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Abstract. In this paper, we introduce and study generalized mixed operator quasi-equilibrium

problems(GMQOEP) in Hausdorff topological vector spaces and prove the existence results

for the solution of (GMQOEP) in compact and noncompact settings by employing 1-person

game theorems. Moreover, using coercive condition, hemicontinuity of the functions and

KKM theorem, we prove new results on the existence of solution for the particular case of

(GMQOEP), that is, generalized mixed operator equilibrium problem (GMOEP).

1. Introduction

In 2002, Domokos and Kolumban [6] gave a fascinating analysis of vari-
ational inequalities(VI) and vector variational inequalities(VVI) in Banach
space settings in terms of variational inequalities with operator solutions(OVVI).
They considered (OVVI) to provide unified approach to numerous kinds of (VI)
and (VVI) problems in Banach spaces and effectively depicted those problems
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in wider framework of (OVVI). This (OVVI) is also appropriate for the general
development in the study of (VI) and (VVI) for abstract spaces. Therefore,
the effectiveness of (OVVI) can be served as a source of inspiration for fur-
ther developments. In a series of papers [15–17], the authors developed the
scheme of (OVVI) from single valued case into the setvalued one. For this pur-
pose, the generalized variational inequality with operator solutions (GOVVI)
to generalized vector variational inequality (GVVI), and generalized vector
quasi-variational inequalities (GVQVI) in a normed space were given.

On the other hand, the equilibrium problem (EP) is extensively studied
with the work of Blum and Oettli [3], as a generalization of optimization
and variational inequality problems. It turns out equilibrium problems con-
tain, as special cases, other problems such as the fixed point and coincidence
point problems, the complementarity problem, Nash equilibrium problem, etc.
Kazmi and Raouf [10] introduced the operator equilibrium problems (OEP)
with operator solutions and derived a Minty type lemma for this class of
(OEP). They used this lemma and KKM theorem to establish the existence
results for the solution of (OEP) for single valued map. Salmon [24] proved
that the statement of Theorem 2.1 in [10] holds even if we omit the hemicon-
tinuity and c(f)−pseudo-monotonicity conditions. Kum and Kim [15] gen-
eralized operator equilibrium problem due to Kazmi and Raouf to setvalued
quasi-equilibrium problems and obtained an existence results by employing a
Park fixed point theorem. Ahmad et al. [2] introduced and studied an oper-
ator mixed vector equilibrium problems(OMVEP) which is a combination of
an operator vector variational inequality and an operator vector equilibrium
problems. They also proved existence result for (OMVEP) by using KKM
theorem and vector 0-diagonally quasi-convexity, and another existence result
without KKM theorem.

Motivated and inspired by the above research work going on in this direc-
tion. In this paper, we prove existence results for the solutions of generalized
mixed operator quasi-equilibrium problems(GMQOEP) in compact and non-
compact settings by employing 1-person game theorems in Hausdorff topo-
logical vector spaces. Moreover, we also prove new result on the existence of
solution of particular case of (GMQOEP), that is, generalized mixed operator
equilibrium problem (GMOEP) by using coercive condition, hemicontinuity
of the functions and KKM theorem. The results presented in this paper are
generalization and unification of many known results in the literature, see for
example [1, 2, 6, 9, 10, 13–17, 20–24] and the references therein.

Let X and Y be two Hausdorff topological vector spaces and let L(X,Y )
be the space of all continuous linear operators from X into Y equipped with
the topology of point-wise convergence, and let K ⊆ L(X,Y ) be a nonempty
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convex set. Let C : K → 2Y be a setvalued map such that C(f) is a solid
closed, convex cone and 0 /∈ C(f), for all f ∈ K.

We define the ordering relationships on Hausdorff topological vector space
Y with respect to cone P as follows: For A,B ⊆ Y, we have

B −A ⊆ P ⇔ A ≤ B ⇔ a ≤ b, ∀a ∈ A, b ∈ B,

B −A * P ⇔ A � B ⇔ a � b, ∀a ∈ A, b ∈ B.

If the intP = φ, then the weak ordering in Y is defined as follows:

B −A ⊆ intP ⇔ A < B ⇔ a < b, ∀a ∈ A, b ∈ B,

B −A * intP ⇔ A ≮ B ⇔ a ≮ b, ∀a ∈ A, b ∈ B.

