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GENERALIZED COMPOSITION OPERATORS FROM
GENERALIZED WEIGHTED BERGMAN SPACES

TO BLOCH TYPE SPACES

Xiangling Zhu

Abstract. Let H(B) denote the space of all holomorphic functions on
the unit ball B of Cn. Let ϕ = (ϕ1, . . . , ϕn) be a holomorphic self-map of
B and g ∈ H(B) with g(0) = 0. In this paper we study the boundedness
and compactness of the generalized composition operator

Cg
ϕf(z) =

Z 1

0
<f(ϕ(tz))g(tz)

dt

t

from generalized weighted Bergman spaces into Bloch type spaces.

1. Introduction

Let B be the unit ball of Cn. We denote by H(B) the space of all holomor-
phic functions on B. Let dv be the normalized Lebesgue measure of B, i.e.,
v(B) = 1. Let dvα(z) = cα(1− |z|)αdv(z), where cα = (Γ(n + α + 1))/(n!Γ(α +
1)). For f ∈ H(B), let

<f(z) =
n∑

j=1

zj
∂f

∂zj
(z)

represent the radial derivative of f ∈ H(B). We write <mf = <(<m−1f).
For α > 0, recall that the Bloch type space Bα = Bα(B), is the space of all

f ∈ H(B) for which (see [12])

(1) bα(f) = sup
z∈B

(1− |z|2)α |<f(z)| < ∞.

The little Bloch type space Bα
0 , comprises all f ∈ H(B) such that

lim
|z|→1

(1− |z|2)α|<f(z)| = 0.
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Under the norm ‖f‖Bα = |f(0)| + bα(f), Bα is a Banach space. When α = 1,
we get the classical Bloch space B and the little Bloch space B0. For more
information of the Bloch space and the Bloch type space (see, e.g. [12]).

For any p > 0 and α ∈ R, let N be the smallest nonnegative integer such that
pN + α > −1. The generalized weighted Bergman space, which is introduced
by Zhao and Zhu (see, e.g. [10]), is the space of all f ∈ H(B) such that

‖f‖Ap
α

= |f(0)|+
[ ∫

B

|<Nf(z)|p(1− |z|2)pNdvα(z)
]1/p

< ∞.

This space covers the classical Bergman space, the Besov space, the Hardy
space H2 and the so-called Arveson space. For example, when α = 0, the
space Ap

0(B) = Ap(B) is the classical Bergman space; when α = −n and p = 2,
the space Ap

α is the so-called Arveson space; when α = −(n + 1), the space Ap
α

is the Besov space. See [10, 12] for some basic facts on the Bergman space.
Denote by D the unit disk and H(D) the space of all analytic functions

on D. Let φ be an analytic self-map of D. For f ∈ H(D), the composition
operator is defined by

(Cφf)(z) = (f ◦ φ)(z).

It is interesting to provide a function theoretic characterization when φ induce
a bounded or compact composition operator on various spaces. The books
[1, 9, 11] contain much information on this topic.

Let h ∈ H(D) and φ be an analytic self-map of D. In [7], the authors defined
and studied the generalized composition operator as following

Ch
φf(z) =

∫ z

0

f ′(φ(ξ))h(ξ)dξ, f ∈ H(D), z ∈ D.

Note that the difference Cφ′

φ − Cφ is a constant. The boundedness and com-
pactness of the generalized composition operator on Zygmund spaces and Bloch
type spaces were investigated in [7].

It is natural to generalize the operator Ch
φ to the unit ball. Let ϕ =

(ϕ1, . . . , ϕn) be a holomorphic self-map of B and g ∈ H(B) with g(0) = 0.
We consider the higher-dimensional version of the generalized composition op-
erator via

(2) Cg
ϕf(z) =

∫ 1

0

<f(ϕ(tz))g(tz)
dt

t
, f ∈ H(B), z ∈ B.

