SOBOLEV ESTIMATES FOR THE LOCAL EXTENSION OF BOUNDARY HOLOMORPHIC FORMS ON REAL HYPERSURFACES IN \mathbb{C}^{n}

Sanghyun Cho

Abstract

Let M be a smooth real hypersurface in complex space of dimension $n, n \geq 3$, and assume that the Levi-form at z_{0} on M has at least ($q+1$)-positive eigenvalues, $1 \leq q \leq n-2$. We estimate solutions of the local $\bar{\partial}$-closed extension problem near z_{0} for (p, q)-forms in Sobolev spaces. Using this result, we estimate the local solution of tangential Cauchy-Riemann equation near z_{0} in Sobolev spaces.

1. Introduction

For a set $D \subset \mathbb{C}^{n}$, we denote the vector space of smooth (p, q)-forms on D by $\bigwedge^{p, q}(D)$. Let \mathcal{M} be a smooth real hypersurface in \mathbb{C}^{n} with a smooth defining function ρ, and let $\mathcal{B}^{p, q}(\mathcal{M})$ be the restriction of $\bigwedge^{p, q}\left(\mathbb{C}^{n}\right)$ to \mathcal{M} which are pointwise orthogonal to the ideal generated by $\bar{\partial} \rho$. In the sequel, we let $z_{0} \in \mathcal{M}$ be a fixed point and V be a neighborhood of z_{0} in \mathbb{C}^{n} where ρ is defined. For each open set $U \subset V, z_{0} \in U$, we set $U^{-}=\{z \in U ; \rho(z) \leq 0\}$ and $U^{+}=\{z \in U ; \rho(z) \geq 0\}$.

If there exists a neighborhood $U \subset V, z_{0} \in U$, such that for any $\alpha \in$ $\mathcal{B}^{p, q}(\mathcal{M} \cap U)$ with $\bar{\partial}_{b} \alpha=0$ on $\mathcal{M} \cap U$, there exists a smooth (p, q)-form $\tilde{\alpha} \in$ $\bigwedge^{p, q}\left(U^{-}\right)$with $\bar{\partial} \tilde{\alpha}=0$ in U^{-}and $(\tilde{\alpha}-\alpha) \wedge \bar{\partial} \rho=0$ on $\mathcal{M} \cap U$, then we say one-sided weak $\bar{\partial}$-closed extension problem is locally solvable.

The $\bar{\partial}$-closed extension problem and the local solvability of the tangential Cauchy-Riemann equation for functions were first introduced in two papers by Hans Lewy $[17,18]$. For the case when \mathcal{M} is the boundary of a smoothly bounded domain Ω in \mathbb{C}^{n}, the global $\bar{\partial}$-closed extension problem for forms from \mathcal{M} to the domain Ω was studied by J. J. Kohn and H. Rossi [14], who first introduced the $\bar{\partial}_{b}$-complex. They showed that a global $\bar{\partial}$-closed extension exists for any (p, q)-form from the boundary $\mathcal{M}=b \Omega$ to the domain Ω in a complex manifold if Ω satisfies the condition $Z(n-q-1)$ at all points of $b \Omega$. Analogous

[^0]result was obtained by Henkin and Leiterer [13] using kernel methods. For the case when Ω is a bounded pseudoconvex domain in \mathbb{C}^{n}, Shaw and Boas [19, 3] constructed a two-sided $\bar{\partial}$-closed extension for $\bar{\partial}_{b}$-closed forms near $b \Omega$ using the L^{2}-Cauchy problem for $\bar{\partial}$, and solved $\bar{\partial}_{b}$-problem on the boundary.

For the local extension problem, Andreotti and Hill [1] solved the local weak $\bar{\partial}$-closed extension problem when the Levi-form at $z_{0} \in \mathcal{M}$ satisfies the condition $Y(q)$. Under the same assumption, Boggess and Shaw [4] proved the same result using integral kernel method. Recall that we say \mathcal{M} satisfies condition $Y(q)$ at z_{0} if the Levi form of \mathcal{M} at z_{0} has either $\max \{n-q, q+1\}$ eigenvalues of the same sign or $\min \{n-q, q+1\}$ positive and $\min \{n-q, q+1\}$ negative eigenvalues. Thus when $(n-q)>(q+1)$, we need $(q+1)$ mixed (positive and negative) eigenvalues for the condition $Y(q)$ to be satisfied. In [8], Cho and Choi proved the one-sided smooth extension problem (without estimates) when the Levi-form at $z_{0} \in \mathcal{M}$ has at least $(q+1)$ positive eigenvalues.

Note that the estimates of the solutions of these extension problems in various spaces, such as C^{k}, L^{p}, Lipschitz or Sobolev spaces, have many applications in the study of complex analysis. For example, function theories on a bounded domain $D \subset \mathbb{C}^{n}$ or the embeddability of abstract $C R$ structures [5, 6, 15, 21].

For a set $W \subset \mathbb{C}^{n}$, we denote the Sobolev norm of order s on W by $\|\cdot\|_{s, W}$. In [10], the author proved the local extension problem, with estimates in Sobolev spaces, for $\bar{\partial}_{b}$-closed (0,1)-forms on real hypersurfaces \mathcal{M} in \mathbb{C}^{n} when the Leviform at $z_{0} \in \mathcal{M}$ has two positive eigenvalues. Therefore, it is natural to ask the local extension problem, with estimates in Sobolev spaces, for (p, q)-forms when the Levi-form at $z_{0} \in \mathcal{M}$ has at least $(q+1)$ positive eigenvalues (not mixed). In this case, the condition $Y(q)$ is not satisfied when $n-q>q+1$. The following theorem answers this problem.

Theorem 1.1. Let \mathcal{M} be a smooth hypersurface in $\mathbb{C}^{n}, n \geq 3$, with smooth defining function ρ and suppose that the Levi-form at $z_{0} \in \mathcal{M}$ has at least $(q+1)$ positive eigenvalues, $1 \leq q \leq n-2$. Then there is a neighborhood U_{0} of z_{0} such that for any $\alpha \in \mathcal{B}^{p, q}\left(\mathcal{M} \cap U_{0}\right)$, satisfying $\bar{\partial}_{b} \alpha=0$ on $\mathcal{M} \cap U_{0}$, there exists $\tilde{\alpha} \in \bigwedge^{p, q}\left(U_{0}^{-}\right)$such that $\bar{\partial} \tilde{\alpha}=0$ on U_{0}^{-}and $(\tilde{\alpha}-\alpha) \wedge \bar{\partial} \rho=0$ on $\mathcal{M} \cap U_{0}$. Also, if $U \subset \subset U_{0}$ is a neighborhood of z_{0} and if we let $\chi \in C_{0}^{\infty}\left(U_{0}\right)$ with $\chi=1$ on U, then for each real $s \geq 0, \tilde{\alpha}$ satisfies the estimate:

$$
\begin{equation*}
\|\tilde{\alpha}\|_{s+\frac{1}{2}, U^{-}} \leq C_{s}\|\chi \alpha\|_{s+\frac{q+1}{2}, \mathcal{M}} \tag{1.1}
\end{equation*}
$$

We note that the estimate (1.1) is comparable to the case when $q=1$ in [10]. We also note that there are well-known non-solvability results of tangential Cauchy-Riemann equation for $n=2$ [18] and for $q=n-1$ [11]. Note, however, that the local $\bar{\partial}$-closed extension problem and the local solvability of $\bar{\partial}_{b}$ equation are closely related [19, 3]. Using the results of Theorem 1.1, we solve the local $\bar{\partial}_{b}$-equation in Sobolev spaces.

Theorem 1.2. Let $\mathcal{M}, z_{0} \in \mathcal{M}$ and U_{0} be as in Theorem 1.1. Also, assume that \mathcal{M} is pseudoconvex near $z_{0} \in \mathcal{M}$. Then there is a neighborhood W of
$z_{0}, W \subset \subset \mathcal{M} \cap U_{0}$, such that for any $\alpha \in \mathcal{B}^{p, q}\left(\mathcal{M} \cap U_{0}\right)$ satisfying $\bar{\partial}_{b} \alpha=0$ on $\mathcal{M} \cap U_{0}$ and for each real $s \geq 0$, there exists $u_{s} \in \mathcal{B}^{(p, q-1)}(W)$ such that $\bar{\partial}_{b} u_{s}=\alpha$ on W and satisfies the estimate:

$$
\left\|u_{s}\right\|_{s, W} \leq C_{s}\|\alpha\|_{s+\frac{q+1}{2}, \mathcal{M} \cap U_{0}^{-}}
$$

Remark 1.3. In Theorem 1.1, the differentiability assumption $\alpha \in C^{\infty}$ can be weakened to $\alpha \in H^{s+\frac{q+1}{2}}\left(\mathcal{M} \cap U_{0}\right)$ to get $\tilde{\alpha} \in H^{s+\frac{1}{2}}\left(M \cap U_{0}\right)$, and similarly for Theorem 1.2.