Suppose T : K → X is mapping and S : K → 2K is a setvalued map with
nonempty values. For a setvalued map F : K ×K → 2Y with F (f, f) = {0}
for all f ∈ K, the generalized mixed operator quasi-equilibrium problem(for
short, GMOQEP) is to find f ∈ K such that

f ∈ clKS(f) and 〈f − g, T (f)〉+ F (f, g) * −intC(f), ∀ g ∈ S(f). (1.1)

Special cases

(i) If S(f) = K, for all f ∈ K, then GMOQEP (1.1) reduces to find f ∈ K
such that

〈f − g, T (f)〉+ F (f, g) * −intC(f), ∀g ∈ K (1.2)

called the generalized mixed operator equilibrium problem (GMOEP)
which appears to be new.

(ii) If S(f) = K, T ≡ 0, for all f ∈ K and F : K × K → Y is a single
valued map, then GMOQEP (1.1) reduces to find f ∈ K such that

F (f, g) /∈ −intC(f), ∀g ∈ K, (1.3)

which is called the weak operator equilibrium problem studied by Sala-
mon [24].

(iii) If S(f) = K, and F ≡ 0, then the GMOQEP (1.1) reduces to operator
variational inequality considered by Domokos and Kolumban [6].

(iv) If the ordering is not weak, then the problem (1.3) reduces to find
f ∈ K such that

F (f, g) /∈ −C(f), ∀g ∈ K, (1.4)

which is called operator equilibrium problem introduced and studied by
Kazmi and Raouf [10].
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(v) If F (f, g) = 〈η(f, g), T (f)〉, where T : K → X and η : K ×K → K,
then OEP (1.4) reduces to find f ∈ K such that

〈η(f, g), T (f)〉 /∈ −C(f),∀g ∈ K,
which appears to be new. We call it the operator variational-like in-
equality problem.

(vi) If F (f, g) = φ(f)−φ(g), where φ : K → Y, then OEP (1.4) reduces to
a problem of finding f ∈ K such that

φ(f)− φ(g) /∈ −C(f), ∀g ∈ K,
which appears to be new and we call it as operator minimization prob-
lem.

(vii) If K ⊆ X, a topological vector space, then the operator equilibrium
problem OEP (1.4) reduces to vector equilibrium problem studied by
Kazmi [11, 12], and Lee et al. [18].

2. Preliminaries

Now we give some definitions and preliminary results which are needed in
the latter sections.

Definition 2.1. Let T : D ⊆ L(X,Y )→ 2Y be a setvalued mapping. Then

(i) T is said to be upper semicontinuous on D, if for each f ∈ D and any
open set V in Y containing T (f), there exists an open neighborhood
U of f ∈ D such that T (f) ⊆ V for all g ∈ U.

(ii) The inverse T−1 of T is the setvalued mapping from R(T ), range of T
to D defined by f ∈ T−1(y) if and only if y ∈ T (f).

(iii) The graph of T , denoted by G(T ), and is defined as

G(T ) = {(f, y) ∈ D × Y : f ∈ D, y ∈ T (f)} .

Definition 2.2. Let K be a nonempty convex subset of a vector space X. A
function f : K → R is said to be quasiconvex, if for all x, y ∈ K and λ ∈ (0, 1),

f(x+ λ(y − x)) ≤ max{f(x), f(y)}.

Definition 2.3. Let C : K → 2Y be a setvalued map such that for each
f ∈ K, C(f) is a setvalued map with convex cone values in Y. A setvalued
bifunction F : K × K → 2Y is called weakly C(f)-quasiconvex, if for all
f, g1, g2 ∈ K and λ ∈ [0, 1], gλ = λg1 + (1− λ)g2, we have

F (f, gλ) ⊆ F (f, g1)− intC(f)

or
F (f, gλ) ⊆ F (f, g2)− intC(f).
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Definition 2.4. Let C : K → 2Y be a setvalued map such that C(f) is a
closed convex cone with 0 /∈ C(f) in Y for all f ∈ K. Then the setvalued map
F : K ×K → 2Y is said to be weakly C(f)−pseudomonotone, if

F (f, g) * −intC(f)

then
F (g, f) * intC(f).

Definition 2.5. Let C : K → 2Y be a setvalued map such that C(f) is a
closed convex cone with 0 /∈ C(f) in Y for all f ∈ K. Then the setvalued map
F : K×K → 2Y is said to be hemicontinuous, if the function λ→ F (f+λg, h)
is upper semicontinuous at 0+ for all f, g, h ∈ K, as a mapping from R+ into
Y.

