• 제목/요약/키워드: generalized operator

검색결과 299건 처리시간 0.02초

ON THE LIE DERIVATIVE OF REAL HYPERSURFACES IN ℂP2 AND ℂH2 WITH RESPECT TO THE GENERALIZED TANAKA-WEBSTER CONNECTION

  • PANAGIOTIDOU, KONSTANTINA;PEREZ, JUAN DE DIOS
    • 대한수학회보
    • /
    • 제52권5호
    • /
    • pp.1621-1630
    • /
    • 2015
  • In this paper the notion of Lie derivative of a tensor field T of type (1,1) of real hypersurfaces in complex space forms with respect to the generalized Tanaka-Webster connection is introduced and is called generalized Tanaka-Webster Lie derivative. Furthermore, three dimensional real hypersurfaces in non-flat complex space forms whose generalized Tanaka-Webster Lie derivative of 1) shape operator, 2) structure Jacobi operator coincides with the covariant derivative of them with respect to any vector field X orthogonal to ${\xi}$ are studied.

GENERALIZED COMPOSITION OPERATORS FROM GENERALIZED WEIGHTED BERGMAN SPACES TO BLOCH TYPE SPACES

  • Zhu, Xiangling
    • 대한수학회지
    • /
    • 제46권6호
    • /
    • pp.1219-1232
    • /
    • 2009
  • Let H(B) denote the space of all holomorphic functions on the unit ball B of $\mathbb{C}^n$. Let $\varphi$ = (${\varphi}_1,{\ldots}{\varphi}_n$) be a holomorphic self-map of B and $g{\in}2$(B) with g(0) = 0. In this paper we study the boundedness and compactness of the generalized composition operator $C_{\varphi}^gf(z)=\int_{0}^{1}{\mathfrak{R}}f(\varphi(tz))g(tz){\frac{dt}{t}}$ from generalized weighted Bergman spaces into Bloch type spaces.

SOME PROPERTIES OF GENERALIZED BESSEL FUNCTION ASSOCIATED WITH GENERALIZED FRACTIONAL CALCULUS OPERATORS

  • Jana, Ranjan Kumar;Pal, Ankit;Shukla, Ajay Kumar
    • 대한수학회논문집
    • /
    • 제36권1호
    • /
    • pp.41-50
    • /
    • 2021
  • This paper devoted to obtain some fractional integral properties of generalized Bessel function using pathway fractional integral operator. We also find the pathway transform of the generalized Bessel function in terms of Fox H-function.

THE FEKETE-SZEGÖ INEQUALITY FOR CERTAIN CLASS OF ANALYTIC FUNCTIONS DEFINED BY CONVOLUTION BETWEEN GENERALIZED AL-OBOUDI DIFFERENTIAL OPERATOR AND SRIVASTAVA-ATTIYA INTEGRAL OPERATOR

  • Challab, K.A.;Darus, M.;Ghanim, F.
    • Korean Journal of Mathematics
    • /
    • 제26권2호
    • /
    • pp.191-214
    • /
    • 2018
  • The aim of this paper is to investigate the Fekete $Szeg{\ddot{o}}$ inequality for subclass of analytic functions defined by convolution between generalized Al-Oboudi differential operator and Srivastava-Attiya integral operator. Further, application to fractional derivatives are also given.

ANALYTIC FUNCTIONS WITH CONIC DOMAINS ASSOCIATED WITH CERTAIN GENERALIZED q-INTEGRAL OPERATOR

  • Om P. Ahuja;Asena Cetinkaya;Naveen Kumar Jain
    • 대한수학회논문집
    • /
    • 제38권4호
    • /
    • pp.1111-1126
    • /
    • 2023
  • In this paper, we define a new subclass of k-uniformly starlike functions of order γ (0 ≤ γ < 1) by using certain generalized q-integral operator. We explore geometric interpretation of the functions in this class by connecting it with conic domains. We also investigate q-sufficient coefficient condition, q-Fekete-Szegö inequalities, q-Bieberbach-De Branges type coefficient estimates and radius problem for functions in this class. We conclude this paper by introducing an analogous subclass of k-uniformly convex functions of order γ by using the generalized q-integral operator. We omit the results for this new class because they can be directly translated from the corresponding results of our main class.

RIQUIER AND DIRICHLET BOUNDARY VALUE PROBLEMS FOR SLICE DIRAC OPERATORS

  • Yuan, Hongfen
    • 대한수학회보
    • /
    • 제55권1호
    • /
    • pp.149-163
    • /
    • 2018
  • In recent years, the study of slice Dirac operators has attracted more and more attention in the literature. In this paper, Almansitype decompositions for null solutions to the iterated slice Dirac operator and the generalized slice Dirac operator are obtained without a star-like domain centered at the origin. As applications, we investigate Riquier type problems and Dirichlet type problems in the theory of slice monogenic functions.

SETVALUED MIXED QUASI-EQUILIBRIUM PROBLEMS WITH OPERATOR SOLUTIONS

  • Ram, Tirth;Khanna, Anu Kumari;Kour, Ravdeep
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권1호
    • /
    • pp.83-97
    • /
    • 2022
  • In this paper, we introduce and study generalized mixed operator quasi-equilibrium problems(GMQOEP) in Hausdorff topological vector spaces and prove the existence results for the solution of (GMQOEP) in compact and noncompact settings by employing 1-person game theorems. Moreover, using coercive condition, hemicontinuity of the functions and KKM theorem, we prove new results on the existence of solution for the particular case of (GMQOEP), that is, generalized mixed operator equilibrium problem (GMOEP).

REAL HYPERSURFACES IN COMPLEX TWO-PLANE GRASSMANNIANS WHOSE SHAPE OPERATOR IS OF CODAZZI TYPE IN GENERALIZED TANAKA-WEBSTER CONNECTION

  • Cho, Kyusuk;Lee, Hyunjin;Pak, Eunmi
    • 대한수학회보
    • /
    • 제52권1호
    • /
    • pp.57-68
    • /
    • 2015
  • In this paper, we give a non-existence theorem of Hopf hypersurfaces in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$, $m{\geq}3$, whose shape operator is of Codazzi type in generalized Tanaka-Webster connection $\hat{\nabla}^{(k)}$.