal{B}^{p,q}(bD)$, where $0 \leq p \leq k$ and $1 \leq q \leq k - 1$. Note that a necessary and sufficient condition for the extension problem to be solved is:

(1.2)
$$\int_{bD} \alpha \wedge \psi = 0$$

for every $\psi \in \bigwedge^{k-p,k-q-1}(D) \cap \operatorname{Ker}(\overline{\partial})$ ([7], Theorem 9.2.1). We also note that (1.2) is equivalent to the condition $\overline{\partial}_b \alpha = 0$ for $q \leq k-2$.

2. Preliminaries

Let Ω be a domain in \mathbb{C}^k with smooth boundary and let $\overline{\partial}$ be the Cauchy-Riemann operator on Ω and let $N_{(p,q)}$ denote the Neumann operator for (p,q)forms. We also let $\mathcal{C}^{p,q}(\Omega)$ be the collection of forms $\phi \in \bigwedge^{p,q}(\Omega)$ such that $\phi \wedge \overline{\partial}r = 0$ on $b\Omega$, where r is a smooth defining function for Ω . Let I be an open ball in \mathbb{R}^d and let |I| denote the diameter of I, and let $H_{s,l}(\Omega \times I)$ be the Sobolev space of order s on Ω and of order l in I with the norm denoted by $\|\cdot\|_{s,l}$. We state a theorem (Theorem 1.7 in [9]) for the smooth dependence of solutions of the $\overline{\partial}$ -Neumann problem with respect to a parameter $\tau \in I$.

Theorem 2.1. Let $\{\Omega_{\tau}\}_{\tau \in I}$ be a smooth family of diffeomorphic strongly pseudoconvex domains in \mathbb{C}^k and suppose that $\{\alpha_{\tau}\}_{\tau \in I}$ is a family of (p, q)-forms on $\{\Omega_{\tau}\}_{\tau \in I}$ such that $\alpha_{\tau} \in R(\bar{\partial}_{\tau})$, the range of $\bar{\partial}_{\tau}$, for each $\tau \in I$, where |I| is sufficiently small. Then for each real number $s \geq -1/2$ and for each nonnegative integer l, there is $C_{s,l} > 0$ such that the Neumann solution U_{τ} of $\Box U_{\tau} = \alpha_{\tau}$ and the canonical solution $u_{\tau} = \bar{\partial}^* U_{\tau}$ of $\bar{\partial} u_{\tau} = \alpha_{\tau}$ on each Ω_{τ} , $\tau \in I$, satisfy

(2.1)
$$\|U\|_{s+1,l}, \|u\|_{s+1/2,l} \le C_{s,l} \sum_{r=0}^{l} \|\alpha\|_{s+l-r,r},$$

where $\alpha \in H_{s+l-r,r}(\Omega \times I)$, $0 \leq r \leq l$, and where $U := \{u_{\tau}\}_{\tau \in I}$ and $\alpha := \{\alpha_{\tau}\}_{\tau \in I}$.

SANGHYUN CHO

Let (\mathcal{M}, ρ) be as in Section 1, and assume that the Levi-form at $z_0 \in \mathcal{M}$ has $k \geq 1$ positive eigenvalues. To prove the solvability of the local extension problem, we need to construct a smooth family of strongly convex domains near $z_0 \in \mathcal{M}$ which are foliated in the side $\rho \leq 0$ and make up a neighborhood U_0^- of $z_0 \in \mathcal{M}$. We first prove the following lemma, which describes the local geometry of \mathcal{M} near z_0 in terms of local coordinates.

Lemma 2.2. Let \mathcal{M} be a smooth hypersurface in \mathbb{C}^n and assume that the Leviform at $z_0 \in \mathcal{M}$ has $k \geq 1$ positive eigenvalues. There is a special coordinate $z = (z_1, \ldots, z_n)$ defined in a neighborhood of z_0 and new defining function ρ of \mathcal{M} which can be written, in new coordinates, by

(2.2)
$$\rho(z) = |z_n|^2 - 1 + \sum_{i=1}^k |z_i|^2 + \sum_{i=k+1}^{n-1} \lambda_i |z_i|^2 + \mathcal{O}(|z-z_0|^3).$$

Proof. Let ρ be a smooth defining function of \mathcal{M} . By a standard method of holomorphic coordinate changes, we have special coordinates u = (u', u''), $u' = (u_1, \ldots, u_k)$, $u'' = (u_{k+1}, \ldots, u_n)$, $u(z_0) = 0$ and the Taylor expansion near $z_0 = 0$ can be written as:

$$\rho(u) = u_n + \bar{u}_n + \sum_{i=1}^k |u_i|^2 + \sum_{i=k+1}^{n-1} \lambda_i |u_i|^2 + \sum_{k=1}^n c_k u_k \bar{u}_n + \sum_{k=1}^n \bar{c}_k \bar{u}_k u_n + \mathcal{O}(|u|^3),$$

where each λ_i is a real number and $\mathcal{O}(|u|^3)$ is the remainder whose first and second derivatives vanishes at 0. Set $r(u) = \rho(u) \cdot (1 - \sum_{k=1}^n c_k u_k - \sum_{k=1}^n \bar{c}_k \bar{u}_k)$, where $(1 - 2\text{Re}\sum_{k=1}^n c_k u_k) > 1/2$ in a neighborhood of the origin. Therefore, r is a new local defining function of \mathcal{M} near $z_0 \in \mathcal{M}$ and can be written as

$$r(u) = (u_n - \sum_{k=1}^n c_k u_k u_n) + (\bar{u}_n - \sum_{k=1}^n \bar{c}_k \bar{u}_k \bar{u}_n) + \sum_{i=1}^k |u_i|^2 + \sum_{i=k+1}^{n-1} \lambda_i |u_i|^2 + \mathcal{O}(|u|^3).$$

Set $w_j = u_j$ for j < n, and $w_n = u_n - \sum_{k=1}^n c_k u_k u_n$. In w coordinates, r(w) has the representation:

$$r(w) = w_n + \bar{w}_n + \sum_{i=1}^k |w_i|^2 + \sum_{i=k+1}^{n-1} \lambda_i |w_i|^2 + \mathcal{O}(|w|^3).$$