Definition 2.6. Let B be a convex compact subset of K. Then the setvalued
mapping F : K ×K → 2Y is said to be weakly coercive with respect to B, if
there exists g0 ∈ B such that for all f ∈ K \B,

〈f − g0, T (f)〉+ F (f, g0) ⊆ −intC(f).

To prove the existence of solution of GMOQEP (1.1), we shall use the
following theorems which are the special cases of Theorem 2 in Ding et al. [4]
and Theorem 2.1 in Ding et al. [5].

Now, we need concept of some special setvalued maps as:

Let S, T : K → 2L(X,Y ) be setvalued maps. Then the setvalued maps
clKS, co(S), S ∩ T : K → 2L(X,Y ) are defined, respectively as

(clKS)(f) = clKS(f), (coS)(f) = coS(f)

and
(S ∩ T )(f) = S(f) ∩ T (f), ∀f ∈ K,

where coS(f) denotes the convex hull of S(f).

Theorem 2.7. ([4]) Let K be a nonempty compact convex subset of a Haus-
dorff topological vector space X. Suppose that S, clXS, P : K → 2K are
setvalued maps such that for each x ∈ K, S(x) is nonempty convex set, for
each y ∈ K, S−1(y) is open set in K, clXS is upper semicontinuous, for each
x ∈ K, x /∈ coP (x) and for each y ∈ K, P−1(y) is open in K. Then there
exists x∗ ∈ K such that x∗ ∈ clKS(x∗) and S(x∗) ∩ P (x∗) = φ.

Theorem 2.8. ([5]) Let K be a nonempty convex subset of a locally convex
Hausdorff topological vector space X and D be a nonempty compact subset of
K. Suppose that A, P : K → 2D and clXA : K → 2K are setvalued maps such



88 T. Ram, A. K. Khanna and R. Kour

that for each x ∈ K, A(x) is a nonempty convex set, for each y ∈ K, A−1(y)
is open set in K, clX(A) is upper semicontinuous, for each x ∈ K, x /∈ coP (x)
and for each y ∈ D, P−1(y) is open in K. Then there exists x∗ ∈ K such that
x∗ ∈ clKA(x∗) and A(x∗) ∩ P (x∗) = φ.

3. Result in compact setting

In this section, we prove an existence result for GMOQEP (1.1) in compact
setting.

Theorem 3.1. Let K ⊆ L(X,Y ) be a nonempty, compact and convex set.
Let C : K → 2Y be a setvalued map such that for each f ∈ K, C(f) is
a solid convex closed cone with apex at the origin of Y. Let (Y,C(f)) be a
ordering topological vector space. Let F : K×K → 2Y and clKS : K → 2K be
setvalued maps such that for each f ∈ K, S(f) is nonempty convex, for each
g ∈ K, S−1(g) is open in K and clKS is upper-semicontinuous. Assume that

(i) F is weakly C(f)−quasiconvex,
(ii) graph of W (f) = Y \ (−intC(f)) is closed, for all f ∈ K,

(iii) for each g ∈ K, F (., g) is upper semicontinuous with compact values
on K,

(iv) 〈f − g, T (f)〉 ⊆ −intC(f), ∀g ∈ K,
(v) F (f, f) ⊆ −intC(f), ∀f ∈ K.

Then GMOQEP has a solution.

Proof. For each f ∈ K, we define a setvalued map P : K → 2K by

P (f) = {g ∈ K : 〈f − g, T (f)〉+ F (f, g) ⊆ −intC(f)} .

We show that f /∈ coP (f) for all f ∈ K. Suppose that f ∈ coP (f), for some
f ∈ K. Then there exist f0 ∈ K such that f0 ∈ coP (f0). This implies that f0

can be expressed as

f0 =
∑
i∈I

λigi with λi ≥ 0,
∑
i∈I

λi = 1, i = 1, 2, · · · , n,

where {gi : i ∈ N} is a finite subset of K, I ⊆ N is an arbitrary nonempty
subset. Therefore

〈f0 − gi, T (f0)〉+ F (f0, gi) ⊆ −intC(f0), ∀ i = 1, 2, · · · , n.