Note that the weak extension problem is a Cauchy problem to preserve the boundary values in tangential direction. This means that we have to solve $\bar{\partial}{ }^{*}$ equation instead of $\bar{\partial}$-equation. Let D be a smoothly bounded pseudoconvex domain in \mathbb{C}^{k} and let $\alpha \in \mathcal{B}^{p, q}(b D)$, where $0 \leq p \leq k$ and $1 \leq q \leq k-1$. Note that a necessary and sufficient condition for the extension problem to be solved is:

$$
\begin{equation*}
\int_{b D} \alpha \wedge \psi=0 \tag{1.2}
\end{equation*}
$$

for every $\psi \in \bigwedge^{k-p, k-q-1}(D) \cap \operatorname{Ker}(\bar{\partial})([7]$, Theorem 9.2.1). We also note that (1.2) is equivalent to the condition $\bar{\partial}_{b} \alpha=0$ for $q \leq k-2$.

2. Preliminaries

Let Ω be a domain in \mathbb{C}^{k} with smooth boundary and let $\bar{\partial}$ be the CauchyRiemann operator on Ω and let $N_{(p, q)}$ denote the Neumann operator for (p, q) forms. We also let $\mathcal{C}^{p, q}(\Omega)$ be the collection of forms $\phi \in \Lambda^{p, q}(\Omega)$ such that $\phi \wedge \bar{\partial} r=0$ on $b \Omega$, where r is a smooth defining function for Ω. Let I be an open ball in \mathbb{R}^{d} and let $|I|$ denote the diameter of I, and let $H_{s, l}(\Omega \times I)$ be the Sobolev space of order s on Ω and of order l in I with the norm denoted by $\|\cdot\|_{s, l}$. We state a theorem (Theorem 1.7 in [9]) for the smooth dependence of solutions of the $\bar{\partial}$-Neumann problem with respect to a parameter $\tau \in I$.

Theorem 2.1. Let $\left\{\Omega_{\tau}\right\}_{\tau \in I}$ be a smooth family of diffeomorphic strongly pseudoconvex domains in \mathbb{C}^{k} and suppose that $\left\{\alpha_{\tau}\right\}_{\tau \in I}$ is a family of (p, q)-forms on $\left\{\Omega_{\tau}\right\}_{\tau \in I}$ such that $\alpha_{\tau} \in R\left(\bar{\partial}_{\tau}\right)$, the range of $\bar{\partial}_{\tau}$, for each $\tau \in I$, where $|I|$ is sufficiently small. Then for each real number $s \geq-1 / 2$ and for each nonnegative integer l, there is $C_{s, l}>0$ such that the Neumann solution U_{τ} of $\square U_{\tau}=\alpha_{\tau}$ and the canonical solution $u_{\tau}=\bar{\partial}^{*} U_{\tau}$ of $\bar{\partial} u_{\tau}=\alpha_{\tau}$ on each Ω_{τ}, $\tau \in I$, satisfy

$$
\begin{equation*}
\|U\|_{s+1, l},\|u\|_{s+1 / 2, l} \leq C_{s, l} \sum_{r=0}^{l}\|\alpha\|_{s+l-r, r} \tag{2.1}
\end{equation*}
$$

where $\alpha \in H_{s+l-r, r}(\Omega \times I), 0 \leq r \leq l$, and where $U:=\left\{u_{\tau}\right\}_{\tau \in I}$ and $\alpha:=$ $\left\{\alpha_{\tau}\right\}_{\tau \in I}$.

Let (\mathcal{M}, ρ) be as in Section 1, and assume that the Levi-form at $z_{0} \in \mathcal{M}$ has $k \geq 1$ positive eigenvalues. To prove the solvability of the local extension problem, we need to construct a smooth family of strongly convex domains near $z_{0} \in \mathcal{M}$ which are foliated in the side $\rho \leq 0$ and make up a neighborhood U_{0}^{-}of $z_{0} \in \mathcal{M}$. We first prove the following lemma, which describes the local geometry of \mathcal{M} near z_{0} in terms of local coordinates.

Lemma 2.2. Let \mathcal{M} be a smooth hypersurface in \mathbb{C}^{n} and assume that the Leviform at $z_{0} \in \mathcal{M}$ has $k \geq 1$ positive eigenvalues. There is a special coordinate $z=\left(z_{1}, \ldots, z_{n}\right)$ defined in a neighborhood of z_{0} and new defining function ρ of \mathcal{M} which can be written, in new coordinates, by

$$
\begin{equation*}
\rho(z)=\left|z_{n}\right|^{2}-1+\sum_{i=1}^{k}\left|z_{i}\right|^{2}+\sum_{i=k+1}^{n-1} \lambda_{i}\left|z_{i}\right|^{2}+\mathcal{O}\left(\left|z-z_{0}\right|^{3}\right) . \tag{2.2}
\end{equation*}
$$

Proof. Let ρ be a smooth defining function of \mathcal{M}. By a standard method of holomorphic coordinate changes, we have special coordinates $u=\left(u^{\prime}, u^{\prime \prime}\right)$, $u^{\prime}=\left(u_{1}, \ldots, u_{k}\right), u^{\prime \prime}=\left(u_{k+1}, \ldots, u_{n}\right), u\left(z_{0}\right)=0$ and the Taylor expansion near $z_{0}=0$ can be written as:
$\rho(u)=u_{n}+\bar{u}_{n}+\sum_{i=1}^{k}\left|u_{i}\right|^{2}+\sum_{i=k+1}^{n-1} \lambda_{i}\left|u_{i}\right|^{2}+\sum_{k=1}^{n} c_{k} u_{k} \bar{u}_{n}+\sum_{k=1}^{n} \bar{c}_{k} \bar{u}_{k} u_{n}+\mathcal{O}\left(|u|^{3}\right)$,
where each λ_{i} is a real number and $\mathcal{O}\left(|u|^{3}\right)$ is the remainder whose first and second derivatives vanishes at 0 . Set $r(u)=\rho(u) \cdot\left(1-\sum_{k=1}^{n} c_{k} u_{k}-\sum_{k=1}^{n} \bar{c}_{k} \bar{u}_{k}\right)$, where $\left(1-2 \operatorname{Re} \sum_{k=1}^{n} c_{k} u_{k}\right)>1 / 2$ in a neighborhood of the origin. Therefore, r is a new local defining function of \mathcal{M} near $z_{0} \in \mathcal{M}$ and can be written as
$r(u)=\left(u_{n}-\sum_{k=1}^{n} c_{k} u_{k} u_{n}\right)+\left(\bar{u}_{n}-\sum_{k=1}^{n} \bar{c}_{k} \bar{u}_{k} \bar{u}_{n}\right)+\sum_{i=1}^{k}\left|u_{i}\right|^{2}+\sum_{i=k+1}^{n-1} \lambda_{i}\left|u_{i}\right|^{2}+\mathcal{O}\left(|u|^{3}\right)$.
Set $w_{j}=u_{j}$ for $j<n$, and $w_{n}=u_{n}-\sum_{k=1}^{n} c_{k} u_{k} u_{n}$. In w coordinates, $r(w)$ has the representation:

$$
r(w)=w_{n}+\bar{w}_{n}+\sum_{i=1}^{k}\left|w_{i}\right|^{2}+\sum_{i=k+1}^{n-1} \lambda_{i}\left|w_{i}\right|^{2}+\mathcal{O}\left(|w|^{3}\right) .
$$