Set $\tilde{r}(w) = r(w) \cdot (1 + (w_n + \bar{w}_n)/2)$, where $1 + (w_n + \bar{w}_n)/2) > 1/2$ near $z_0 = 0$. Then $\tilde{r}(w)$ can be written as:

$$\tilde{r}(w) = w_n + \bar{w}_n + \frac{1}{2}(w_n^2 + \bar{w}_n^2) + |w_n|^2 + \sum_{i=1}^k |w_i|^2 + \sum_{i=k+1}^{n-1} \lambda_i |w_i|^2 + \mathcal{O}(|w|^3).$$

By setting

$$\tilde{u}_n = w_n + \frac{1}{2}w_n^2$$
 and $\tilde{u}_j = w_j, \ j < n_j$

 \tilde{r} can be written, in \tilde{u} -coordinates, by:

$$\tilde{r}(\tilde{u}) = \tilde{u}_n + \overline{\tilde{u}}_n + |\tilde{u}_n|^2 + \sum_{i=1}^k |\tilde{u}_i|^2 + \sum_{i=k+1}^{n-1} \lambda_i |\tilde{u}_i|^2 + \mathcal{O}(|\tilde{u}|^3).$$

Finally, we set $z_n = \tilde{u}_n + 1$ and $z_j = \tilde{u}_j$ for j < n, and denote \tilde{r} by ρ . Then $z(z_0) = (0, \ldots, 0, 1)$ and in z-coordinates, the local defining function ρ can be written as:

$$\rho(z) = |z_n|^2 - 1 + \sum_{i=1}^k |z_i|^2 + \sum_{i=k+1}^{n-1} \lambda_i |z_i|^2 + \mathcal{O}(|z - z_0|^3)$$

near $z_0 = z(z_0) = (0, \dots, 0, 1).$

Set z = (z', z''), where $z' = (z_1, \ldots, z_k)$ and $z'' = (z_{k+1}, \ldots, z_n)$. In the following proposition, we regard $z'' \in \mathbb{C}^{n-k}$ as a parameter variable near $t''_0 := z''_0 = (0, \ldots, 0, 1) \in \mathbb{C}^{n-k}$ and construct a family of strongly convex domains. In Section 3, we will apply Theorem 2.1 to this parameter family of domains.

Proposition 2.3. Let (\mathcal{M}, ρ) and z_0 be as in Lemma 2.2. Then there exist a small open ball $I := B_{\sigma_0}(t_0'') \subset \mathbb{C}^{n-k}$ for a small $\sigma_0 > 0$ and a family of bounded strongly convex domains $\{\Omega_{t''}\}_{t''\in I}$ in \mathbb{C}^k , and $\Omega_{t''}$ is diffeomorphic to $\Omega_{t_0''}$ for each $t'' \in I$ with diameters being strictly bounded from below (say, by $\sigma_0^{17/48}$), and foliate into the part $\rho \leq 0$ making up a neighborhood U_0^- of z_0 .

Proof. For a sufficiently small $\sigma > 0$ to be determined, let $B_{\sigma}(t_0') \subset \mathbb{C}^{n-k}$ be a ball of radius $\sigma > 0$ centered at t_0'' . For any fixed $t'' = (t_{k+1}, \ldots, t_n) \in B_{\sigma}(t_0')$ and for each $|z'| < \sigma^{1/4}$, set $\tilde{\rho}(z', t'') = \rho(z', t_{k+1}, \ldots, t_{n-1}, t_n - \sigma^{1/3}z_1)$. In view of (2.2), we can write

(2.3)

$$\tilde{\rho}(z',t'') = (|t_n|^2 - 1) - 2\sigma^{1/3} \operatorname{Re}(z_1 \bar{t}_n) + \sigma^{2/3} |z_1|^2 + \sum_{i=1}^k |z_i|^2 + \sum_{i=k+1}^{n-1} \lambda_i |t_i|^2 + \mathcal{O}(|z-z_0|^3).$$

For $t'' \in B_{\sigma}(t''_0)$, we set

$$r_{t''}^{\sigma}(z') := (1 - |t_n|^2) + 2\sigma^{1/3} \operatorname{Re}(z_1 \bar{t}_n) - \sum_{i=k+1}^{n-1} \lambda_i |t_i|^2 + \mathcal{O}(|z - z_0|^3).$$

Then when $t'' = t''_0 = (0, \ldots, 0, 1)$, i.e., at the center of the ball $B_{\sigma}(t''_0)$, we have

$$r_{t_0''}^{\sigma}(z') = 2\sigma^{1/3} \operatorname{Re}(z_1) + \mathcal{O}(|z'|^3) > 0$$

for an appropriate z_1 (say, at $\text{Re}z_1 = \sigma^{3/8}$) provided $\sigma > 0$ is sufficiently small. Therefore, it follows that

$$\Omega_{t_0''} := \{ z' \in B_{\sigma^{1/4}}(z_0'); \sigma^{2/3} |z_1|^2 + \sum_{i=1}^k |z_i|^2 < r_{t_0''}^{\sigma}(z') \}$$

is a non-empty strongly convex domain contained in the side of $\rho \leq 0$. Note that $\Omega_{t_0''}$ is a small deformation of a ball whose radius is bigger than or equal to $\sigma^{17/48}$. Also we see that $z_0 \in b\Omega_{t_0''} \subset \mathcal{M}$ and $\Omega_{t_0''}$ is the central slice of the side $\rho \leq 0$.