Since F is C(f)-quasiconvex, we have

〈f0 − gi, T (f0)〉+ F (f0, gi) ⊆ 〈f0 − gi, T (f0)〉+ F (f0, f0) + intC(f0)

⊆ −intC(f0)− intC(f0) + intC(f0)

* −intC(f0), ∀ i = 1, 2, · · · , n.
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This implies that

〈f0 − gi, T (f0)〉+ F (f0, gi) * −intC(f0), ∀ i = 1, 2, · · · , n,

which is a contradiction. Hence f /∈ coP (f), for all f ∈ K.
Now we show that P−1(g) is open in K. That is, K \P−1(g) = [P−1(g)]c is

closed in K. So, we have

P−1(g) = {f ∈ K : g ∈ P (f)}
= {f ∈ K : 〈f − g, T (f)〉+ F (f, g) ⊆ −intC(f)}

and

[P−1(g)]c = {f ∈ K : 〈f − g, T (f)〉+ F (f, g) * −intC(f)} .

By assumption (ii) and (iii), we claim that [P−1(g)]c is closed in K for all
g ∈ K. Now let {fα}α∈∆ be an arbitrary net in [P−1(g)]c such that {fα}
converges to f (w.r.t.p.c). Then, we have

〈fα − g, T (fα)〉+ F (fα, g) * −intC(fα), ∀ g ∈ K.

That is, there exist hα ∈ 〈fα− g, T (fα)〉+F (fα, g) such that hα /∈ −intC(fα)
or hα ∈W (fα) for all α ∈ ∆. Let

A = {fα} ∪ {f}.

Then A is compact and hα ∈ 〈A − g, T (A)〉 + F (A, g), which is compact.
Therefore hα converges to h (w.r.t.p.c). Hence by the upper-semicontinuity of
F(.,g), we have

h ∈ 〈f − g, T (f)〉+ F (f, g).

Also, since W (.) has a closed graph in K×Y , we have h ∈W (f). Consequently,
h ∈ 〈f − g, T (f)〉+ F (f, g) and h /∈ −intC(f), that is,

〈f − g, T (f)〉+ F (f, g) * −intC(f).

Hence f ∈ [P−1(g)]c and so [P−1(g)]c is closed in K, for all g ∈ K. Thus all
the hypotheses of Theorem 2.7 are satisfied. Hence there exist f0 ∈ K such
that

f0 ∈ clKS(f0) and S(f0) ∩ P (f0) = φ.

Thus, there exist f0 ∈ K such that

f0 ∈ clS(f0) and 〈f0 − g, T (f0)〉+ F (f0, g) * −intC(f0), ∀ g ∈ S(f0).

That is, GMOQEP is solvable. �
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4. Results in noncompact setting

For the solution of GMOQEP (1.1) in noncompact setting, we need the
following concept of an escaping sequence.

Definition 4.1. Let K be a subset of L(X,Y ) such that K =
∞⋃
n=1

Kn, where

{Kn}∞n=1 is an increasing sequence of nonempty compact sets in the sense that
Kn ⊆ Kn+1 for all n ∈ N. A sequence {fn}∞n=1 in K is said to be escaping

from K (relative to K =
∞⋃
n=1

Kn) if for each n ∈ N there exists M > 0 such

that k ≥M implies fk /∈ Kn.

Theorem 4.2. Let K ⊆ L(X,Y ) be a nonempty subset such that K =

∞⋃
n=1

Kn,

where {Kn}∞n=1 is an increasing sequence of nonempty, compact and convex
subset of K. Let C : K → 2Y be a setvalued map such that for each f ∈
K, C(f) is a solid convex and closed cone, 0 /∈ C(f). Let (Y,C(f)) be an
ordered topological vector space. Let F : K×K → 2Y be a setvalued map such
that for each f ∈ K, S(f) is nonempty convex, for each g ∈ K, S−1(g) is
open in K and clKS is upper-semicontinuous. Assume that

(i) F is weakly C(f)-quasiconvex,
(ii) graph of W (f) = Y \ (−intC(f)) is closed for all f ∈ K,

(iii) for each g ∈ K, F (., g) is upper-semicontinuous with compact values
on K,

(iv) F (f, f) ⊆ −intC(f), ∀f ∈ K,
(v) 〈f − g, T (f)〉 ⊆ −intC(f), ∀g ∈ K,

(vi) for each sequence {fn} in K with fn ∈ Kn, n ∈ N, which is escaping
from K relative to {Kn}∞n=1 , there exists m ∈ N and gm ∈ Km∩S(fm)
such that

〈f − g, T (f)〉+ F (fm, gm) ⊆ −intC(fm), ∀fm ∈ clKS(fm).