Set $\tilde{r}(w)=r(w) \cdot\left(1+\left(w_{n}+\bar{w}_{n}\right) / 2\right)$, where $\left.1+\left(w_{n}+\bar{w}_{n}\right) / 2\right)>1 / 2$ near $z_{0}=0$. Then $\tilde{r}(w)$ can be written as:

$$
\tilde{r}(w)=w_{n}+\bar{w}_{n}+\frac{1}{2}\left(w_{n}^{2}+\bar{w}_{n}^{2}\right)+\left|w_{n}\right|^{2}+\sum_{i=1}^{k}\left|w_{i}\right|^{2}+\sum_{i=k+1}^{n-1} \lambda_{i}\left|w_{i}\right|^{2}+\mathcal{O}\left(|w|^{3}\right) .
$$

By setting

$$
\tilde{u}_{n}=w_{n}+\frac{1}{2} w_{n}^{2} \quad \text { and } \quad \tilde{u}_{j}=w_{j}, j<n
$$

\tilde{r} can be written, in \tilde{u}-coordinates, by:

$$
\tilde{r}(\tilde{u})=\tilde{u}_{n}+\overline{\tilde{u}}_{n}+\left|\tilde{u}_{n}\right|^{2}+\sum_{i=1}^{k}\left|\tilde{u}_{i}\right|^{2}+\sum_{i=k+1}^{n-1} \lambda_{i}\left|\tilde{u}_{i}\right|^{2}+\mathcal{O}\left(|\tilde{u}|^{3}\right) .
$$

Finally, we set $z_{n}=\tilde{u}_{n}+1$ and $z_{j}=\tilde{u}_{j}$ for $j<n$, and denote \tilde{r} by ρ. Then $z\left(z_{0}\right)=(0, \ldots, 0,1)$ and in z-coordinates, the local defining function ρ can be written as:

$$
\rho(z)=\left|z_{n}\right|^{2}-1+\sum_{i=1}^{k}\left|z_{i}\right|^{2}+\sum_{i=k+1}^{n-1} \lambda_{i}\left|z_{i}\right|^{2}+\mathcal{O}\left(\left|z-z_{0}\right|^{3}\right)
$$

near $z_{0}=z\left(z_{0}\right)=(0, \ldots, 0,1)$.
Set $z=\left(z^{\prime}, z^{\prime \prime}\right)$, where $z^{\prime}=\left(z_{1}, \ldots, z_{k}\right)$ and $z^{\prime \prime}=\left(z_{k+1}, \ldots, z_{n}\right)$. In the following proposition, we regard $z^{\prime \prime} \in \mathbb{C}^{n-k}$ as a parameter variable near $t_{0}^{\prime \prime}:=$ $z_{0}^{\prime \prime}=(0, \ldots, 0,1) \in \mathbb{C}^{n-k}$ and construct a family of strongly convex domains. In Section 3, we will apply Theorem 2.1 to this parameter family of domains.

Proposition 2.3. Let (\mathcal{M}, ρ) and z_{0} be as in Lemma 2.2. Then there exist a small open ball $I:=B_{\sigma_{0}}\left(t_{0}^{\prime \prime}\right) \subset \mathbb{C}^{n-k}$ for a small $\sigma_{0}>0$ and a family of bounded strongly convex domains $\left\{\Omega_{t^{\prime \prime}}\right\}_{t^{\prime \prime} \in I}$ in \mathbb{C}^{k}, and $\Omega_{t^{\prime \prime}}$ is diffeomorphic to $\Omega_{t_{0}^{\prime \prime}}$ for each $t^{\prime \prime} \in I$ with diameters being strictly bounded from below (say, by $\sigma_{0}^{17 / 48}$), and foliate into the part $\rho \leq 0$ making up a neighborhood U_{0}^{-}of z_{0}.

Proof. For a sufficiently small $\sigma>0$ to be determined, let $B_{\sigma}\left(t_{0}^{\prime \prime}\right) \subset \mathbb{C}^{n-k}$ be a ball of radius $\sigma>0$ centered at $t_{0}^{\prime \prime}$. For any fixed $t^{\prime \prime}=\left(t_{k+1}, \ldots, t_{n}\right) \in B_{\sigma}\left(t_{0}^{\prime \prime}\right)$ and for each $\left|z^{\prime}\right|<\sigma^{1 / 4}$, set $\tilde{\rho}\left(z^{\prime}, t^{\prime \prime}\right)=\rho\left(z^{\prime}, t_{k+1}, \ldots, t_{n-1}, t_{n}-\sigma^{1 / 3} z_{1}\right)$. In view of (2.2), we can write

$$
\begin{align*}
\tilde{\rho}\left(z^{\prime}, t^{\prime \prime}\right)= & \left(\left|t_{n}\right|^{2}-1\right)-2 \sigma^{1 / 3} \operatorname{Re}\left(z_{1} \bar{t}_{n}\right)+\sigma^{2 / 3}\left|z_{1}\right|^{2}+\sum_{i=1}^{k}\left|z_{i}\right|^{2} \\
& +\sum_{i=k+1}^{n-1} \lambda_{i}\left|t_{i}\right|^{2}+\mathcal{O}\left(\left|z-z_{0}\right|^{3}\right) \tag{2.3}
\end{align*}
$$

For $t^{\prime \prime} \in B_{\sigma}\left(t_{0}^{\prime \prime}\right)$, we set

$$
r_{t^{\prime \prime}}^{\sigma}\left(z^{\prime}\right):=\left(1-\left|t_{n}\right|^{2}\right)+2 \sigma^{1 / 3} \operatorname{Re}\left(z_{1} \bar{t}_{n}\right)-\sum_{i=k+1}^{n-1} \lambda_{i}\left|t_{i}\right|^{2}+\mathcal{O}\left(\left|z-z_{0}\right|^{3}\right)
$$

Then when $t^{\prime \prime}=t_{0}^{\prime \prime}=(0, \ldots, 0,1)$, i.e., at the center of the ball $B_{\sigma}\left(t_{0}^{\prime \prime}\right)$, we have

$$
r_{t_{0}^{\prime \prime}}^{\sigma}\left(z^{\prime}\right)=2 \sigma^{1 / 3} \operatorname{Re}\left(z_{1}\right)+\mathcal{O}\left(\left|z^{\prime}\right|^{3}\right)>0
$$

for an appropriate z_{1} (say, at $\operatorname{Re} z_{1}=\sigma^{3 / 8}$) provided $\sigma>0$ is sufficiently small. Therefore, it follows that

$$
\Omega_{t_{0}^{\prime \prime}}:=\left\{z^{\prime} \in B_{\sigma^{1 / 4}}\left(z_{0}^{\prime}\right) ; \sigma^{2 / 3}\left|z_{1}\right|^{2}+\sum_{i=1}^{k}\left|z_{i}\right|^{2}<r_{t_{0}^{\prime \prime}}^{\sigma}\left(z^{\prime}\right)\right\}
$$

is a non-empty strongly convex domain contained in the side of $\rho \leq 0$. Note that $\Omega_{t_{0}^{\prime \prime}}$ is a small deformation of a ball whose radius is bigger than or equal to $\sigma^{17 / 48}$. Also we see that $z_{0} \in b \Omega_{t_{0}^{\prime \prime}} \subset \mathcal{M}$ and $\Omega_{t_{0}^{\prime \prime}}$ is the central slice of the side $\rho \leq 0$.

For any $t^{\prime \prime}=\left(t_{k+1}, \ldots, t_{n}\right) \in B_{\sigma}\left(t_{0}^{\prime \prime}\right)$, we note that $\left|t_{n}-1\right|<\sigma$. Hence $r_{t^{\prime \prime}}^{\sigma}$ is a small (of size less than σ) perturbation of $r_{t_{0}^{\prime \prime}}^{\sigma}$. Therefore, as for the $r_{t_{0}^{\prime \prime}}^{\sigma}$ case, it follows that $r_{t^{\prime \prime}}^{\sigma}\left(z^{\prime}\right)>0$ for some z^{\prime} and hence for each $t^{\prime \prime} \in B_{\sigma}\left(t_{0}^{\prime \prime}\right)$,

$$
\Omega_{t^{\prime \prime}}:=\left\{z^{\prime} \in \mathbb{C}^{k} ; \sigma^{2 / 3}\left|z_{1}\right|^{2}+\sum_{i=1}^{k}\left|z_{i}\right|^{2}<r_{t^{\prime \prime}}^{\sigma}\left(z^{\prime}\right)\right\}
$$

is a nonempty strongly convex domain in \mathbb{C}^{k} contained in the side of $\{z ; \rho(z)<$ $0\}$ and $b \Omega_{t^{\prime \prime}} \subset \mathcal{M}$, and the diameter of $\Omega_{t^{\prime \prime}}$ is bigger than or equal to $\sigma^{17 / 48}$ provided σ is sufficiently small. Let us fix $\sigma=\sigma_{0}$ satisfying the above conditions, and set $I:=B_{\sigma_{0}}\left(t_{0}^{\prime \prime}\right) \subset \mathbb{C}^{n-k}$ and

$$
\begin{equation*}
U_{0}^{-}:=\bigcup_{t^{\prime \prime} \in I} \bar{\Omega}_{t^{\prime \prime}} \times\left\{t^{\prime \prime}\right\} \tag{2.4}
\end{equation*}
$$