The operator Cg
ϕ is still called the generalized composition operator. Note that

when ϕ(z) = z, then Cg
ϕ is the Riemann-Stieltjes operator

Lgf(z) =
∫ 1

0

<f(tz)g(tz)
dt

t
, f ∈ H(B), z ∈ B,

which was first studied in [3]. To the best of our knowledge, the operator Cg
ϕ

on the unit ball is introduced in the present article for the first time.
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In this paper we study the boundedness and compactness of generalized
composition operators Cg

ϕ from the generalized weighted Bergman space into
the Bloch type space and little Bloch type space. As some corollaries, we obtain
characterizations of the composition operator Cφ and the Riemann-Stieltjes
operator Lg from the generalized weighted Bergman space into the Bloch type
space and the little Bloch type space. These results are new even for Cφ and
Lg.

Throughout the paper, constants are denoted by C, they are positive and
may differ from one occurrence to the other.

2. Main results and proofs

In this section we give our main results and proofs. We distinguish three
cases: n + 1 + α + p > 0, n + 1 + α + p = 0 and n + 1 + α + p < 0. Before
we formulate our main results, we state several auxiliary results which will be
used in the proofs. The following result can be found in [10].

Lemma 1. (i) Suppose p > 0 and α + n + 1 > 0. Then there exists a constant
C > 0 such that

|f(z)| ≤ C‖f‖Ap
α

(1− |z|2)n+α+1
p

for all f ∈ Ap
α and z ∈ B.

(ii) Suppose p > 0 and α + n + 1 < 0 or 0 < p ≤ 1 and α + n + 1 = 0. Then
every function in Ap

α is continuous on the closed unit ball and so is bounded.
(iii) Suppose p > 1, 1/p + 1/q = 1 and α + n + 1 = 0. Then there exists a

constant C > 0 such that

|f(z)| ≤ C
[
ln

2
1− |z|2

]1/q

for all f ∈ Ap
α and z ∈ B.

Lemma 2. A closed set K in Bα
0 is compact if and only if it is bounded and

satisfies
lim
|z|→1

sup
f∈K

(1− |z|2)α|<f(z)| = 0.

Proof. The proof is similar to the proof of Lemma 1 in [8]. We omit the
details. �

The following criterion for compactness follows from standard arguments
similar to those outlined in Proposition 3.11 of [1].

Lemma 3. Suppose p > 0 and α is a real number. Let ϕ be a holomorphic
self-map of B, g ∈ H(B) with g(0) = 0 and 0 < β < ∞. Then Cg

ϕ : Ap
α → Bβ is

compact if and only if Cg
ϕ : Ap

α → Bβ is bounded and for any bounded sequence
(fk)k∈N in Ap

α which converges to zero uniformly on compact subset of B as
k →∞, we have ‖Cg

ϕfk‖Bβ → 0 as k →∞.



1222 XIANGLING ZHU

2.1. Case of n + 1 + α + p > 0

Theorem 1. Suppose p > 0 and n + 1 + α + p > 0. Let ϕ be a holomorphic
self-map of B, g ∈ H(B) with g(0) = 0 and 0 < β < ∞. Then Cg

ϕ : Ap
α → Bβ

is bounded if and only if

(3) M1 = sup
z∈B

(1− |z|2)β |g(z)|
(1− |ϕ(z)|2)n+1+α+p

p

< ∞.

Proof. Sufficiency: Suppose that (3) holds. From the assumption, we see that
(Cg

ϕf)(0) = 0. From the definition of radical derivative we can easily show that
(see, e.g. [2])

(4) <[Cg
ϕ(f)](z) = <f(ϕ(z))g(z).

Then for arbitrary z ∈ B and f ∈ Ap
α, since <f ∈ Ap

α+p and ‖<f‖Ap
α+p

≤
C‖f‖Ap

α
(see [10]), by (4) and Lemma 1 we have

(5)

(1− |z|2)β |<(Cg
ϕf)(z)| = (1− |z|2)β |<f(ϕ(z))||g(z)|

≤ C‖<f‖Ap
α+p

(1− |z|2)β |g(z)|
(1− |ϕ(z)|2)n+1+α+p

p

≤ C‖f‖Ap
α

(1− |z|2)β |g(z)|
(1− |ϕ(z)|2)n+1+α+p

p

.

