Acknowledgement
Supported by : National Research Foundation of Korea
References
- J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angew. Math. 395 (1989), 132-141.
- J. T. Cho, CR-structures on real hypersurfaces of a complex space form, Publ. Math. Debrecen 54 (1999), no. 3-4, 473-487.
-
T. A. Ivey and P. J. Ryan, The structure Jacobi operator for real hypersurfaces in
${\mathbb{C}}P^2$ and${\mathbb{C}}H^2$ , Results Math. 56 (2009), no. 1-4, 473-488. https://doi.org/10.1007/s00025-009-0380-2 - Y. Maeda, On real hypersurfaces of a complex projective space, J. Math. Soc. Japan 28 (1976), no. 3, 529-540. https://doi.org/10.2969/jmsj/02830529
- S. Montiel, Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan 35 (1985), no. 3, 515-535. https://doi.org/10.2969/jmsj/03530515
- R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space forms, Tight and taut submanifolds (Berkeley, CA, 1994), 23300305, Math. Sci. Res. Inst. Publ., 32, Cambridge Univ. Press, Cambridge, 1997.
- K. Panagiotidou and J. D. Perez, Commuting conditions of the k-th Cho operator with structure Jacobi operator of real hypersurfaces in complex space forms, Open Math. 13 (2015), 321-332.
- K. Panagiotidou and J. D. Perez, Commutativity of shape operator with the k-th Cho operator of real hypersur-faces in complex space forms, Preprint.
-
K. Panagiotidou and Ph. J. Xenos, Real hypersurfaces in
${\mathbb{C}}P^2$ and${\mathbb{C}}H^2$ whose structure Jacobi operator is Lie${\mathbb{D}}$ -parallel, Note Mat. 32 (2012), no. 2, 89-99. - J. D. Perez, Lie and generalized Tanaka-Webster derivatives on real hypersurfaces in complex projective spaces, Internat. J. Math. 25 (2014), no. 12, 1450115, 13 pp. https://doi.org/10.1142/S0129167X14501158
- J. D. Perez, Commutativity of Cho and structure Jacobi operators of a real hypersurface in a complex projective space, Ann. di Mat. DOI 10.1007/s10231-014-0444-0 (to appear).
- J. D. Perez and Y. J. Suh, Generalized Tanaka-Webster and covariant derivatives on a real hypersurface in a complex projective space, Monatsh. Math. 177 (2015), no. 4, 637-647. https://doi.org/10.1007/s00605-015-0777-9
- R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.
- S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. 314 (1989), no. 1, 349-379. https://doi.org/10.1090/S0002-9947-1989-1000553-9
Cited by
- Comparison of Differential Operators with Lie Derivative of Three-Dimensional Real Hypersurfaces in Non-Flat Complex Space Forms vol.6, pp.5, 2018, https://doi.org/10.3390/math6050084