This proves the proposition.
Remark 2.4. Note that $\operatorname{Re} z_{1} \lesssim \sigma^{1 / 3}$ if $z^{\prime} \in \Omega_{t^{\prime \prime}}$, which forces that $\left|z^{\prime}\right| \lesssim \sigma^{1 / 3}$, that is, $\Omega_{t^{\prime \prime}} \subset B_{\sigma^{7 / 24}}\left(z_{0}\right) \subset B_{\sigma^{1 / 4}}\left(z_{0}\right)$ provided σ is sufficiently small. Also, in view of our construction, we may take σ_{0} sufficiently small so that Theorem 2.1 holds for $I=B_{\sigma_{0}}$ and $U_{0}^{-} \subset B_{\sigma_{0}^{1 / 4}}\left(z_{0}\right)$.

Remark 2.5. With the special coordinates $z=\left(z^{\prime}, t^{\prime \prime}\right)$ defined in (2.3), set $\tilde{t}_{n}=1+\frac{1}{2} \sigma^{7 / 24}$, and for each $\left|t_{j}\right|<\sigma^{1 / 3}, j=k+1, \ldots, n-1$, set $\tilde{t}^{\prime \prime}=$ $\left(t_{k+1}, \ldots, t_{n-1}, \tilde{t}_{n}\right)$. For each $\left|z^{\prime}\right|<\sigma^{1 / 3}$, we then have $r_{\tilde{t}^{\prime \prime}}^{\sigma}\left(z^{\prime}\right) \approx-\sigma^{7 / 24}$, and hence $\tilde{\rho}\left(z^{\prime}, \tilde{t}^{\prime \prime}\right)>0$. Set $\tilde{D}_{\sigma}^{\prime \prime}:=\left\{t^{\prime \prime} \in \mathbb{C}^{n-k} ;\left|t_{j}\right|<\sigma^{1 / 3}, k+1 \leq j \leq\right.$ $\left.n-1,\left|t_{n}-\tilde{t}_{n}\right|<\sigma\right\}$. Then for each $t^{\prime \prime} \in \tilde{D}_{\sigma}^{\prime \prime}$ and $\left|z^{\prime}\right|<\sigma^{1 / 3}$, it follows that $\tilde{\rho}_{t^{\prime \prime}}\left(z^{\prime}\right)>0$, and hence $\Omega_{t^{\prime \prime}}$ is an empty set when $t^{\prime \prime} \in \tilde{D}_{\sigma}^{\prime \prime}$.

3. $\bar{\partial}$-closed extension for (p, q)-forms

To prove the local extension theorem, we use the local decomposition of the set U_{0}^{-}considered in (2.4) and use Proposition 2.3 with $k=q+1$. We will solve the ϑ-equation to correct the terms and use the estimates (2.1) on parameter
variables $z^{\prime \prime}=t^{\prime \prime} \in I$, where I is defined as in (2.4). Set $\mathcal{K}=\{1, \ldots, q+1\}$ and $\mathcal{K}^{c}=\{q+2, \ldots, n\}$. For a smooth function f defined in \mathbb{C}^{n}, we define

$$
\bar{\partial}_{\mathcal{K}} f=\sum_{j=1}^{q+1} \frac{\partial f}{\partial \bar{z}_{j}} d \bar{z}_{j} \quad \text { and } \quad \bar{\partial}_{\mathcal{K}^{c}} f=\sum_{j=q+2}^{n} \frac{\partial f}{\partial \bar{z}_{j}} d \bar{z}_{j} .
$$

We can extend this definition for arbitrary smooth forms.
Since p does not play any important role in the estimates, we set $p=0$, i.e., we consider only the cases of $\bigwedge^{0, q}(W)$, where W is an appropriate set. We recall that $\|\cdot\|_{s, k, W}$ is the Sobolev space of order s in $z^{\prime} \in \mathbb{C}^{q+1}$ variables and of order k in $z^{\prime \prime} \in I \subset \mathbb{C}^{n-q-1}$ variables. We also note that $\bigwedge^{p, q}\left(\Omega_{z^{\prime \prime}}\right)$ and $\bigwedge^{p, q}\left(b \Omega_{z^{\prime \prime}}\right)$ are defined on $\Omega_{z^{\prime \prime}} \subset \mathbb{C}^{q+1}$, and that every summation will be over strictly increasing indices. In the sequel, the constants, such as C_{s} or $C_{s, k}$, depend only on s or k and can vary line-to-line while we estimate.

Proposition 3.1. Let \mathcal{M} be a smooth real hypersurface in $\mathbb{C}^{n}, n \geq 3$, with smooth defining function ρ defined in a neighborhood V of $z_{0} \in \mathcal{M}$, and suppose that the Levi-form at z_{0} has at least $(q+1)$ positive eigenvalues, $1 \leq q \leq n-2$. Then there is a neighborhood $U_{0}, z_{0} \in U_{0}$, such that for any $\alpha \in \mathcal{B}^{0, q}\left(\mathcal{M} \cap U_{0}\right)$, there are $\tilde{\alpha}_{j} \in \bigwedge^{0, q}\left(U_{0}^{-}\right), 0 \leq j \leq q+1$, such that $\left(\tilde{\alpha}_{j}-\alpha\right) \wedge \bar{\partial} \rho=0$ on $\mathcal{M} \cap U_{0}$ and $\bar{\partial} \tilde{\alpha}_{j}$ can be written as

$$
\begin{equation*}
\bar{\partial} \tilde{\alpha}_{j}=\sum_{\substack{I \subset \mathcal{K}, J \subset \mathcal{K}^{c} \\|I|+|J|=q+1,|J| \geq j}} \alpha_{I J}^{j} d \bar{z}^{I} \wedge d \bar{z}^{J} \tag{3.1}
\end{equation*}
$$

on U_{0}^{-}for some smooth functions $\alpha_{I J}^{j}$. Also, if $U \subset \subset U_{0}$ is a neighborhood of z_{0} and if we let $\chi \in C_{0}^{\infty}\left(U_{0}\right)$ with $\chi=1$ on U, then for each real $s \geq 0, \tilde{\alpha}_{j}$ satisfy the estimate

$$
\begin{equation*}
\left\|\tilde{\alpha}_{j}\right\|_{s+\frac{1}{2}, U^{-}} \leq C_{s}\|\chi \alpha\|_{s+\frac{j}{2}, \mathcal{M}} \tag{3.2}
\end{equation*}
$$

for each $0 \leq j \leq q+1$.
Proof. Let us take $U_{0} \subset B_{\sigma_{0}^{1 / 4}} \subset V$ as defined in (2.4) where special frames are defined on V. By shrinking I if necessary, we may assume that Theorem 2.1 holds on U_{0}. Using Theorem 2.1, we shall construct $\tilde{\alpha}_{j}$ inductively satisfying (3.1) and (3.2). From Lemma 9.3.3 in [7], there is $\tilde{\alpha}_{0}:=E \alpha \in \bigwedge^{0, q}\left(U_{0}\right)$, $E \alpha=\alpha$ and $\bar{\partial} E \alpha=\mathcal{O}\left(\rho^{\infty}\right)$ on $\mathcal{M} \cap U_{0}$ such that for each real s, we have

$$
\begin{equation*}
\left\|\tilde{\alpha}_{0}\right\|_{s, U_{0}^{-}} \leq C_{s}\|\chi \alpha\|_{s-1 / 2, \mathcal{M}} \tag{3.3}
\end{equation*}
$$

