• Title/Summary/Keyword: high dynamic-range receiver

Search Result 38, Processing Time 0.097 seconds

Design of a High Dynamic-Range RF ASIC for Anti-jamming GNSS Receiver

  • Kim, Heung-Su;Kim, Byeong-Gyun;Moon, Sung-Wook;Kim, Se-Hwan;Jung, Seung Hwan;Kim, Sang Gyun;Eo, Yun Seong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.3
    • /
    • pp.115-122
    • /
    • 2015
  • Global Positioning System (GPS) is used in various fields such as communications systems, transportation systems, e-commerce, power plant systems, and up to various military weapons systems recently. However, GPS receiver is vulnerable to jamming signals as the GPS signals come from the satellites located at approximately 20,000 km above the earth. For this reason, various anti-jamming techniques have been developed for military application systems especially and it is also required for commercial application systems nowadays. In this paper, we proposed a dual-channel Global Navigation Satellite System (GNSS) RF ASIC for digital pre-correlation anti-jam technique. It not only covers all GNSS frequency bands, but is integrated low-gain/attenuation mode in low-noise amplifier (LNA) without influencing in/out matching and 14-bit analogdigital converter (ADC) to have a high dynamic range. With the aid of digital processing, jamming to signal ratio is improved to 77 dB from 42 dB with proposed receiver. RF ASIC for anti-jam is fabricated on a 0.18-μm complementary metal-oxide semiconductor (CMOS) technology and consumes 1.16 W with 2.1 V (low-dropout; LDO) power supply. And the performance is evaluated by a kind of test hardware using the designed RF ASIC.

Receiver Gain of Active Phased Array Radar-Dependence on ADC Characteristic (ADC 특성에 따른 능동 위상 배열 레이더 수신기의 이득 설정 방법)

  • Kim, Tae-Hwan;Choi, Beyung-Gwan;Lee, Hee-Young;Cho, Choon-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.1
    • /
    • pp.52-59
    • /
    • 2009
  • In modern radars, dynamic range requirements far severed due to high CNR(Clutter-to-Noise Ratio) environment operation scenario. ADC spurious signal restricted the required dynamic range. In this paper, receiver gain of active phased array radar dependent on ADC nonlinear characteristic was analyzed. Within limited scope of ADC SFDR which blocks required system dynamic range, ADC dynamic range reaches trade-off with ADC SNR loss. Comparing antenna stage output noise voltage to that of ADC input, receiver gain was mathematically analyzed. Finally the whole contents were explained from the application example.

Implementation of Ka-band Satellite Broadcasting/LNB with High Dynamic Range (Ka-band 고감도 위성방송용/LNB 최적화 설계)

  • Mok, Gwang-Yun;Lee, Kyung-Bo;Rhee, Young-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.66-69
    • /
    • 2016
  • In this paper, we suggests a Ka-band LNB considering next-generation UHD satellite TVRO. Since Ka-band has grater attenuation than Ku-band in atmosphere, we designed the low-noise down-converter to improve receiving sensitivity and to extend a dynamic range of receiver. It aims to compensate a quality of ultra high definition transmission signal for rainfall. The low-noise block diagram consists of a three-staged amplifier (LNA), band-pass filter for deleting image (BPF), mixer and IF when considering nonlinear characteristics in the receiver RF front end module. Also, we showed a LNB through optimization processes affecting dynamic range directly in receiver FEM. Asa resuly of experiment, the gain of low-noise down-converter show between 58.5dB and 60.7dB, the noise figure has a high characteristic as 1.38dB. Finally, the phase noise of local oscillator is -63.10dBc at 100MHz offset frequency.

  • PDF

A 67.5 dB SFDR Full-CMOS VDSL2 CPE Transmitter and Receiver with Multi-Band Low-Pass Filter

  • Park, Joon-Sung;Park, Hyung-Gu;Pu, Young-Gun;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.4
    • /
    • pp.282-291
    • /
    • 2010
  • This paper presents a full-CMOS transmitter and receiver for VDSL2 systems. The transmitter part consists of the low-pass filter, programmable gain amplifier (PGA) and 14-bit DAC. The receiver part consists of the low-pass filter, variable gain amplifier (VGA), and 13-bit ADC. The low pass filter and PGA are designed to support the variable data rate. The RC bank sharing architecture for the low pass filter has reduced the chip size significantly. And, the 80 Msps, high resolution DAC and ADC are integrated to guarantee the SNR. Also, the transmitter and receiver are designed to have a wide dynamic range and gain control range because the signal from the VDSL2 line is variable depending on the distance. The chip is implemented in 0.25 ${\mu}m$ CMOS technology and the die area is 5 mm $\times$ 5 mm. The spurious free dynamic range (SFDR) and SNR of the transmitter and receiver are 67.5 dB and 41 dB, respectively. The power consumption of the transmitter and receiver are 160 mW and 250 mW from the supply voltage of 2.5 V, respectively.