Then there exist f0 ∈ K such that

f0 ∈ clKS(f0) and 〈f − g, T (f)〉+ F (f, g) * −intC(f0), ∀g ∈ S(f0).

Proof. Since for each n ∈ N, Kn is compact and convex subset of L(X,Y ),
applying Theorem 3.1, we have for all n ∈ N, there exists fn ∈ Kn such that

fn ∈ clKS(fn) and 〈fn − h, T (f)〉+F (fn, h) * −intC(fn), ∀h ∈ S(fn). (4.1)
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Suppose that the sequence {fn}∞n=1 in K is escaping from K =

∞⋃
n=1

Kn. By

assumption (vi), there exists m ∈ N and hm ∈ Km ∩S(fm) such that for each
fm ∈ clKS(fm),

〈fm − hm, T (fm)〉+ F (fm, hm) ⊆ −intC(fm)),

which contradicts (4.1). Hence {fn}∞n=1 is not an escaping sequence from K
relative to {Kn}∞n=1 . Thus using the similar argument, which have been used
by Qun [19] in proving Theorem 2, there exists r ∈ N and f0 ∈ Kr such that
fn → f0 (w.r.t.p.c) and 〈f0 − g, T (f0)〉+ F (f0, g) ⊆W (f0).

Since clKS : K → 2K is upper-semicontinuous with compact values, hence
there exists f0 ∈ K such that

f0 ∈ clKS(f0) and 〈f0 − g, T (f)〉+ F (f0, g) * −intC(f0), ∀g ∈ S(f0).

�

Theorem 4.3. Let K be a nonempty convex subset of a locally convex Haus-
dorff topological vector space L(X,Y ), and D be a nonempty compact subset
of K. Let C : K → 2Y be a setvalued map such that for each f ∈ K, C(f) is
a solid, convex and closed cone, 0 /∈ C(f). Let (Y,C(f)) be an ordered Haus-
dorff topological vector space. Let F : K ×K → 2Y and S, clKS : K → 2K be
setvalued maps such that for each f ∈ K, S(f) is nonempty convex, for each
g ∈ K, S−1(g) is open in K and clKS is upper-semicontinuous. Assume that

(i) F is weakly C(f)− quasiconvex,
(ii) the graph of W (f) = Y \ (−intC(f)) is closed, ∀f ∈ K,

(iii) for each g ∈ K, F (., g) is upper-semicontinuous with compact values
on K,

(iv) F (f, f) ⊆ −intC(f), ∀f ∈ K,
(v) 〈f − g, T (f)〉 ⊆ −intC(f), ∀g ∈ K.

Then there exists f0 ∈ K such that

f0 ∈ clKS(f0) and 〈f0 − g, T (f)〉+ F (f0, g) * −intC(f0), ∀g ∈ S(f0).

Proof. Let P : K → 2D be a setvalued map defined by

P (f) = {g ∈ D : 〈f − g, T (f)〉+ F (f, g) ⊆ −intC(f)} , ∀f ∈ K.

Then by using the similar argument, which we have used in proving Theorem
3.1, we have f /∈ coP (f), for all f ∈ K and P−1(g) is open for each g ∈ D.
Thus all the conditions of Theorem 2.8 are satisfied. Hence there exists f0 ∈ K
such that

f0 ∈ clKS(f0) and S(f0) ∩ P (f0) = φ.
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Therefore, there exists f0 ∈ K such that

f0 ∈ clKS(f0) and 〈f0 − g, T (f0〉+ F (f0, g) * −intC(f0), ∀g ∈ S(f0).

�

5. Particular Case

In this section, we prove the existence result for the solution of particular
case of GMQOEP (1.2) by using the coercive conditions, hemicontinuity and
KKM theorem. For this, we first need the following lemmas:

Lemma 5.1. Let K ⊆ L(X,Y ) be a nonempty convex set. Let (Y,C(f) be an
ordered topological vector space with solid convex closed cone C(f), 0 /∈ C(f),
for each f ∈ K. Then we have that

(i) if g − f ⊆ intC(f) and g * intC(f), then f * intC(f).
(ii) if g − f ⊆ −intC(f) and g * −intC(f), then f * −intC(f).