Thus (3.1) and (3.2) hold for $j=0$.
Let $U \subset \subset U_{0}$ be a neighborhood of z_{0} and choose a smooth cut-off function $\chi \in C_{0}^{\infty}\left(U_{0}\right)$ with $\chi=1$ on U. Replacing $\tilde{\alpha}_{0}$ by $\chi \tilde{\alpha}_{0}$, we may assume that
$\tilde{\alpha}_{0} \in C_{0}^{\infty}\left(U_{0}\right)$. Let us write

$$
\begin{aligned}
\bar{\partial} \tilde{\alpha}_{0} & =\alpha_{\mathcal{K}}^{0} d \bar{z}^{\mathcal{K}}+\sum_{\substack{j=q+2}}^{n} \sum_{\substack{|I|=q \\
I \subset \mathcal{K}}} \beta_{I l}^{1} d \bar{z}^{I} \wedge d \bar{z}^{j}+\sum_{\substack{|I|+|J|=q+1,|J| \geq 2 \\
I \subset \mathcal{K}, J \subset \mathcal{K}^{c}}} E_{I J}^{2} d \bar{z}^{I} \wedge d \bar{z}^{J} \\
& :=\alpha^{0}+\beta^{1}+E^{2},
\end{aligned}
$$

and set

$$
g^{0}=\alpha^{0} \text { on } U_{0}^{-}, \text {and } g^{0}=0 \text { on } U_{0}^{+} .
$$

Since $\bar{\partial} \tilde{\alpha}_{0}=\mathcal{O}\left(\rho^{\infty}\right)$ on $\mathcal{M} \cap U_{0}$, it follows that $g^{0} \in C^{\infty}\left(U_{0}\right)$. Similarly, if we define $\beta_{I l}^{1}=E_{I J}^{2}=0$ on U_{0}^{+}, it follows that $\beta_{I l}^{1}, E_{I J}^{2} \in C^{\infty}\left(U_{0}\right)$. Note that g^{0} comes from the components of $\bar{\partial}_{\mathcal{K}} \tilde{\alpha}_{0}$. By (3.3), for each real $s \geq-1$ and nonnegative integer k, there are $\tilde{C}_{s, k}$ and $C_{s, k}$ such that

$$
\begin{equation*}
\left\|g^{0}\right\|_{s, k, U^{-}} \leq \tilde{C}_{s, k}\left\|\tilde{\alpha}_{0}\right\|_{s+1, k, U^{-}} \leq C_{s, k}\|\chi \alpha\|_{s+k+1 / 2, \mathcal{M}} \tag{3.4}
\end{equation*}
$$

To remove α^{0} term in $\bar{\partial} \tilde{\alpha}_{0}$, we try to solve $\bar{\partial}_{\mathcal{K}} u_{0}\left(\cdot, z^{\prime \prime}\right)=g^{0}\left(\cdot, z^{\prime \prime}\right)$ in $\Omega_{z^{\prime \prime}}$ and set $\tilde{\alpha}_{1}\left(\cdot, z^{\prime \prime}\right)=\tilde{\alpha}_{0}\left(\cdot, z^{\prime \prime}\right)-u_{0}\left(\cdot, z^{\prime \prime}\right)$ for each $z^{\prime \prime} \in I$. However, to preserve the boundary condition, it is required that $u_{0}\left(\cdot, z^{\prime \prime}\right) \in \mathcal{C}^{0, q}\left(\Omega_{z^{\prime \prime}}\right)$ for each $z^{\prime \prime} \in I$. This means that we have to solve $\bar{\partial}_{\mathcal{K}}^{*}$-equation rather than $\bar{\partial}_{\mathcal{K}}$-equation. Since $g^{0}\left(\cdot, z^{\prime \prime}\right)$ is a $(0, q+1)$-form in $\Omega_{z^{\prime \prime}} \subset \mathbb{C}^{q+1}$, it becomes a top degree problem in \mathbb{C}^{q+1} and hence it is required to satisfy (1.2), that is,

$$
\begin{equation*}
F_{h}\left(z^{\prime \prime}\right):=\int_{\Omega_{z^{\prime \prime}}} g^{0}\left(\cdot, z^{\prime \prime}\right) \wedge h(\cdot)=0, \text { for every } h \in C_{(q+1,0)}^{\infty}\left(\mathbb{C}^{q+1}\right) \cap \operatorname{ker}\left(\bar{\partial}_{\mathcal{K}}\right) \tag{3.5}
\end{equation*}
$$

To prove (3.5), we consider the coefficients of the terms of $d \bar{z}^{\mathcal{K}} \wedge d \bar{z}_{l}$ in $\bar{\partial}^{2} \tilde{\alpha}_{0}=0$, where $l \in \mathcal{K}^{c}$. Note that these terms are coming from $\bar{\partial}_{\mathcal{K}^{c}} \alpha^{0}+\bar{\partial}_{\mathcal{K}} \beta^{1}$. Thus we obtain that

$$
\begin{equation*}
\frac{\partial \alpha_{\mathcal{K}}^{0}}{\partial \bar{z}_{l}}=\sum_{j=1}^{q+1} \sum_{\substack{|I|=q \\ I \subset \mathcal{K}}}(-1)^{q+j-1} \frac{\partial \beta_{I l}^{1}}{\partial \bar{z}_{j}}, \quad l=q+2, \ldots, n . \tag{3.6}
\end{equation*}
$$

In view of (3.5) and (3.6), it follows, for $l \in \mathcal{K}^{c}$, that

$$
\begin{aligned}
\frac{\partial F_{h}}{\partial \bar{z}_{l}}\left(z^{\prime \prime}\right) & =\frac{\partial}{\partial \bar{z}_{l}} \int_{\mathbb{C}^{q+1}} g^{0}\left(\cdot, z^{\prime \prime}\right) \wedge h \\
& =\int_{\Omega_{z^{\prime \prime}}} \frac{\partial}{\partial \bar{z}_{l}} \alpha_{\mathcal{K}}^{0}\left(\cdot, z^{\prime \prime}\right) \wedge h \\
& =\int_{\Omega_{z^{\prime \prime}}} \sum_{j=1}^{q+1} \sum_{\substack{|I|=q \\
I \subset \mathcal{K}}}(-1)^{q+j-1} \frac{\partial \beta_{I l}^{1}}{\partial \bar{z}_{j}} \wedge h \\
& =\int_{\Omega_{z^{\prime \prime}}} \sum_{j=1}^{q+1} \sum_{\substack{I \mid=q \\
I \subset \mathcal{K}}}(-1)^{q+j} \beta_{I l}^{1} \wedge \frac{\partial h}{\partial \bar{z}_{j}}=0
\end{aligned}
$$

because $h(\cdot)$ is holomorphic in $\Omega_{z^{\prime \prime}}$. Here, the first and the second equalities hold because g^{0} is supported in $\Omega_{z^{\prime \prime}} \subset \mathbb{C}^{q+1}$, and the fourth equality holds because $\beta_{I l}^{1}=0$ on $b \Omega_{z^{\prime \prime}}$ (and hence we can perform integration by parts). Therefore, $F_{h}\left(z^{\prime \prime}\right)$ is holomorphic in \mathbb{C}^{n-q-1}. Moreover, in view of Remark 2.5, it follows that $F_{h}\left(z^{\prime \prime}\right)=0$ for $z^{\prime \prime} \in \tilde{D}_{\sigma^{\prime \prime}}^{\prime \prime}$ (since $\Omega_{z^{\prime \prime}}$ becomes the empty set), provided σ is sufficiently small. Here, $\tilde{D}_{\sigma}^{\prime \prime}$ is the tube defined in Remark 2.5. Thus we see that (3.5) holds.