For any $t'' = (t_{k+1}, \ldots, t_n) \in B_{\sigma}(t''_0)$, we note that $|t_n - 1| < \sigma$. Hence $r^{\sigma}_{t''}$ is a small (of size less than σ) perturbation of $r^{\sigma}_{t''_0}$. Therefore, as for the $r^{\sigma}_{t''_0}$ case, it follows that $r^{\sigma}_{t''}(z') > 0$ for some z' and hence for each $t'' \in B_{\sigma}(t''_0)$,

$$\Omega_{t^{\prime\prime}} := \{ z^{\prime} \in \mathbb{C}^k; \sigma^{2/3} |z_1|^2 + \sum_{i=1}^k |z_i|^2 < r^{\sigma}_{t^{\prime\prime}}(z^{\prime}) \}$$

is a nonempty strongly convex domain in \mathbb{C}^k contained in the side of $\{z; \rho(z) < 0\}$ and $b\Omega_{t''} \subset \mathcal{M}$, and the diameter of $\Omega_{t''}$ is bigger than or equal to $\sigma^{17/48}$ provided σ is sufficiently small. Let us fix $\sigma = \sigma_0$ satisfying the above conditions, and set $I := B_{\sigma_0}(t''_0) \subset \mathbb{C}^{n-k}$ and

(2.4)
$$U_0^- := \bigcup_{t'' \in I} \overline{\Omega}_{t''} \times \{t''\}.$$

This proves the proposition.

Remark 2.4. Note that $\operatorname{Re} z_1 \leq \sigma^{1/3}$ if $z' \in \Omega_{t''}$, which forces that $|z'| \leq \sigma^{1/3}$, that is, $\Omega_{t''} \subset B_{\sigma^{7/24}}(z_0) \subset B_{\sigma^{1/4}}(z_0)$ provided σ is sufficiently small. Also, in view of our construction, we may take σ_0 sufficiently small so that Theorem 2.1 holds for $I = B_{\sigma_0}$ and $U_0^- \subset B_{\sigma_0^{1/4}}(z_0)$.

Remark 2.5. With the special coordinates z = (z', t'') defined in (2.3), set $\tilde{t}_n = 1 + \frac{1}{2}\sigma^{7/24}$, and for each $|t_j| < \sigma^{1/3}$, $j = k + 1, \ldots, n - 1$, set $\tilde{t}'' = (t_{k+1}, \ldots, t_{n-1}, \tilde{t}_n)$. For each $|z'| < \sigma^{1/3}$, we then have $r_{t''}^{\sigma}(z') \approx -\sigma^{7/24}$, and hence $\tilde{\rho}(z', \tilde{t}'') > 0$. Set $\tilde{D}''_{\sigma} := \{t'' \in \mathbb{C}^{n-k}; |t_j| < \sigma^{1/3}, k+1 \leq j \leq n-1, |t_n - \tilde{t}_n| < \sigma\}$. Then for each $t'' \in \tilde{D}''_{\sigma}$ and $|z'| < \sigma^{1/3}$, it follows that $\tilde{\rho}_{t''}(z') > 0$, and hence $\Omega_{t''}$ is an empty set when $t'' \in \tilde{D}''_{\sigma}$.

3. $\bar{\partial}$ -closed extension for (p,q)-forms

To prove the local extension theorem, we use the local decomposition of the set U_0^- considered in (2.4) and use Proposition 2.3 with k = q+1. We will solve the ϑ -equation to correct the terms and use the estimates (2.1) on parameter

484

variables $z'' = t'' \in I$, where I is defined as in (2.4). Set $\mathcal{K} = \{1, \ldots, q+1\}$ and $\mathcal{K}^c = \{q+2, \ldots, n\}$. For a smooth function f defined in \mathbb{C}^n , we define

$$\bar{\partial}_{\mathcal{K}}f = \sum_{j=1}^{q+1} \frac{\partial f}{\partial \bar{z}_j} d\bar{z}_j \quad \text{and} \quad \bar{\partial}_{\mathcal{K}^c}f = \sum_{j=q+2}^n \frac{\partial f}{\partial \bar{z}_j} d\bar{z}_j.$$

We can extend this definition for arbitrary smooth forms.

Since p does not play any important role in the estimates, we set p = 0, i.e., we consider only the cases of $\bigwedge^{0,q}(W)$, where W is an appropriate set. We recall that $\|\cdot\|_{s,k,W}$ is the Sobolev space of order s in $z' \in \mathbb{C}^{q+1}$ variables and of order k in $z'' \in I \subset \mathbb{C}^{n-q-1}$ variables. We also note that $\bigwedge^{p,q}(\Omega_{z''})$ and $\bigwedge^{p,q}(b\Omega_{z''})$ are defined on $\Omega_{z''} \subset \mathbb{C}^{q+1}$, and that every summation will be over strictly increasing indices. In the sequel, the constants, such as C_s or $C_{s,k}$, depend only on s or k and can vary line-to-line while we estimate.

Proposition 3.1. Let \mathcal{M} be a smooth real hypersurface in \mathbb{C}^n , $n \geq 3$, with smooth defining function ρ defined in a neighborhood V of $z_0 \in \mathcal{M}$, and suppose that the Levi-form at z_0 has at least (q+1) positive eigenvalues, $1 \leq q \leq n-2$. Then there is a neighborhood U_0 , $z_0 \in U_0$, such that for any $\alpha \in \mathcal{B}^{0,q}(\mathcal{M} \cap U_0)$, there are $\tilde{\alpha}_j \in \bigwedge^{0,q}(U_0^-)$, $0 \leq j \leq q+1$, such that $(\tilde{\alpha}_j - \alpha) \wedge \bar{\partial}\rho = 0$ on $\mathcal{M} \cap U_0$ and $\bar{\partial}\tilde{\alpha}_j$ can be written as

(3.1)
$$\bar{\partial}\tilde{\alpha}_{j} = \sum_{\substack{I \subset \mathcal{K}, J \subset \mathcal{K}^{c} \\ |I|+|J|=q+1, |J| \ge j}} \alpha_{IJ}^{j} d\bar{z}^{I} \wedge d\bar{z}^{J}$$

on U_0^- for some smooth functions α_{IJ}^j . Also, if $U \subset U_0$ is a neighborhood of z_0 and if we let $\chi \in C_0^\infty(U_0)$ with $\chi = 1$ on U, then for each real $s \ge 0$, $\tilde{\alpha}_j$ satisfy the estimate

(3.2)
$$\|\tilde{\alpha}_{j}\|_{s+\frac{1}{2},U^{-}} \leq C_{s} \|\chi\alpha\|_{s+\frac{j}{2},\mathcal{M}}$$

for each $0 \leq j \leq q+1$.