From this and (3), we see that Cg
ϕ : Ap

α → Bβ is bounded.
Necessity: Suppose that Cg

ϕ : Ap
α → Bβ is bounded. Taking fa(z) =

〈z,a〉
|a|2 , a 6= 0, then by the boundedness of Cg

ϕ : Ap
α → Bβ we get

(6) sup
z∈B

(1− |z|2)β |g(z)| < ∞.

Assume that

t > n max
(

1,
1
p

)
+

α + 1
p

.(7)

For a ∈ B, set

fa(z) =
(1− |a|2)t−n+1+α

p

(1− 〈z, a〉)t
.

Then

<fa(z) = t
(1− |a|2)t−n+1+α

p 〈z, a〉
(1− 〈z, a〉)t+1

.

From Theorem 32 of [12] we see that fa ∈ Ap
α and C = supa∈B ‖fa‖Ap

α
< ∞.

Therefore

(8)

C‖Cg
ϕ‖Ap

α→Bβ ≥ ‖Cg
ϕfϕ(b)‖Bβ = sup

z∈B
(1− |z|2)β |<(Cg

ϕfϕ(b))(z)|

≥ t
(1− |b|2)β |g(b)||ϕ(b)|2
(1− |ϕ(b)|2)n+1+α+p

p

.
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From (6) we obtain

(9)
(1− |b|2)β |g(b)|

(1− |ϕ(b)|2)n+1+α+p
p

≤
(4

3

)n+1+α+p
p

(1− |b|2)β |g(b)| < ∞

for b ∈ B such that |ϕ(b)| ≤ 1/2. It follows from (8) that

(10)
(1− |b|2)β |g(b)|

(1− |ϕ(b)|2)n+1+α+p
p

≤ 4
(1− |b|2)β |g(b)||ϕ(b)|2
(1− |ϕ(b)|2)n+1+α+p

p

≤ C‖Cg
ϕ‖Ap

α→Bβ < ∞

for b ∈ B such that 1/2 < |ϕ(b)| < 1. Combining (9) with (10) we get (3).
This completes the proof of Theorem 1. �

Theorem 2. Suppose p > 0 and n + 1 + α + p > 0. Let ϕ be a holomorphic
self-map of B, g ∈ H(B) with g(0) = 0 and 0 < β < ∞. Then Cg

ϕ : Ap
α → Bβ

is compact if and only if

M2 = sup
z∈B

|g(z)|(1− |z|2)β < ∞(11)

and

lim
|ϕ(z)|→1

(1− |z|2)β |g(z)|
(1− |ϕ(z)|2)n+1+α+p

p

= 0.(12)

Proof. Sufficiency: Suppose that (11) and (12) hold. Combining (11) with (12)
we get (3). Hence Cg

ϕ : Ap
α → Bβ is bounded. From (12) we have that if given

ε > 0, there is a constant δ ∈ (0, 1), such that when δ < |ϕ(z)| < 1 implies

(13)
(1− |z|2)β |g(z)|

(1− |ϕ(z)|2)n+1+α+p
p

< ε.

Suppose that (fk)k∈N is a bounded sequence in Ap
α such that fk → 0 uniformly

on compact subsets of B as k → ∞. It follows from Cauchy’s estimate that
the sequence <fk converges to zero on compact subsets of B as k →∞. Then
for the above ε > 0, there exists a k0 such that for |ϕ(z)| ≤ r and k ≥ k0, we
get |<fk(ϕ(z))| ≤ ε. Thus for |ϕ(z)| ≤ r and k ≥ k0, we obtain

(14) (1− |z|2)β |<fk(ϕ(z))g(z)| ≤ ε sup
z∈B

(1− |z|2)β |g(z)|.

Now for |ϕ(z)| > r and all k, by (13) we get

(15) (1− |z|2)β |<fk(ϕ(z))g(z)| ≤ C‖f‖Ap
α

(1− |z|2)β |g(z)|
(1− |ϕ(z)|2)n+1+α+p

p

< C‖f‖Ap
α
ε.

Combining (14) with (15) we get

lim
k→∞

‖Cg
ϕfk‖Bβ = 0.