Set $u_{0}\left(\cdot, z^{\prime \prime}\right)=-*_{\mathcal{K}} \bar{\partial}_{\mathcal{K}} N_{(q+1,0)}^{\mathcal{K}} *_{\mathcal{K}} g^{0}\left(\cdot, z^{\prime \prime}\right), z^{\prime \prime} \in I$, where $N_{(r, s)}^{\mathcal{K}}$ is the Neumann operator for (r, s)-forms and $*_{\mathcal{K}}$ is the Hodge star operator on $\Omega_{z^{\prime \prime}}$ for each $z^{\prime \prime} \in I$. Then we have $\bar{\partial}_{\mathcal{K}} u_{0}\left(\cdot, z^{\prime \prime}\right)=g^{0}\left(\cdot, z^{\prime \prime}\right)$ and $u_{0}\left(\cdot, z^{\prime \prime}\right) \in \mathcal{C}^{0, q}\left(\Omega_{z^{\prime \prime}}\right)$ for each $z^{\prime \prime} \in I$. We also note that $u_{0}\left(\cdot, z^{\prime \prime}\right)$ depends smoothly on $z^{\prime \prime} \in I$ and satisfies the estimate (2.1) including the parameter variable $z^{\prime \prime} \in I$. Thus for each real $s \geq-1 / 2$ and nonnegative integer k, it follows from (2.1) and (3.4) that

$$
\begin{equation*}
\left\|u_{0}\right\|_{s+\frac{1}{2}, k, U^{-}} \lesssim \sum_{r=0}^{k}\left\|g^{0}\right\|_{s+k-r, r, U^{-}} \lesssim\left\|\tilde{\alpha}_{0}\right\|_{s+1+k, U^{-}} \lesssim\|\chi \alpha\|_{s+\frac{1}{2}+k, \mathcal{M}} \tag{3.7}
\end{equation*}
$$

Note that $u_{0} \wedge \bar{\partial}_{\mathcal{K}} \rho=0$ on $\mathcal{M} \cap U_{0}$ because $u_{0}\left(\cdot, z^{\prime \prime}\right) \in \mathcal{C}^{0, q}\left(\Omega_{z^{\prime \prime}}\right)$ for each $z^{\prime \prime} \in I$. We have to correct u_{0} so that the corrected one, \tilde{u}_{0}, belongs to $\mathcal{C}^{0, q}(\Omega)$, that is, $\tilde{u}_{0} \wedge \bar{\partial} \rho=0$ on $\mathcal{M} \cap U_{0}$. Since $u_{0} \wedge \bar{\partial}_{\mathcal{K}} \rho=0$ on $\mathcal{M} \cap U_{0}$, we can write

$$
u_{0}\left(\cdot, z^{\prime \prime}\right)=\delta^{0}\left(\cdot, z^{\prime \prime}\right) \wedge \bar{\partial}_{\mathcal{K}} \rho\left(\cdot, z^{\prime \prime}\right)+\rho\left(\cdot, z^{\prime \prime}\right) \gamma^{0}\left(\cdot, z^{\prime \prime}\right)
$$

for some $\delta^{0}\left(\cdot, z^{\prime \prime}\right) \in \mathcal{C}^{0, q}\left(\Omega_{z^{\prime \prime}}\right)$ and $\gamma^{0}\left(\cdot, z^{\prime \prime}\right) \in \mathcal{C}^{0, q+1}\left(\Omega_{z^{\prime \prime}}\right), z^{\prime \prime} \in I$. We may assume that $\delta^{0} \wedge \bar{\partial}_{\mathcal{K}} \rho$ and $\rho \gamma^{0}$ are disjoint, and hence it follows from the estimate in (3.7) that

$$
\begin{equation*}
\left\|\delta^{0}\right\|_{s+\frac{1}{2}, k, U^{-}} \lesssim\left\|u_{0}\right\|_{s+\frac{1}{2}, k, U^{-}} \lesssim\|\chi \alpha\|_{s+\frac{1}{2}+k, \mathcal{M}} \tag{3.8}
\end{equation*}
$$

for each real $s \geq-\frac{1}{2}$ and nonnegative integer k.
Set $\tilde{u}_{0}=u_{0}+\delta^{0} \wedge \bar{\partial}_{\mathcal{K}^{c}} \rho$. Then one obtains that

$$
\tilde{u}_{0} \wedge \bar{\partial} \rho=\left(\delta^{0} \wedge \bar{\partial}_{\mathcal{K}} \rho+\rho \gamma^{0}+\delta^{0} \wedge \bar{\partial}_{\mathcal{K}^{c}} \rho\right) \wedge \bar{\partial} \rho=0
$$

on $\mathcal{M} \cap U_{0}$, and hence $\tilde{u}_{0} \in \mathcal{C}^{0, q}\left(U_{0}^{-}\right)$. Now we set $\tilde{\alpha}_{1}=\tilde{\alpha}_{0}-\tilde{u}_{0}$. Then it follows that $\left(\tilde{\alpha}_{1}-\alpha\right) \wedge \partial \rho=-\tilde{u}_{0} \wedge \partial \rho=0$ on $U \cap \mathcal{M}$, and we can write

$$
\begin{equation*}
\bar{\partial} \tilde{\alpha}_{1}=\sum_{\substack{l=q+2}}^{n} \sum_{\substack{|I|=q \\ I \subset \mathcal{K}}} \tilde{\beta}_{I l}^{1} d \bar{z}^{I} \wedge d \bar{z}^{l}+\sum_{\substack{|I|+|J|=q+1,|J| \geq 2 \\ I \subset \mathcal{K}, J \subset \mathcal{K}^{c}}} \tilde{\beta}_{I J}^{2} d \bar{z}^{I} \wedge d \bar{z}^{J} \tag{3.9}
\end{equation*}
$$

for some smooth functions $\tilde{\beta}_{I l}^{1}$ and $\tilde{\beta}_{I J}^{2}$. In view of (3.3), (3.7) and (3.8), one obtains that

$$
\begin{equation*}
\left\|\tilde{\alpha}_{1}\right\|_{s+\frac{1}{2}, k, U-} \lesssim\|\chi \alpha\|_{s+\frac{1}{2}+k, \mathcal{M}} \tag{3.10}
\end{equation*}
$$

for each real $s \geq-\frac{1}{2}$ and nonnegative integer k.

By induction, assume that there are $\tilde{\alpha}_{j} \in \bigwedge^{0, q}\left(U_{0}^{-}\right), j \geq 0$, satisfying (3.1) and (3.2), and that for each real $s \geq 0$, the estimate

$$
\begin{equation*}
\left\|\tilde{\alpha}_{j}\right\|_{s+\frac{1}{2}, U^{-}} \leq C_{s}\|\chi \alpha\|_{s+\frac{j}{2}, \mathcal{M}} \tag{3.11}
\end{equation*}
$$

holds and $\left(\tilde{\alpha}_{j}-\alpha\right) \wedge \bar{\partial} \rho=0$ on $\mathcal{M} \cap U_{0}$. By (3.7), (3.10) and the Sobolev interpolation theorem, we see that (3.1), (3.2) and (3.11) hold for $j=1$.

If we replace $\tilde{\alpha}_{j}$ by $\chi \tilde{\alpha}_{j}$, we may assume that $\tilde{\alpha}_{j} \in C_{0}^{\infty}\left(U_{0}\right)$ as before. Let us write:

$$
\begin{aligned}
\bar{\partial} \tilde{\alpha}_{j} & =\sum_{\substack{|I|=q-j+1,|J|=j \\
I \subset \mathcal{K}, J \subset \mathcal{K}^{c}}} \beta_{I J}^{j} d \bar{z}^{I} \wedge d \bar{z}^{J}+\sum_{\substack{|I|+|J|=q+1,|J| \geq j+1 \\
I \subset \mathcal{K}, J \subset \mathcal{K}^{c}}} E_{I J}^{j+1} d \bar{z}^{I} \wedge d \bar{z}^{J} \\
& :=\beta^{j}+E^{j+1} .
\end{aligned}
$$

For each fixed J with $|J|=j \geq 1$, set

$$
\beta_{J}^{j}=\sum_{\substack{|I|=q-j+1 \\ I \subset \mathcal{K}}} \beta_{I J}^{j} d \bar{z}^{I} .
$$

If we consider the terms in $\bar{\partial}^{2} \tilde{\alpha}_{j}$ with $|J|=j \geq 1, J \subset \mathcal{K}^{c}$, we see that $\left.\beta_{J}^{j}\right|_{\Omega_{z^{\prime \prime}}}=\beta_{J}^{j}\left(\cdot, z^{\prime \prime}\right)$ is a smooth $\bar{\partial}_{\mathcal{K}}$-closed $(0, q-j+1)$-form in $\Omega_{z^{\prime \prime}} \subset \mathbb{C}^{q+1}$. Since $\vartheta_{\mathcal{K}}=-*_{\mathcal{K}} \bar{\partial}_{\mathcal{K}} *_{\mathcal{K}}$, it follows that $*_{\mathcal{K}} \beta_{J}^{j}$ is a $\vartheta_{\mathcal{K}}$-closed $(q+1, j)$-form in $\Omega_{z^{\prime \prime}} \subset \mathbb{C}^{q+1}$ for each $z^{\prime \prime} \in B_{\sigma_{0}}\left(z_{0}^{\prime \prime}\right)=I$.