Proof. Let us take $U_0 \subset B_{\sigma_0^{1/4}} \subset V$ as defined in (2.4) where special frames are defined on V. By shrinking I if necessary, we may assume that Theorem 2.1 holds on U_0 . Using Theorem 2.1, we shall construct $\tilde{\alpha}_j$ inductively satisfying (3.1) and (3.2). From Lemma 9.3.3 in [7], there is $\tilde{\alpha}_0 := E\alpha \in \bigwedge^{0,q}(U_0)$, $E\alpha = \alpha$ and $\bar{\partial}E\alpha = \mathcal{O}(\rho^{\infty})$ on $\mathcal{M} \cap U_0$ such that for each real s, we have

$$\|\tilde{\alpha}_0\|_{s,U_0^-} \le C_s \|\chi\alpha\|_{s-1/2,\mathcal{M}}$$

Thus (3.1) and (3.2) hold for j = 0.

Let $U \subset U_0$ be a neighborhood of z_0 and choose a smooth cut-off function $\chi \in C_0^{\infty}(U_0)$ with $\chi = 1$ on U. Replacing $\tilde{\alpha}_0$ by $\chi \tilde{\alpha}_0$, we may assume that

 $\tilde{\alpha}_0 \in C_0^{\infty}(U_0)$. Let us write

$$\begin{split} \bar{\partial}\tilde{\alpha}_0 &= \alpha_{\mathcal{K}}^0 d\bar{z}^{\mathcal{K}} + \sum_{\substack{j=q+2\\I\subset\mathcal{K}}}^n \sum_{\substack{|I|=q\\I\subset\mathcal{K}}} \beta_{Il}^1 d\bar{z}^I \wedge d\bar{z}^j + \sum_{\substack{|I|+|J|=q+1, \ |J|\geq 2\\I\subset\mathcal{K}, J\subset\mathcal{K}^c}} E_{IJ}^2 d\bar{z}^I \wedge d\bar{z}^J \\ &:= \alpha^0 + \beta^1 + E^2, \end{split}$$

and set

$$g^0 = \alpha^0$$
 on U_0^- , and $g^0 = 0$ on U_0^+ .

Since $\bar{\partial}\tilde{\alpha}_0 = \mathcal{O}(\rho^{\infty})$ on $\mathcal{M} \cap U_0$, it follows that $g^0 \in C^{\infty}(U_0)$. Similarly, if we define $\beta_{Il}^1 = E_{IJ}^2 = 0$ on U_0^+ , it follows that $\beta_{Il}^1, E_{IJ}^2 \in C^{\infty}(U_0)$. Note that g^0 comes from the components of $\bar{\partial}_{\mathcal{K}}\tilde{\alpha}_0$. By (3.3), for each real $s \geq -1$ and nonnegative integer k, there are $\tilde{C}_{s,k}$ and $C_{s,k}$ such that

(3.4)
$$\|g^0\|_{s,k,U^-} \leq \hat{C}_{s,k} \|\tilde{\alpha}_0\|_{s+1,k,U^-} \leq C_{s,k} \|\chi\alpha\|_{s+k+1/2,\mathcal{M}}.$$

To remove α^0 term in $\bar{\partial}\tilde{\alpha}_0$, we try to solve $\bar{\partial}_{\mathcal{K}}u_0(\cdot, z'') = g^0(\cdot, z'')$ in $\Omega_{z''}$ and set $\tilde{\alpha}_1(\cdot, z'') = \tilde{\alpha}_0(\cdot, z'') - u_0(\cdot, z'')$ for each $z'' \in I$. However, to preserve the boundary condition, it is required that $u_0(\cdot, z'') \in \mathcal{C}^{0,q}(\Omega_{z''})$ for each $z'' \in I$. This means that we have to solve $\bar{\partial}^*_{\mathcal{K}}$ -equation rather than $\bar{\partial}_{\mathcal{K}}$ -equation. Since $g^0(\cdot, z'')$ is a (0, q + 1)-form in $\Omega_{z''} \subset \mathbb{C}^{q+1}$, it becomes a top degree problem in \mathbb{C}^{q+1} and hence it is required to satisfy (1.2), that is, (3.5)

$$F_h(z'') := \int_{\Omega_{z''}} g^0(\cdot, z'') \wedge h(\cdot) = 0, \quad \text{for every} \quad h \in C^{\infty}_{(q+1,0)}(\mathbb{C}^{q+1}) \cap \ker(\bar{\partial}_{\mathcal{K}}).$$

To prove (3.5), we consider the coefficients of the terms of $d\bar{z}^{\mathcal{K}} \wedge d\bar{z}_l$ in $\bar{\partial}^2 \tilde{\alpha}_0 = 0$, where $l \in \mathcal{K}^c$. Note that these terms are coming from $\bar{\partial}_{\mathcal{K}^c} \alpha^0 + \bar{\partial}_{\mathcal{K}} \beta^1$. Thus we obtain that

(3.6)
$$\frac{\partial \alpha_{\mathcal{K}}^0}{\partial \bar{z}_l} = \sum_{\substack{j=1\\I \subset \mathcal{K}}}^{q+1} \sum_{\substack{|I|=q\\I \subset \mathcal{K}}} (-1)^{q+j-1} \frac{\partial \beta_{Il}^1}{\partial \bar{z}_j}, \quad l = q+2, \dots, n.$$