Proof. (i) Let g − f ⊆ intC(f) and g * intC(f). We have to show that
f * intC(f). Since g − f ⊆ intC(f), f ⊆ −intC(f) + g ⊆ −intC(f) + Y \
intC(f) ⊆ Y \ intC(f). Hence we have f * intC(f).

(ii) Let g − f ⊆ −intC(f) and g * −intC(f). We have to show that
f * −intC(f). Since g − f ⊆ −intC(f), f ⊆ intC(f) + g ⊆ intC(f) + Y \
{−intC(f)}. Hence we have f ⊆ Y \ {−intC(f)}, that is, f * −intC(f). �

Lemma 5.2. Let X,Y be Hausdorff topological vector spaces and K ⊆
L(X,Y ) be a nonempty convex set. Let the setvalued mapping F : K×K → 2Y

be weakly C(f)−pseudomonotone and hemicontinuous in the first argument
and weakly C(f)−quasiconvex in the second argument and let B ⊆ K. Then
the following are equivalent:

(a) There exists f ∈ B such that 〈f − g, T (f)〉+ F (f, g) * −intC(f), for
all g ∈ K.

(b) There exists f ∈ B such that 〈g− f, T (g)〉+F (g, f) * intC(f), for all
g ∈ K.

Proof. By the definition of weak C(f)−pseudomonotonicity of T and F , we
have (a) implies (b).

Conversely, suppose that there exists f ∈ B such that 〈g − f, T (g)〉 +
F (g, f) * intC(f), for all g ∈ K. Then, since K is convex, for all f, g ∈
K,λ ∈ [0, 1],

hλ = λg + (1− λ)f ∈ K.
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Hence, we have

〈hλ − f, T (hλ)〉+ F (hλ, f) * intC(f).

Since F is weakly C(f)−quasiconvex, we have

{0} = 〈hλ − hλ, T (hλ)〉+ F (hλ, hλ) ⊆ (1− λ)〈hλ − hλ + f − f, T (hλ)〉
+ F (hλ, λg + (1− λ)f) + λF (hλ, g) + (1− λ)F (hλ, f)− intC(f)

⊆ (1− λ){〈hλ − f, T (hλ)〉+ F (hλ, f)}
+ (1− λ)〈f − hλ, T (hλ)〉+ λF (hλ, g)− intC(f).

This implies

(1− λ){〈hλ − f, T (hλ)〉+ F (hλ, f)}+ (1− λ)〈f − hλ, T (hλ)〉
+ λF (hλ, g) ⊆ intC(f).

Therefore, by Lemma 5.1, we have

λF (hλ, g) + (1− λ)〈f − hλ, T (hλ)〉 * −intC(f)

or
λF (hλ, g) + λ(1− λ)〈f − hλ, T (hλ)〉 * −intC(f),

that is,
F (hλ, g) + (1− λ)〈f − hλ, T (hλ)〉 * −intC(f).

So, by using the hemicontinuity of F, T and closedness of Y \ −intC(f), we
have

F (f, g) + 〈f − g, T (f)〉 * −intC(f).

�

Next, we define KKM map, and KKM theorem as follows:

Definition 5.3. ([7]) Let K be a nonempty subset of a topological vector
space X. Then a setvalued map F : K → 2X is said to be KKM, if for every
finite subset {x1, x2, · · · , xn} of K,

co{x1, x2, · · · , xn} ⊂
n⋃
i=1

F (xi).

Lemma 5.4. (KKM-lemma [7]) Let K be a nonempty convex subset of a
Hausdorff topological vector space X. Let T : K → 2X be a KKM-map such
that for any y ∈ K, T (y) is closed and T (y∗) is contained in a compact set
B ⊆ X, for some y∗ ∈ K. Then there exist x∗ ∈ B such that

x∗ ∈ T (y), ∀y ∈ K.
That is,

⋂
y∈K T (y) 6= φ.
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Theorem 5.5. Let K ⊆ L(X,Y ) be a nonempty convex set. Let C : K → 2Y

be a setvalued map such that for each f ∈ K, C(f) is solid convex closed cone
with apex at the origin of Y. Let S : K → 2K be a setvalued map such that for
each f ∈ K, S(f) is nonempty convex. Let (Y,C(f)) be a ordering topological
vector space and F : K ×K → 2Y be a setvalued mapping. Assume that

(i) F is weakly C(f)−quasiconvex in the second argument,
(ii) F is weakly C(f)−pseudomonotone and hemicontinuous in the first

argument,
(iii) F is weakly coercive with respect to the compact convex set B ⊆ K,
(iv) F (g, .) is upper semicontinuous with compact values on B, for each

g ∈ K,
(v) the graph of Y \ {−intC(f)} is closed with respect to B for all f ∈ K,

(vi) F (f, f) ⊆ −intC(f), ∀f ∈ K,
(vii) 〈f − g, T (f)〉 ⊆ −intC(f), ∀g ∈ K.