Employing Lemma 3, the implication follows.
Necessity: Suppose that Cg

ϕ : Ap
α → Bβ is compact. Then Cg

ϕ : Ap
α → Bβ is

bounded. It follows from the proof of Theorem 1 that (11) holds. Let (zk)k∈N
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be a sequence in B such that |ϕ(zk)| → 1 as k →∞. We choose test functions
(fk)k∈N defined by

fk(z) =
(1− |zk|2)t−n+α+1

p

(1− 〈z, zk〉)t
, k ∈ N,

where t satisfying (7). It is easy to check that (fk)k∈N is a bounded sequence
in Ap

α and fk → 0 uniformly on compact subsects of B. By Lemma 3 we have

‖Cg
ϕfk‖Bβ → 0, as k →∞.

Since

‖Cg
ϕfk‖Bβ = sup

z∈B
(1− |z|2)β |<(Cg

ϕfk)(z)|

≥ t
(1− |zk|2)β |g(zk)||ϕ(zk)|2

(1− |ϕ(zk)|2)n+1+α+p
p

,

we obtain

lim
k→∞

(1− |zk|2)β |g(zk)|
(1− |ϕ(zk)|2)n+1+α+p

p

= lim
k→∞

(1− |zk|2)β |g(zk)||ϕ(zk)|2
(1− |ϕ(zk)|2)n+1+α+p

p

= 0,

from which we get the desired result. The proof is completed. �

Theorem 3. Suppose p > 0 and n + 1 + α + p > 0. Let ϕ be a holomorphic
self-map of B, g ∈ H(B) with g(0) = 0 and 0 < β < ∞. Then Cg

ϕ : Ap
α → Bβ

0

is bounded if and only if Cg
ϕ : Ap

α → Bβ is bounded and

(16) lim
|z|→1

(1− |z|2)β |g(z)| = 0.

Proof. Necessity: Suppose that Cg
ϕ : Ap

α → Bβ
0 is bounded. Then Cg

ϕ : Ap
α →

Bβ is bounded. Taking f(z) = 〈z, a〉/|a|2, |a| > 1/2, and employing the bound-
edness of Cg

ϕ : Ap
α → Bβ

0 , (16) follows.
Sufficiency: Suppose that Cg

ϕ : Ap
α → Bβ is bounded and (16) holds. Suppose

that f ∈ Ap
α with ‖f‖Ap

α
≤ Q, using polynomial approximations we see that

(see, e.g. [10])

lim
|z|→1

(1− |z|2)n+1+α
p |f(z)| = 0

and hence
lim
|z|→1

(1− |z|2)n+1+α+p
p |<f(z)| = 0.

Hence for every ε > 0, there exists a δ ∈ (0, 1) such that when δ < |z| < 1,

(17) (1− |z|2)n+1+α+p
p |<f(z)| < ε/M1

and

(18) (1− |z|2)β |g(z)| < ε(1− δ2)
n+1+α+p

p

Q
.
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Therefore if δ < |z| < 1 and δ < |ϕ(z)| < 1, from (3) and (17) we have

(19)

(1− |z|2)β |<(Cg
ϕf)(z)|

=
(1− |z|2)β |g(z)|

(1− |ϕ(z)|2)n+1+α+p
p

(1− |ϕ(z)|2)n+1+α+p
p |<f(ϕ(z))|

≤ M1(1− |ϕ(z)|2)n+1+α+p
p |<f(ϕ(z))| < ε.

If δ < |z| < 1 and |ϕ(z)| ≤ δ, using Lemma 1 and (18) we have

(20)

(1− |z|2)β |<(Cg
ϕf)(z)|

=
(1− |z|2)β |g(z)|

(1− |ϕ(z)|2)n+1+α+p
p

(1− |ϕ(z)|2)n+1+α+p
p |<f(ϕ(z))|

≤ C‖f‖Ap
α

(1− |z|2)β |g(z)|
(1− |ϕ(z)|2)n+1+α+p

p

≤ C‖f‖Ap
α

1
(1− δ2)n+1+α+p

p

(1− |z|2)β |g(z)| < ε.