In view of (3.5) and (3.6), it follows, for $l \in \mathcal{K}^c$, that

$$\begin{split} \frac{\partial F_h}{\partial \bar{z}_l}(z'') &= \frac{\partial}{\partial \bar{z}_l} \int_{\mathbb{C}^{q+1}} g^0(\cdot, z'') \wedge h \\ &= \int_{\Omega_{z''}} \frac{\partial}{\partial \bar{z}_l} \alpha_{\mathcal{K}}^0(\cdot, z'') \wedge h \\ &= \int_{\Omega_{z''}} \sum_{j=1}^{q+1} \sum_{\substack{|I|=q\\I \subset \mathcal{K}}} (-1)^{q+j-1} \frac{\partial \beta_{Il}^1}{\partial \bar{z}_j} \wedge h \\ &= \int_{\Omega_{z''}} \sum_{j=1}^{q+1} \sum_{\substack{|I|=q\\I \subset \mathcal{K}}} (-1)^{q+j} \beta_{Il}^1 \wedge \frac{\partial h}{\partial \bar{z}_j} = 0 \end{split}$$

because $h(\cdot)$ is holomorphic in $\Omega_{z''}$. Here, the first and the second equalities hold because g^0 is supported in $\Omega_{z''} \subset \mathbb{C}^{q+1}$, and the fourth equality holds because $\beta_{Il}^1 = 0$ on $b\Omega_{z''}$ (and hence we can perform integration by parts). Therefore, $F_h(z'')$ is holomorphic in \mathbb{C}^{n-q-1} . Moreover, in view of Remark 2.5, it follows that $F_h(z'') = 0$ for $z'' \in \tilde{D}''_{\sigma}$ (since $\Omega_{z''}$ becomes the empty set), provided σ is sufficiently small. Here, \tilde{D}''_{σ} is the tube defined in Remark 2.5. Thus we see that (3.5) holds.

Set $u_0(\cdot, z'') = -*_{\mathcal{K}} \bar{\partial}_{\mathcal{K}} N_{(q+1,0)}^{\mathcal{K}} *_{\mathcal{K}} g^0(\cdot, z''), z'' \in I$, where $N_{(r,s)}^{\mathcal{K}}$ is the Neumann operator for (r, s)-forms and $*_{\mathcal{K}}$ is the Hodge star operator on $\Omega_{z''}$ for each $z'' \in I$. Then we have $\bar{\partial}_{\mathcal{K}} u_0(\cdot, z'') = g^0(\cdot, z'')$ and $u_0(\cdot, z'') \in \mathcal{C}^{0,q}(\Omega_{z''})$ for each $z'' \in I$. We also note that $u_0(\cdot, z'')$ depends smoothly on $z'' \in I$ and satisfies the estimate (2.1) including the parameter variable $z'' \in I$. Thus for each real $s \geq -1/2$ and nonnegative integer k, it follows from (2.1) and (3.4) that

$$(3.7) \quad \|u_0\|_{s+\frac{1}{2},k,U^-} \lesssim \sum_{r=0}^k \|g^0\|_{s+k-r,r,U^-} \lesssim \|\tilde{\alpha}_0\|_{s+1+k,U^-} \lesssim \|\chi\alpha\|_{s+\frac{1}{2}+k,\mathcal{M}}.$$

Note that $u_0 \wedge \bar{\partial}_{\mathcal{K}} \rho = 0$ on $\mathcal{M} \cap U_0$ because $u_0(\cdot, z'') \in \mathcal{C}^{0,q}(\Omega_{z''})$ for each $z'' \in I$. We have to correct u_0 so that the corrected one, \tilde{u}_0 , belongs to $\mathcal{C}^{0,q}(\Omega)$, that is, $\tilde{u}_0 \wedge \bar{\partial}\rho = 0$ on $\mathcal{M} \cap U_0$. Since $u_0 \wedge \bar{\partial}_{\mathcal{K}}\rho = 0$ on $\mathcal{M} \cap U_0$, we can write

$$u_0(\cdot, z'') = \delta^0(\cdot, z'') \land \bar{\partial}_{\mathcal{K}} \rho(\cdot, z'') + \rho(\cdot, z'') \gamma^0(\cdot, z'')$$

for some $\delta^0(\cdot, z'') \in \mathcal{C}^{0,q}(\Omega_{z''})$ and $\gamma^0(\cdot, z'') \in \mathcal{C}^{0,q+1}(\Omega_{z''}), z'' \in I$. We may assume that $\delta^0 \wedge \bar{\partial}_{\mathcal{K}} \rho$ and $\rho \gamma^0$ are disjoint, and hence it follows from the estimate in (3.7) that

(3.8)
$$\|\delta^0\|_{s+\frac{1}{2},k,U^-} \lesssim \|u_0\|_{s+\frac{1}{2},k,U^-} \lesssim \|\chi\alpha\|_{s+\frac{1}{2}+k,\mathcal{M}}$$

for each real $s \ge -\frac{1}{2}$ and nonnegative integer k.

Set $\tilde{u}_0 = u_0 + \delta^0 \wedge \bar{\partial}_{\mathcal{K}^c} \rho$. Then one obtains that

$$\tilde{u}_0 \wedge \bar{\partial}\rho = \left(\delta^0 \wedge \bar{\partial}_{\mathcal{K}}\rho + \rho\gamma^0 + \delta^0 \wedge \bar{\partial}_{\mathcal{K}^c}\rho\right) \wedge \bar{\partial}\rho = 0,$$

on $\mathcal{M} \cap U_0$, and hence $\tilde{u}_0 \in \mathcal{C}^{0,q}(U_0^-)$. Now we set $\tilde{\alpha}_1 = \tilde{\alpha}_0 - \tilde{u}_0$. Then it follows that $(\tilde{\alpha}_1 - \alpha) \wedge \partial \rho = -\tilde{u}_0 \wedge \partial \rho = 0$ on $U \cap \mathcal{M}$, and we can write

(3.9)
$$\bar{\partial}\tilde{\alpha}_1 = \sum_{\substack{l=q+2\\I\subset\mathcal{K}}}^{''} \tilde{\beta}_{Il}^1 d\bar{z}^I \wedge d\bar{z}^l + \sum_{\substack{|I|+|J|=q+1, \ |J|\geq 2\\I\subset\mathcal{K}, J\subset\mathcal{K}^c}} \tilde{\beta}_{IJ}^2 d\bar{z}^I \wedge d\bar{z}^J$$

for some smooth functions $\tilde{\beta}_{Il}^1$ and $\tilde{\beta}_{IJ}^2$. In view of (3.3), (3.7) and (3.8), one obtains that

(3.10)
$$\|\tilde{\alpha}_1\|_{s+\frac{1}{2},k,U^-} \lesssim \|\chi\alpha\|_{s+\frac{1}{2}+k,\mathcal{M}}$$

for each real $s \ge -\frac{1}{2}$ and nonnegative integer k.