Then there exists f0 ∈ K such that

〈f0 − g, T (f)〉+ F (f0, g) * −intC(f0), ∀g ∈ S(f0).

That is, GMOQEP has a solution.

Proof. For each g ∈ K, define the setvalued mappings P, T : K → 2K by

P (g) = {f ∈ K : 〈f − g, T (f)〉+ F (f, g) * −intC(f)}

and

T (g) = {f ∈ B : 〈f − g, T (f)〉+ F (g, f) * intC(f)}.
First, we claim that P is a KKM-mapping. Indeed, let {g1, g2, · · · , gn} be a
finite subset of K and g ∈ co{g1, g2, · · · gn} be arbitrary. Then

g =
n∑
i=1

λigi, λi ≥ 0,
n∑
i=1

λi = 1.

Suppose, if possible g /∈ ∪ni=1P (gi), then

〈g − gi, T (g)〉+ F (g, gi) ⊆ −intC(g), ∀ i = 1, 2, · · ·n. (5.1)

Since F is weakly C(f)−quasiconvex in the second argument, we have

〈g − gi, T (g)〉+ F (g, gi) = 〈g − gi, T (g)〉+ F (g, g) + intC(g)

⊆ −intC(g)− intC(g) + intC(g)

* −intC(g), ∀ i = 1, 2, · · · , n,
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which is not true by (5.1).

Thus g =
n∑
i=1

λigi ∈
n⋃
i=1

P (gi),

which means that co{g1, g2, · · · , gn} ⊆
∑n

i=1 P (gi). Hence a mapping P : K →
2K defined by P (g) = P (g), the closure of P (g), is also a KKM-mapping. The

coercivity of F with respect to B implies that P (g0) ⊆ B. Hence P (g0) is

compact. Thus by Lemma 5.4, it follows that ∩g∈KP (g) 6= φ.
Next, we claim that

∩g∈KP (g) ⊆ T (h), ∀ h ∈ K.

Now, let f ∈
⋂
g∈K P (g). Since⋂
g∈K

P (g) =
⋂
g∈K

(P (g) ∩ P (g0)) ⊆ P (g) ∩B ⊆ B,

we have f ∈
⋂
g∈k P (g) ∩B, for all g ∈ K.

Let h ∈ K be an arbitrary. Then, there exists a net {fα}α∈∆ in P (h) such
that {fα} converges to f ∈ B. Hence, we have

〈fα − h, T (fα)〉+ F (fα, h) * −intC(fα), ∀ h ∈ K.

Since F is weakly C(f)-pseudomonotone, it follows that

〈fα − h, T (fα)〉+ F (h, fα) * intC(fα), ∀ h ∈ K.

That is, there exists pα ∈ 〈fα − h, T (fα)〉+ F (h, fα) such that

pα /∈ intC(fα), ∀ α ∈ ∆.

Since the set A = {fα} ∪ {f} is compact,

pα ∈ 〈A− h, T (A)〉+ F (h,A), ∀ α ∈ ∆.

Since 〈A− h, T (A)〉+ F (h,A) is compact, {pα} has a convergent subnet with
limit, say p. We can assume that {pα} converges to p. Further, since the graph
of Y \ {−intC(f)} is closed. Clearly, the graph of Y \ intC(f) is also closed.
Hence the upper semicontinuity of F (h, .) implies p ∈ 〈f − h, T (f)〉+F (h, f).
Hence

〈f − h, T (f)〉+ F (h, f) * intC(f),

that is, f ∈ T (h) for all h ∈ K. Therefore, we have

φ 6=
⋂
g∈K

P (g) ⊆
⋂
g∈K

T (g) ⊆ B.
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Finally by Lemma 5.4,
⋂
g∈K P (g) =

⋂
g∈K T (g). Thus

⋂
g∈K P (g) 6= φ. There-

fore, there exists f0 ∈ K such that

〈f0 − g, T (f)〉+ F (f0, g) * −intC(f0), ∀ g ∈ K.
Hence GMOEP(1.2) is solvable. �
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