Combining (19) with (20) we get that Cg
ϕf ∈ Bβ

0 . By the arbitrary of f we see
that Cg

ϕ(Ap
α) ⊂ Bβ

0 , which together with the boundedness of Cg
ϕ : Ap

α → Bβ ,
we get the desired result. This completes the proof of the theorem. �

Theorem 4. Suppose p > 0 and n + 1 + α + p > 0. Let ϕ be a holomorphic
self-map of B, g ∈ H(B) with g(0) = 0 and 0 < β < ∞. Then Cg

ϕ : Ap
α → Bβ

0

is compact if and only if

(21) lim
|z|→1

(1− |z|2)β |g(z)|
(1− |ϕ(z)|2)n+1+α+p

p

= 0.

Proof. Necessity: Assume that Cg
ϕ : Ap

α → Bβ
0 is compact. Then Cg

ϕ : Ap
α → Bβ

0

is bounded and Cg
ϕ : Ap

α → Bβ is compact. By Theorems 2 and 3 we get

(22) lim
|ϕ(z)|→1

(1− |z|2)β |g(z)|
(1− |ϕ(z)|2)n+1+α+p

p

= 0

and

(23) lim
|z|→1

(1− |z|2)β |g(z)| = 0.

Combing (22) with (23) and similarly to the proof of Theorem 3 of [7], we get
(21), as desired.

Sufficiency: Suppose that (21) holds. It follows from Lemma 2 that Cg
ϕ :

Ap
α → Bβ

0 is compact if and only if

(24) lim
|z|→1

sup
‖f‖A

p
α
≤1

(1− |z|2)β |<(Cg
ϕf)(z)| = 0.
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Since for any f ∈ Ap
α with ‖f‖Ap

α
≤ 1, by (5) we have

(25) (1− |z|2)β |<(Cg
ϕf)(z)| ≤ C‖f‖Ap

α

(1− |z|2)β |g(z)|
(1− |ϕ(z)|2)n+1+α+p

p

.

Using (21) we get

lim
|z|→1

sup
‖f‖A

p
α
≤1

(1− |z|2)β |<(Cg
ϕf)(z)|

≤ lim
|z|→1

sup
‖f‖A

p
α
≤1

(1− |z|2)β |g(z)|
(1− |ϕ(z)|2)n+1+α+p

p

= 0,

as desired. This completes the proof of the theorem. �
Let ϕ(z) = z. From Theorems 1-4, we have the following corollary. Partial

result can be found in [3, 6].

Corollary 1. Suppose p > 0 and n + 1 + α + p > 0. Let g ∈ H(B) and
0 < β < ∞. Then the following statements hold.

(i) Lg : Ap
α → Bβ is bounded if and only if

sup
z∈B

(1− |z|2)β−n+1+α+p
p |g(z)| < ∞;

(ii) Lg : Ap
α → Bβ

0 is bounded if and only if Lg : Ap
α → Bβ is bounded and

lim
|z|→1

(1− |z|2)β |g(z)| = 0;

(iii) Lg : Ap
α → Bβ is compact if and only if Lg : Ap

α → Bβ
0 is compact if and

only if

lim
|z|→1

(1− |z|2)β−n+1+α+p
p |g(z)| = 0.

Let n = 1. From Theorems 1-4, we get the characterization of the composi-
tion operator from the weighted Bergman space to the Bloch type space (see,
e.g. [4, 5] for the case of α > −1).

Corollary 2. Suppose p > 0 and 2 + α + p > 0. Let ϕ be a holomorphic
self-map of D and 0 < β < ∞. Then the following statements hold.

(i) Cϕ : Ap
α → Bβ is bounded if and only if

sup
z∈D

(1− |z|2)β |ϕ′(z)|
(1− |ϕ(z)|2) 2+α+p

p

< ∞;

(ii) Cϕ : Ap
α → Bβ is compact if and only if ϕ ∈ Bβ and

lim
|ϕ(z)|→1

(1− |z|2)β |ϕ′(z)|
(1− |ϕ(z)|2) 2+α+p

p

= 0;

(iii) Cϕ : Ap
α → Bβ

0 is bounded if and only if Cϕ : Ap
α → Bβ is bounded and

ϕ ∈ Bβ
0 ;
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(iv) Cϕ : Ap
α → Bβ

0 is compact if and only if

lim
|z|→1

(1− |z|2)β |ϕ′(z)|
(1− |ϕ(z)|2) 2+α+p

p

= 0.