By induction, assume that there are $\tilde{\alpha}_j \in \bigwedge^{0,q}(U_0^-), j \ge 0$, satisfying (3.1) and (3.2), and that for each real $s \ge 0$, the estimate

(3.11)
$$\|\tilde{\alpha}_{j}\|_{s+\frac{1}{2},U^{-}} \leq C_{s} \|\chi\alpha\|_{s+\frac{j}{2},\mathcal{M}}$$

holds and $(\tilde{\alpha}_j - \alpha) \wedge \bar{\partial}\rho = 0$ on $\mathcal{M} \cap U_0$. By (3.7), (3.10) and the Sobolev interpolation theorem, we see that (3.1), (3.2) and (3.11) hold for j = 1.

If we replace $\tilde{\alpha}_j$ by $\chi \tilde{\alpha}_j$, we may assume that $\tilde{\alpha}_j \in C_0^{\infty}(U_0)$ as before. Let us write:

$$\bar{\partial}\tilde{\alpha}_{j} = \sum_{\substack{|I|=q-j+1,|J|=j\\I\subset\mathcal{K},J\subset\mathcal{K}^{c}}} \beta_{IJ}^{j} d\bar{z}^{I} \wedge d\bar{z}^{J} + \sum_{\substack{|I|+|J|=q+1,|J|\geq j+1\\I\subset\mathcal{K},J\subset\mathcal{K}^{c}}} E_{IJ}^{j+1} d\bar{z}^{I} \wedge d\bar{z}^{J}$$
$$:= \beta^{j} + E^{j+1}.$$

For each fixed J with $|J| = j \ge 1$, set

$$\beta_J^j = \sum_{\substack{|I| = q-j+1\\I \subset \mathcal{K}}} \beta_{IJ}^j d\bar{z}^I.$$

If we consider the terms in $\bar{\partial}^2 \tilde{\alpha}_j$ with $|J| = j \geq 1, \ J \subset \mathcal{K}^c$, we see that $\beta_J^j|_{\bar{\Omega}_{z''}} = \beta_J^j(\cdot, z'')$ is a smooth $\bar{\partial}_{\mathcal{K}}$ -closed (0, q - j + 1)-form in $\Omega_{z''} \subset \mathbb{C}^{q+1}$. Since $\vartheta_{\mathcal{K}} = -*_{\mathcal{K}} \bar{\partial}_{\mathcal{K}}*_{\mathcal{K}}$, it follows that $*_{\mathcal{K}}\beta_J^j$ is a $\vartheta_{\mathcal{K}}$ -closed (q+1, j)-form in $\Omega_{z''} \subset \mathbb{C}^{q+1}$ for each $z'' \in B_{\sigma_0}(z_0'') = I$. Set

$$u_J^j(\cdot, z'') = - *_{\mathcal{K}} \bar{\partial}_{\mathcal{K}} N_{(q+1,j)}^{\mathcal{K}} *_{\mathcal{K}} \beta_J^j(\cdot, z''),$$

where $N_{(q+1,j)}^{\mathcal{K}}$ is the Neumann operator for (q+1,j)-forms on the strongly pseudoconvex domains $\Omega_{z''} \subset \mathbb{C}^{q+1}$. Thus $u_J^j(\cdot, z'') \in \mathcal{C}^{0,q-j}(\Omega_{z''})$, varying smoothly on $z'' \in I$, and for each real $s \geq 0$ and nonnegative integer k, it follows from (2.1) and (3.11) that

(3.12)

$$\|u_{J}^{j}\|_{s+\frac{1}{2},k,U^{-}} \lesssim \sum_{r=0}^{k} \|\beta_{J}^{j}\|_{s+k-r,r,U^{-}} \lesssim \|\tilde{\alpha}_{j}\|_{s+k+1,U^{-}} \lesssim \|\chi\alpha\|_{s+k+\frac{j+1}{2},\mathcal{M}}$$

Here, we need $s \ge 0$ (rather than $s \ge -1/2$) because β_J^j may contain terms in $\bar{\partial}_{\mathcal{K}^c} \tilde{u}_{j-1}$ that can be estimated only in Sobolev s-norm in \mathbb{C}^{q+1} for $s \ge 0$.

As for the j = 1 case, we have to correct u_J^j so that the corrected one, \tilde{u}_J^j , belongs to $\mathcal{C}^{0,q-j}(U_0)$, that is, $\tilde{u}_J^j \wedge \bar{\partial}\rho = 0$ on $\mathcal{M} \cap U_0$. Since $u_J^j \wedge \bar{\partial}_{\mathcal{K}}\rho = 0$ on $\mathcal{M} \cap U_0$, we can write

$$u_J^j(\cdot, z'') = \delta_J^j(\cdot, z'') \land \bar{\partial}_{\mathcal{K}} \rho(\cdot, z'') + \rho(\cdot, z'') \gamma_J^j(\cdot, z'') \quad z'' \in I$$

for some $\delta_J^j(\cdot, z'') \in \mathcal{C}^{0,q-j-1}(\Omega_{z''})$ and $\gamma_J^j(\cdot, z'') \in \mathcal{C}^{0,q-j}(\Omega_{z''}), z'' \in I$. Set $\tilde{u}_J^j = u_J^j + \delta_J^j \wedge \bar{\partial}_{\mathcal{K}^c} \rho$. Then it follows that

$$\tilde{u}_{J}^{j} \wedge \bar{\partial}\rho = \left(\delta_{J}^{j} \wedge \bar{\partial}_{\mathcal{K}}\rho + \rho\gamma_{J}^{j} + \delta_{J}^{j} \wedge \bar{\partial}_{\mathcal{K}^{c}}\rho\right) \wedge \bar{\partial}\rho = 0$$

on $\mathcal{M} \cap U_0$ for each $J \subset \mathcal{K}^c$ with |J| = j, and hence $\tilde{u}_j := \sum_{J \subset \mathcal{K}^c, |J|=j} \tilde{u}_J^j \wedge d\bar{z}^J \in \mathcal{C}^{0,q}(U_0 \cap \Omega)$. Also, one obtains that