Set

$$
u_{J}^{j}\left(\cdot, z^{\prime \prime}\right)=-*_{\mathcal{K}} \bar{\partial}_{\mathcal{K}} N_{(q+1, j)}^{\mathcal{K}} *_{\mathcal{K}} \beta_{J}^{j}\left(\cdot, z^{\prime \prime}\right)
$$

where $N_{(q+1, j)}^{\mathcal{K}}$ is the Neumann operator for $(q+1, j)$-forms on the strongly pseudoconvex domains $\Omega_{z^{\prime \prime}} \subset \mathbb{C}^{q+1}$. Thus $u_{J}^{j}\left(\cdot, z^{\prime \prime}\right) \in \mathcal{C}^{0, q-j}\left(\Omega_{z^{\prime \prime}}\right)$, varying smoothly on $z^{\prime \prime} \in I$, and for each real $s \geq 0$ and nonnegative integer k, it follows from (2.1) and (3.11) that

$$
\begin{equation*}
\left\|u_{J}^{j}\right\|_{s+\frac{1}{2}, k, U^{-}} \lesssim \sum_{r=0}^{k}\left\|\beta_{J}^{j}\right\|_{s+k-r, r, U^{-}} \lesssim\left\|\tilde{\alpha}_{j}\right\|_{s+k+1, U^{-}} \lesssim\|\chi \alpha\|_{s+k+\frac{j+1}{2}, \mathcal{M}} \tag{3.12}
\end{equation*}
$$

Here, we need $s \geq 0$ (rather than $s \geq-1 / 2$) because β_{J}^{j} may contain terms in $\bar{\partial}_{\mathcal{K}^{c}} \tilde{u}_{j-1}$ that can be estimated only in Sobolev s-norm in \mathbb{C}^{q+1} for $s \geq 0$.

As for the $j=1$ case, we have to correct u_{J}^{j} so that the corrected one, \tilde{u}_{J}^{j}, belongs to $\mathcal{C}^{0, q-j}\left(U_{0}\right)$, that is, $\tilde{u}_{J}^{j} \wedge \bar{\partial} \rho=0$ on $\mathcal{M} \cap U_{0}$. Since $u_{J}^{j} \wedge \bar{\partial}_{\mathcal{K}} \rho=0$ on $\mathcal{M} \cap U_{0}$, we can write

$$
u_{J}^{j}\left(\cdot, z^{\prime \prime}\right)=\delta_{J}^{j}\left(\cdot, z^{\prime \prime}\right) \wedge \bar{\partial}_{\mathcal{K}} \rho\left(\cdot, z^{\prime \prime}\right)+\rho\left(\cdot, z^{\prime \prime}\right) \gamma_{J}^{j}\left(\cdot, z^{\prime \prime}\right) \quad z^{\prime \prime} \in I
$$

for some $\delta_{J}^{j}\left(\cdot, z^{\prime \prime}\right) \in \mathcal{C}^{0, q-j-1}\left(\Omega_{z^{\prime \prime}}\right)$ and $\gamma_{J}^{j}\left(\cdot, z^{\prime \prime}\right) \in \mathcal{C}^{0, q-j}\left(\Omega_{z^{\prime \prime}}\right), z^{\prime \prime} \in I$. Set $\tilde{u}_{J}^{j}=u_{J}^{j}+\delta_{J}^{j} \wedge \bar{\partial}_{\mathcal{K}^{c}} \rho$. Then it follows that

$$
\tilde{u}_{J}^{j} \wedge \bar{\partial} \rho=\left(\delta_{J}^{j} \wedge \bar{\partial}_{\mathcal{K}} \rho+\rho \gamma_{J}^{j}+\delta_{J}^{j} \wedge \bar{\partial}_{\mathcal{K}^{c}} \rho\right) \wedge \bar{\partial} \rho=0
$$

on $\mathcal{M} \cap U_{0}$ for each $J \subset \mathcal{K}^{c}$ with $|J|=j$, and hence $\tilde{u}_{j}:=\sum_{J \subset \mathcal{K}^{c},|J|=j} \tilde{u}_{J}^{j} \wedge$ $d \bar{z}^{J} \in \mathcal{C}^{0, q}\left(U_{0} \cap \Omega\right)$. Also, one obtains that

$$
\begin{align*}
\bar{\partial} \tilde{u}_{j} & =\sum_{J \subset \mathcal{K}^{c},|J|=j}\left(\beta_{J}^{j}+\bar{\partial}_{\mathcal{K}^{c}} \tilde{u}_{J}^{j}+\bar{\partial}\left(\delta_{J}^{j} \wedge \bar{\partial}_{\mathcal{K}^{c}} \rho\right)\right) \wedge d \bar{z}^{J} \tag{3.13}\\
& :=\sum_{J \subset \mathcal{K}^{c},|J|=j} \beta_{J}^{j} \wedge d \bar{z}^{J}+\tilde{E}^{j+1} .
\end{align*}
$$

Set $\tilde{\alpha}_{j+1}=\tilde{\alpha}_{j}-\tilde{u}_{j} \in C^{\infty}\left(U_{0}\right)$. Note that we may assume that $\delta_{J}^{j} \wedge \bar{\partial}_{\mathcal{K}} \rho$ and $\rho \gamma_{J}^{j}$ are disjoint. Therefore, it follows, from the estimates in (3.11) and (3.12), and by the Sobolev interpolation theorem, that

$$
\begin{equation*}
\left\|\tilde{\alpha}_{j+1}\right\|_{s+\frac{1}{2}, U^{-}} \lesssim\|\chi \alpha\|_{s+\frac{j+1}{2}, \mathcal{M}} \tag{3.14}
\end{equation*}
$$

for each real $s \geq 0$. Also, $\left(\tilde{\alpha}_{j+1}-\tilde{\alpha}_{j}\right) \wedge \bar{\partial} \rho=-\tilde{u}_{j} \wedge \bar{\partial} \rho=0$ on $\mathcal{M} \cap U_{0}$ since $\tilde{u}_{j} \in \mathcal{C}^{0, q}\left(U_{0} \cap \Omega\right)$. In view of (3.13), we can write:

$$
\bar{\partial} \tilde{\alpha}_{j+1}=\sum_{\substack{|I|=q-j,|J|=j+1 \\ I \subset \mathcal{K}, J \subset \mathcal{K}^{c}}} \beta_{I J}^{j+1} d \bar{z}^{I} \wedge d \bar{z}^{J}+\sum_{\substack{|I|+|J|=q+1,|J| \geq j+2 \\ I \subset \mathcal{K}, J \subset \mathcal{K}^{c}}} E_{I J}^{j+2} d \bar{z}^{I} \wedge d \bar{z}^{J}
$$

for some smooth functions $\beta_{I J}^{j+1}$ and $E_{I J}^{j+2}$. This fact, together with the estimate in (3.14), proves the inductive step. If we proceed up to $j=q+1$, then the proof of the proposition is completed.

Remark 3.2. When $n=q+1+k, 1 \leq k \leq q$, the above inductive step will stop at the $(k+1)$-th step, thus proving $\bar{\partial} \tilde{\alpha}_{k+1}=0$. This proves Theorem 1.1 with better estimates.

Now we are ready to prove the weak $\bar{\partial}$-closed extension problem (Theorem 1.1). We recall that $U_{0}^{-}=\bigcup_{z^{\prime \prime} \in I} \bar{\Omega}_{z^{\prime \prime}} \times\left\{z^{\prime \prime}\right\}$ as defined in (2.4).

Proof of Theorem 1.1. In view of Proposition 3.1, there exists $\alpha_{q+1} \in \bigwedge^{0, q}\left(U_{0}^{-}\right)$ which can be written as:

$$
\begin{equation*}
\bar{\partial} \alpha_{q+1}=\sum_{\substack{J \subset \mathcal{K}^{c} \\|J|=q+1}} H_{J} d \bar{z}^{J} \tag{3.15}
\end{equation*}
$$

for some smooth functions H_{J} on U_{0}^{-}. If we consider the coefficients of $d \bar{z}_{i} \wedge d \bar{z}^{J}$ of $\bar{\partial}^{2} \alpha_{q+1}=0$, we see that

$$
\frac{\partial H_{J}}{\partial \bar{z}_{i}}=0
$$

for $1 \leq i \leq q+1$. Hence $H_{J}\left(\cdot, z^{\prime \prime}\right)$ is a holomorphic function on $\Omega_{z^{\prime \prime}}$ for each $z^{\prime \prime} \in I$.