2.2. Case n + 1 + α + p = 0

Theorem 5. Suppose p > 1, 1/p + 1/q = 1 and n + 1 + α + p = 0. Let ϕ be
a holomorphic self-map of B, g ∈ H(B) with g(0) = 0 and 0 < β < ∞. Then
Cg

ϕ : Ap
α → Bβ is bounded if and only if

(26) M3 = sup
z∈B

(1− |z|2)β |g(z)|
(

ln
2

1− |ϕ(z)|2
)1/q

< ∞.

Proof. Sufficiency: Suppose that (26) holds. Then for arbitrary z ∈ B and
f ∈ Ap

α, similarly to the proof of Theorem 1, by Lemma 1 we have

(1− |z|2)β |<(Cg
ϕf)(z)| = (1− |z|2)β |<f(ϕ(z))||g(z)|

≤ C‖f‖Ap
α
(1− |z|2)β |g(z)|

(
ln

2
1− |ϕ(z)|2

)1/q

,(27)

from which and (26), we see that Cg
ϕ : Ap

α → Bβ is bounded.
Necessity: Suppose that Cg

ϕ : Ap
α → Bβ is bounded. Similarly to the proof

of Theorem 1 we have

(28) sup
z∈B

(1− |z|2)β |g(z)| < ∞.

For a ∈ B, set

(29) fa(z) =
∫ 1

0

(
ln

2
1− |a|2

)−1/p(
ln

2
1− 〈tz, a〉

)dt

t
.

Then

<fa(z) =
(

ln
2

1− |a|2
)−1/p(

ln
2

1− 〈z, a〉
)
∈ Ap

−(n+1),

the Besov space on the unit ball. From [10] we known that fa ∈ Ap
−(p+n+1).

Therefore

(30)

C‖Cg
ϕ‖Ap

α→Bβ ≥ ‖Cg
ϕfϕ(b)‖Bβ = sup

z∈B
(1− |z|2)β |<(Cg

ϕfϕ(b))(z)|

≥ (1− |b|2)β |g(b)|
(

ln
2

1− |ϕ(b)|2
)1/q

.

From the last inequality we get the desired result. The proof is completed. �

Theorem 6. Suppose p > 1 and n + 1 + α + p = 0. Let ϕ be a holomorphic
self-map of B, g ∈ H(B) with g(0) = 0 and 0 < β < ∞. Then Cg

ϕ : Ap
α → Bβ

is compact if and only if

(31) M4 = sup
z∈B

|g(z)|(1− |z|2)β < ∞
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and

(32) lim
|ϕ(z)|→1

(1− |z|2)β |g(z)|
(

ln
2

1− |ϕ(z)|2
)1/q

= 0.

Proof. Sufficiency: The proof is similar to the proof of Theorem 2, we omit the
details.

Necessity: Suppose that Cg
ϕ : Ap

α → Bβ is compact. Then Cg
ϕ : Ap

α → Bβ is
bounded. It follows from the proof of Theorem 5 that (31) holds. Let (zk)k∈N
be a sequence in B such that |ϕ(zk)| → 1 as k →∞. Set

(33) fk(z) =
(

ln
2

1− |ϕ(zk)|2
)−1/p

∫ 1

0

(
ln

2
1− 〈tz, ϕ(zk)〉

)dt

t
, k ∈ N.

Analogous to the proof of Theorem 5 we see that (fk)k∈N is a bounded sequence
in Ap

α. Moreover, fk → 0 uniformly on compact subsects of B. In view of
Lemma 3 it follows that

‖Cg
ϕfk‖Bβ → 0, as k →∞.

Because

‖Cg
ϕfk‖Bβ = sup

z∈B
(1− |z|2)β |<(Cg

ϕfk)(z)|

≥ (1− |zk|2)β |g(zk)|
(

ln
2

1− |ϕ(zk)|2
)1/q

,

we obtain

lim
k→∞

(1− |zk|2)β |g(zk)|
(

ln
2

1− |ϕ(zk)|2
)1/q

= 0,

from which we get the desired result. The proof is completed. �

Theorem 7. Suppose p > 1 and n + 1 + α + p = 0. Let ϕ be a holomorphic
self-map of B, g ∈ H(B) with g(0) = 0 and 0 < β < ∞. Then Cg

ϕ : Ap
α → Bβ

0

is bounded if and only if Cg
ϕ : Ap

α → Bβ is bounded and

(34) lim
|z|→1

(1− |z|2)β |g(z)| = 0.