(3.13)
$$\bar{\partial}\tilde{u}_{j} = \sum_{J \subset \mathcal{K}^{c}, |J|=j} \left(\beta_{J}^{j} + \bar{\partial}_{\mathcal{K}^{c}} \tilde{u}_{J}^{j} + \bar{\partial} \left(\delta_{J}^{j} \wedge \bar{\partial}_{\mathcal{K}^{c}} \rho \right) \right) \wedge d\bar{z}^{J}$$
$$:= \sum_{J \subset \mathcal{K}^{c}, |J|=j} \beta_{J}^{j} \wedge d\bar{z}^{J} + \tilde{E}^{j+1}.$$

Set $\tilde{\alpha}_{j+1} = \tilde{\alpha}_j - \tilde{u}_j \in C^{\infty}(U_0)$. Note that we may assume that $\delta_J^j \wedge \bar{\partial}_{\mathcal{K}} \rho$ and $\rho \gamma_J^j$ are disjoint. Therefore, it follows, from the estimates in (3.11) and (3.12), and by the Sobolev interpolation theorem, that

(3.14)
$$\|\tilde{\alpha}_{j+1}\|_{s+\frac{1}{2},U^-} \lesssim \|\chi\alpha\|_{s+\frac{j+1}{2},\mathcal{M}}$$

for each real $s \ge 0$. Also, $(\tilde{\alpha}_{j+1} - \tilde{\alpha}_j) \land \bar{\partial}\rho = -\tilde{u}_j \land \bar{\partial}\rho = 0$ on $\mathcal{M} \cap U_0$ since $\tilde{u}_j \in \mathcal{C}^{0,q}(U_0 \cap \Omega)$. In view of (3.13), we can write:

$$\bar{\partial}\tilde{\alpha}_{j+1} = \sum_{\substack{|I|=q-j, |J|=j+1\\I\subset\mathcal{K}, J\subset\mathcal{K}^c}} \beta_{IJ}^{j+1} d\bar{z}^I \wedge d\bar{z}^J + \sum_{\substack{|I|+|J|=q+1, |J|\geq j+2\\I\subset\mathcal{K}, J\subset\mathcal{K}^c}} E_{IJ}^{j+2} d\bar{z}^I \wedge d\bar{z}^J$$

for some smooth functions β_{IJ}^{j+1} and E_{IJ}^{j+2} . This fact, together with the estimate in (3.14), proves the inductive step. If we proceed up to j = q + 1, then the proof of the proposition is completed.

Remark 3.2. When n = q + 1 + k, $1 \leq k \leq q$, the above inductive step will stop at the (k + 1)-th step, thus proving $\overline{\partial} \tilde{\alpha}_{k+1} = 0$. This proves Theorem 1.1 with better estimates.

Now we are ready to prove the weak $\bar{\partial}$ -closed extension problem (Theorem 1.1). We recall that $U_0^- = \bigcup_{z'' \in I} \overline{\Omega}_{z''} \times \{z''\}$ as defined in (2.4).

Proof of Theorem 1.1. In view of Proposition 3.1, there exists $\alpha_{q+1} \in \bigwedge^{0,q}(U_0^-)$ which can be written as:

(3.15)
$$\bar{\partial}\alpha_{q+1} = \sum_{\substack{J \subset \mathcal{K}^c \\ |J| = q+1}} H_J d\bar{z}^J$$

for some smooth functions H_J on U_0^- . If we consider the coefficients of $d\bar{z}_i \wedge d\bar{z}^J$ of $\bar{\partial}^2 \alpha_{q+1} = 0$, we see that

$$\frac{\partial H_J}{\partial \bar{z}_i} = 0$$

for $1 \leq i \leq q+1$. Hence $H_J(\cdot, z'')$ is a holomorphic function on $\Omega_{z''}$ for each $z'' \in I$.

Also note that $(\alpha_{q+1} - \alpha) \wedge \bar{\partial}\rho = 0$ on $\mathcal{M} \cap U_0$. Therefore, $\bar{\partial}(\alpha_{q+1} - \alpha) \wedge \bar{\partial}\rho = 0$ and hence $\bar{\partial}\alpha_{q+1} \wedge \bar{\partial}\rho = 0$ on $\mathcal{M} \cap U_0$ since $\bar{\partial}_b\alpha = 0$ on $\mathcal{M} \cap U_0$. Considering SANGHYUN CHO

the coefficients of $d\bar{z}_i \wedge d\bar{z}^J$ of $\bar{\partial}\alpha_{q+1} \wedge \bar{\partial}\rho$, one obtains, from (3.15), that

$$\frac{\partial \rho}{\partial \bar{z}_i} H_J = 0$$

for $1 \leq i \leq q+1$ on $\mathcal{M} \cap U_0$. Since $\bar{\partial}_{\mathcal{K}}\rho \neq 0$ on $b\Omega_{z''}$, at least one of $\partial \rho/\partial \bar{z}_i$, for $1 \leq i \leq q+1$, is not equal to zero, and hence $H_J(\cdot, z'') = 0$ on $b\Omega_{z''}$. Thus it follows that $H_J(\cdot, z'') \equiv 0$ on $\Omega_{z''}$ because $H_J(\cdot, z'')$ is a holomorphic function on $\Omega_{z''}$ for each $z'' \in I$. In view of (3.15), we thus obtain that $\bar{\partial}\alpha_{q+1} = 0$. If we set $\tilde{\alpha} = \alpha_{q+1}$, then $\tilde{\alpha}$ satisfies the estimates (1.1) from the estimates in (3.2). This proves Theorem 1.1.