Also note that $\left(\alpha_{q+1}-\alpha\right) \wedge \bar{\partial} \rho=0$ on $\mathcal{M} \cap U_{0}$. Therefore, $\bar{\partial}\left(\alpha_{q+1}-\alpha\right) \wedge \bar{\partial} \rho=0$ and hence $\bar{\partial} \alpha_{q+1} \wedge \bar{\partial} \rho=0$ on $\mathcal{M} \cap U_{0}$ since $\bar{\partial}_{b} \alpha=0$ on $\mathcal{M} \cap U_{0}$. Considering
the coefficients of $d \bar{z}_{i} \wedge d \bar{z}^{J}$ of $\bar{\partial} \alpha_{q+1} \wedge \bar{\partial} \rho$, one obtains, from (3.15), that

$$
\frac{\partial \rho}{\partial \bar{z}_{i}} H_{J}=0
$$

for $1 \leq i \leq q+1$ on $\mathcal{M} \cap U_{0}$. Since $\bar{\partial}_{\mathcal{K}} \rho \neq 0$ on $b \Omega_{z^{\prime \prime}}$, at least one of $\partial \rho / \partial \bar{z}_{i}$, for $1 \leq i \leq q+1$, is not equal to zero, and hence $H_{J}\left(\cdot, z^{\prime \prime}\right)=0$ on $b \Omega_{z^{\prime \prime}}$. Thus it follows that $H_{J}\left(\cdot, z^{\prime \prime}\right) \equiv 0$ on $\Omega_{z^{\prime \prime}}$ because $H_{J}\left(\cdot, z^{\prime \prime}\right)$ is a holomorphic function on $\Omega_{z^{\prime \prime}}$ for each $z^{\prime \prime} \in I$. In view of (3.15), we thus obtain that $\bar{\partial} \alpha_{q+1}=0$. If we set $\tilde{\alpha}=\alpha_{q+1}$, then $\tilde{\alpha}$ satisfies the estimates (1.1) from the estimates in (3.2). This proves Theorem 1.1.

Proof of Theorem 1.2. Let U_{0}^{-}be the neighborhood constructed in Theorem 1.1. Then there is a weak $\bar{\partial}$-closed extension $\tilde{\alpha}$ of α onto U_{0}^{-}satisfying the estimate (1.1). By the lemma in Section 4 of [2], we can construct a small pseudoconvex domain $B \subset \subset U_{0}^{-}$with the property that $W:=B \cap \mathcal{M}$ is a neighborhood of $z_{0} \in \mathcal{M}$.

For each real $s \geq 0$, set $\tilde{u}_{s}=\bar{\partial}^{*} N_{s}^{B} \tilde{\alpha}$, where N_{s}^{B} denotes the weighted $\bar{\partial}$-Neumann operator in B with weight $e^{-t_{s}|z|^{2}}$ for sufficiently large $t_{s}>0$ depending on s. Then we have $\bar{\partial} \tilde{u}_{s}=\tilde{\alpha}$ in B, and it follows that

$$
\begin{equation*}
\left\|\tilde{u}_{s}\right\|_{s, B} \leq C_{s}\|\tilde{\alpha}\|_{s, B} . \tag{3.16}
\end{equation*}
$$

Set $u_{s}=\tau \tilde{u}_{s}$, where τ is the projection in $\bigwedge^{p, q-1}(\mathcal{M})$ onto $\mathcal{B}^{p, q-1}(\mathcal{M})$ defined by first restricting a $(p, q-1)$-form ϕ in \mathbf{C}^{n} to \mathcal{M}, then projecting the restriction to $\mathcal{B}^{p, q-1}(\mathcal{M})$. Then $\bar{\partial}_{b} u_{s}=\alpha$ on W and if we use the estimates (1.1) and (3.16), and the trace theorem in Sobolev spaces, then we obtain that

$$
\left\|u_{s}\right\|_{s, W} \leq C_{s}\left\|D \tilde{u}_{s}\right\|_{s-\frac{1}{2}, B} \leq C_{s}\|\tilde{\alpha}\|_{s+\frac{1}{2}, B} \leq C_{s}\|\chi \alpha\|_{s+\frac{q+1}{2}, U_{0}^{-} \cap \mathcal{M}}
$$

for each real $s \geq 0$. This completes the proof of Theorem 1.2.

References

[1] A. Andreotti and C. D. Hill, E. E. Levi convexity and the Hans Lewy problem. I, II, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), 325-363; ibid. 26 (1972), 747-806.
[2] S. Bell, Differentiability of the Bergman kernel and pseudo-local estimates, Math. Z. 192 (1986), 467-472.
[3] H. P. Boas and M.-C. Shaw, Sobolev estimates for the Lewy operator on weakly pseudoconvex boundaries, Math. Ann. 274 (1986), no. 2, 221-231.
[4] A. Boggess and M.-C. Shaw, A kernel approach to the local solvability of the tangential Cauchy Riemann equations, Trans. Amer. Math. Soc. 289 (1985), no. 2, 643-658.
[5] D. Catlin, Sufficient conditions for the extension of $C R$ structures, J. Geom. Anal. 4 (1994), no. 4, 467-538.
[6] D. Catlin and S. Cho, Extension of $C R$ structures on three dimensional compact pseudoconvex CR manifolds, Math. Ann. 334 (2006), no. 2, 253-280.
[7] S.-C. Chen and M.-C. Shaw, Partial Differential equations in several complex variables, AMS/IP Studies in Advanced Mathematics, 19. American Mathematical Society, Providence, RI; International Press, Boston, MA, 2001.
[8] S. Cho and J. Choi, Local extension of boundary holomorphic forms on real hypersurfaces in \mathbb{C}^{n}, J. Math. Anal. Appl. 325 (2007), no. 1, 279-293.
[9] , Explicit Sobolev estimates for the Cauchy-Riemann equation on parameters, Bull. Korean Math. Soc. 45 (2008), no. 2, 321-338.
[10] S. Cho, Sobolev estimates for the local extension of $\bar{\partial}_{b}$-closed $(0,1)$-forms on real hypersurfaces in \mathbb{C}^{n}, Proc. of Amer. Math. Soc. 139 (2011), no. 11, 4053-4062.
[11] P. C. Greiner, J. J. Kohn, and E. M. Stein, Necessary and sufficient conditions for solvability of the Lewy equation, Proc. Nat. Acad. Sci. U.S.A. 72 (1975), no. 9, 32873289.
[12] R. S. Hamilton, Deformation of complex structures on manifolds with boundary I, II, J. Diff. Geom. 12 (1977), no. 1, 1-15; 14 (1979), no. 3, 409-473.
[13] G. M. Henkin and J. Leiterer, Andreotti-Grauert theory by Integral Formulas, Birkhäuser, Boston, Basel, 1988.
[14] J. J. Kohn and H. Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math. (2) 81 (1965), 451-472.
[15] M. Kuranishi, Strongly pseudoconvex CR structures over small balls. I. An a priori estimate, Ann. of Math. (2) 115 (1982), no. 3, 451-500.
[16] C. Laurent-Thiébaut and J. Leiterer, On the Hartogs-Bochner extension phenomenon for differential forms, Math. Ann. 284 (1989), no. 1, 103-119.
[17] H. Lewy, On the local character of the solution of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables, Ann. of Math. (2) 64 (1956), 514-522.
[18] ___ An example of a smooth linear partial differential equation without solution, Ann. of Math. (2) 66 (1957), 155-158.
[19] M.-C. Shaw, L^{2} estimates and existence theorems for the tangential Caucy-Riemann complex, Invent. Math. 82 (1985), no. 1, 133-150.
[20] _ , L L^{2} existence theorems for the $\bar{\partial}_{b}-$ Neumann problem on strongly pseudoconvex CR manifolds, J. Geom. Anal. (2) 1 (1992), 139-163.
[21] S. Webster, On the proof of Kuranishi's embedding theorem, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), no. 3, 183-207.

Department of Mathematics
Sogang University
Seoul 121-742, Korea
E-mail address: shcho@sogang.ac.kr

[^0]: Received January 19, 2012; Revised September 19, 2012.
 2010 Mathematics Subject Classification. Primary 32W05; Secondary 32W10.
 Key words and phrases. tangential Cauchy-Riemann equation, boundary holomorphic forms.