Implementation of automatic gain control circuit for the gain control of receiving stage in pulse doppler radar (펄스 도플러 레이다의 수신단 이득 제어를 위한 자동 이득 조절 장치의 구현)

  • 김세영;양진모;김선주;전병태
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.2
    • /
    • pp.10-20
    • /
    • 1997
  • This paper describes the design, the manufacture and the development of th eautomatic gain control unit which ajdusts the gain of IF processor in the high sensitive & multifunctional receiver unit (HMR) for pulse doppler radar system. Accodording to the effective distnce of target, radar cross section, and a lot of external environments (such as clutter), the receiving stage of RADAR system often deviates from dynamic range. To solve this kind o fproblem, continuous/pulse wave AGC are realized, make it possible to control the gain characteristics of receiver stably, and can increase dynamic range linearly by adjusting the gain slope of receiver which is limited by 1-dB gain compression point. In this study, AGC unit is designed to regulate the total gain of receiver by using te analog feedback theory. It also has rapid enough response to process pulse signal. This study presents the gain control method of IF, the real manufacture technique (the package-type components) and the measurement performance of AGC.

  • PDF

The Design and Fabrication of Multi-Channel Receiver for Radar System (레이더용 다채널 수신기 설계 및 제작)

  • Kim, Wan-Sik;Lee, Han-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1671-1675
    • /
    • 2012
  • In this paper, we fabricate multi-channel receiver for radar system. This receiver at X-band can be received 8 signal of an identical characteristic, dynamic range has more than 80[dB]. To process direct received signals, this system has the built-in two digital de-modulators which offer the minimum loss on the receiving signal path and has high stability by adding Built-In Test. The gain, noise figure, difference of amplitude and phase on the signal path is respectively $14{\pm}2$[dB], 19[dB], ${\pm}2$[dB], $10^{\circ}$ and below.

Implementation of MultiBand-Digital Passive InterModulation Distortion Measurement System (다중대역-디지탈 수동혼변조왜곡 측정시스템 개발)

  • Park, Ki-Won;Shin, Dong-Whan;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.12
    • /
    • pp.1193-1200
    • /
    • 2016
  • In this paper, we developed a system for measuring a passive intermodulation distortion signal of the mobile communication RF module having a wide band characteristic. The Broadband was designed to represent the characteristics of the receiver to meet the low noise characteristics and wideband characteristics in the RF receiver were to represent a wide dynamic range(high dynamic range)from the RF receiving end. PIMD designed passive intermodulation distortion signal measured by applying the FPGA / DSP in the system was measured to record the program on the PC. Variable up to 650MHz-2700MHz showed up to-138dBc measured PIMD3.

Design and Measurement of Active Phased Array Radar Digital Receiver (능동 위상 배열 레이더의 디지털 수신기 제작 및 측정)

  • Kim, Tae-Hwan;Lee, Sung-Ju;Lee, Dong-Hwi;Hong, Yun-Seok;Cho, Choon-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.371-379
    • /
    • 2011
  • Active phased array antenna structure is used for modern multi-function radars. To search targets in high clutter environment, the radar receiver needs high dynamic range performance. Though active phased array antenna structure lead to increase of SNR, the SFDR is not increased. In this paper, high SFDR receiver of X-band active phased array radar was designed and manufactured. One channel digital receiver is connected to 32 T/R modules and one PCB assembly is composed to 2 channel digital receivers with RF part, ADC part, LO distribution part and digital down conversion part. A commercial FIFO board was used for digital receiver measurement about major performance in digital output signal condition. The measured digital receiver gain and SFDR is 33 dB and more than 81 dBc each.

Implementation of Multi-Band Mobile PIMD Measurement System. (Multi-Band 이동통신용 수동혼변조왜곡 측정시스템 개발)

  • Park, Ki Won;Shin, Dong Whan;Rhee, Young Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.703-705
    • /
    • 2016
  • In this paper, we developed a wideband PIMD system to measure passive intermodulation distortion signals of mobile communication RF passive module. To represent wideband characteristic, we designed a receiver that meets low-noise and wideband characteristics in RF receiver. It allows high dynamic range in the RF receiver front end. In designed passive intermodulation distortion measurement system, we programed to display a PIMD signal with FPGA/DSP at PC. Implemented PIMD system was variable from 650 MHz to 2700 MHz and show up to -138 dB minimum detectable $3^{rd}$ passive inetrmodulation distortion signal.

  • PDF

Analysis of the Linear Amplifier/ADC Interface in a Digital Microwave Receiver (디지털 마이크로파 수신기에서의 선형 증폭기와 ADC 접속 해석)

  • Lee, Min Hyouck;Kim, Sung Gon;Choi, Hee Joo;Byon, Kun Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.3 no.1
    • /
    • pp.52-59
    • /
    • 1999
  • Digital microwave wideband receiver including linear amplifier, analog-to-digital converter(ADC) and digital signal processor is able to analyze its performance using sensitivity and dynamic range of system. Determination of gain, third-order intermodulation products and ADC characteristics and design criteria for the linear amplifier chain is essential problem for sensitive and dynamic range. Also, if there are two signals with frequencies very close, digital signal processor must be able to separate the two signals. In this paper, we measured dynamic range as gain was changed and determined gain value for the proper sensitivity and dynamic range and high resolution spectrum estimation was used to separate two close signals.

  • PDF