Proof of Theorem 1.2. Let U_0^- be the neighborhood constructed in Theorem 1.1. Then there is a weak $\bar{\partial}$ -closed extension $\tilde{\alpha}$ of α onto U_0^- satisfying the estimate (1.1). By the lemma in Section 4 of [2], we can construct a small pseudoconvex domain $B \subset \subset U_0^-$ with the property that $W := B \cap \mathcal{M}$ is a neighborhood of $z_0 \in \mathcal{M}$.

For each real $s \geq 0$, set $\tilde{u}_s = \bar{\partial}^* N_s^B \tilde{\alpha}$, where N_s^B denotes the weighted $\bar{\partial}$ -Neumann operator in B with weight $e^{-t_s|z|^2}$ for sufficiently large $t_s > 0$ depending on s. Then we have $\bar{\partial}\tilde{u}_s = \tilde{\alpha}$ in B, and it follows that

$$\|\tilde{u}_s\|_{s,B} \le C_s \|\tilde{\alpha}\|_{s,B}$$

Set $u_s = \tau \tilde{u}_s$, where τ is the projection in $\bigwedge^{p,q-1}(\mathcal{M})$ onto $\mathcal{B}^{p,q-1}(\mathcal{M})$ defined by first restricting a (p,q-1)-form ϕ in \mathbb{C}^n to \mathcal{M} , then projecting the restriction to $\mathcal{B}^{p,q-1}(\mathcal{M})$. Then $\bar{\partial}_b u_s = \alpha$ on W and if we use the estimates (1.1) and (3.16), and the trace theorem in Sobolev spaces, then we obtain that

$$\|u_s\|_{s,W} \le C_s \|D\tilde{u}_s\|_{s-\frac{1}{2},B} \le C_s \|\tilde{\alpha}\|_{s+\frac{1}{2},B} \le C_s \|\chi\alpha\|_{s+\frac{q+1}{2},U_a^- \cap \mathcal{M}}$$

for each real $s \ge 0$. This completes the proof of Theorem 1.2.

References

- A. Andreotti and C. D. Hill, E. E. Levi convexity and the Hans Lewy problem. I, II, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), 325–363; ibid. 26 (1972), 747–806.
- S. Bell, Differentiability of the Bergman kernel and pseudo-local estimates, Math. Z. 192 (1986), 467–472.
- [3] H. P. Boas and M.-C. Shaw, Sobolev estimates for the Lewy operator on weakly pseudoconvex boundaries, Math. Ann. 274 (1986), no. 2, 221–231.
- [4] A. Boggess and M.-C. Shaw, A kernel approach to the local solvability of the tangential Cauchy Riemann equations, Trans. Amer. Math. Soc. 289 (1985), no. 2, 643–658.
- [5] D. Catlin, Sufficient conditions for the extension of CR structures, J. Geom. Anal. 4 (1994), no. 4, 467–538.
- [6] D. Catlin and S. Cho, Extension of CR structures on three dimensional compact pseudoconvex CR manifolds, Math. Ann. 334 (2006), no. 2, 253–280.
- [7] S.-C. Chen and M.-C. Shaw, Partial Differential equations in several complex variables, AMS/IP Studies in Advanced Mathematics, 19. American Mathematical Society, Providence, RI; International Press, Boston, MA, 2001.
- [8] S. Cho and J. Choi, Local extension of boundary holomorphic forms on real hypersurfaces in Cⁿ, J. Math. Anal. Appl. **325** (2007), no. 1, 279–293.

- [9] _____, Explicit Sobolev estimates for the Cauchy-Riemann equation on parameters, Bull. Korean Math. Soc. 45 (2008), no. 2, 321–338.
- [10] S. Cho, Sobolev estimates for the local extension of ∂_b-closed (0, 1)-forms on real hypersurfaces in Cⁿ, Proc. of Amer. Math. Soc. **139** (2011), no. 11, 4053–4062.
- [11] P. C. Greiner, J. J. Kohn, and E. M. Stein, Necessary and sufficient conditions for solvability of the Lewy equation, Proc. Nat. Acad. Sci. U.S.A. 72 (1975), no. 9, 3287– 3289.
- R. S. Hamilton, Deformation of complex structures on manifolds with boundary I, II, J. Diff. Geom. 12 (1977), no. 1, 1–15; 14 (1979), no. 3, 409–473.
- [13] G. M. Henkin and J. Leiterer, Andreotti-Grauert theory by Integral Formulas, Birkhäuser, Boston, Basel, 1988.
- [14] J. J. Kohn and H. Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math. (2) 81 (1965), 451–472.
- [15] M. Kuranishi, Strongly pseudoconvex CR structures over small balls. I. An a priori estimate, Ann. of Math. (2) 115 (1982), no. 3, 451–500.
- [16] C. Laurent-Thiébaut and J. Leiterer, On the Hartogs-Bochner extension phenomenon for differential forms, Math. Ann. 284 (1989), no. 1, 103–119.
- [17] H. Lewy, On the local character of the solution of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables, Ann. of Math. (2) 64 (1956), 514–522.
- [18] _____, An example of a smooth linear partial differential equation without solution, Ann. of Math. (2) 66 (1957), 155–158.
- [19] M.-C. Shaw, L² estimates and existence theorems for the tangential Caucy-Riemann complex, Invent. Math. 82 (1985), no. 1, 133–150.
- [20] _____, L^2 existence theorems for the $\bar{\partial}_b$ -Neumann problem on strongly pseudoconvex CR manifolds, J. Geom. Anal. (2) 1 (1992), 139–163.
- [21] S. Webster, On the proof of Kuranishi's embedding theorem, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), no. 3, 183–207.

DEPARTMENT OF MATHEMATICS SOGANG UNIVERSITY SEOUL 121-742, KOREA *E-mail address*: shcho@sogang.ac.kr