Proof. Necessity: Suppose that Cg
ϕ : Ap

α → Bβ
0 is bounded. Then Cg

ϕ : Ap
α →

Bβ is bounded. Taking f(z) = 〈z, a〉/|a|2, |a| > 1/2, and employing the bound-
edness of Cg

ϕ : Ap
α → Bβ

0 , (34) follows.
Sufficiency: Suppose that Cg

ϕ : Ap
α → Bβ is bounded and (34) holds. Then

for each polynomial p(z), we have

(1− |z|2)β |<(Cg
ϕp)(z)| = (1− |z|2)β |<p(ϕ(z))||g(z)| ≤ ‖<p‖∞(1− |z|2)β |g(z)|.

From the above inequality, it follows that for each polynomial p, Cg
ϕ(p) ∈ Bβ

0 .
The set of all polynomials is dense in Ap

α, thus for every f ∈ Ap
α there is a
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sequence of polynomials (pk)k∈N such that ‖pk − f‖Ap
α
→ 0 as k → ∞. From

the boundedness of Cg
ϕ : Ap

α → Bβ , we have that

(35) ‖Cg
ϕpk − Cg

ϕf‖Bβ ≤ ‖Cg
ϕ‖Ap

α→Bβ ‖pk − f‖Ap
α
→ 0, as k →∞.

From this and since Bβ
0 is a closed subset of Bβ , we obtain

(36) Cg
ϕf = lim

k→∞
Cg

ϕpk ∈ Bβ
0 .

From the arbitrary of f , we see that Cg
ϕ : Ap

α → Bβ
0 is bounded. The proof is

completed. �

Using Theorems 6 and 7, similarly to the proof of Theorem 4, we obtain the
following result. We omit the proof.

Theorem 8. Suppose p > 1 and n + 1 + α + p = 0. Let ϕ be a holomorphic
self-map of B, g ∈ H(B) with g(0) = 0 and 0 < β < ∞. Then Cg

ϕ : Ap
α → Bβ

0

is compact if and only if

(37) lim
|z|→1

(1− |z|2)β |g(z)|
(

ln
2

1− |ϕ(z)|2
)1/q

= 0.

Analogues to Lemmas 1 and 2, from Theorems 5-8 we have the following
two corollaries. These results are new even for the operators Lg and Cϕ.

Corollary 3. Suppose p > 1, 1/p + 1/q = 1 and n + 1 + α + p = 0. Let
g ∈ H(B) and 0 < β < ∞. Then the following statements hold.

(i) Lg : Ap
α → Bβ is bounded if and only if

sup
z∈B

(1− |z|2)β |g(z)|
(

ln
2

1− |z|2
)1/q

< ∞;

(ii) Lg : Ap
α → Bβ

0 is bounded if and only if Lg : Ap
α → Bβ is bounded and

lim
|z|→1

(1− |z|2)β |g(z)| = 0;

(iii) Lg : Ap
α → Bβ is compact if and only if Lg : Ap

α → Bβ
0 is compact if and

only if

lim
|z|→1

(1− |z|2)β |g(z)|
(

ln
2

1− |z|2
)1/q

= 0.

Corollary 4. Suppose p > 1, 1/p + 1/q = 1 and 2 + α + p = 0. Let ϕ be a
holomorphic self-map of D and 0 < β < ∞. Then the following statements
hold.

(i) Cϕ : Ap
α → Bβ is bounded if and only if

sup
z∈D

(1− |z|2)β |ϕ′(z)|
(

ln
2

1− |ϕ(z)|2
)1/q

< ∞;
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(ii) Cϕ : Ap
α → Bβ is compact if and only if ϕ ∈ Bβ and

lim
|ϕ(z)|→1

(1− |z|2)β |ϕ′(z)|
(

ln
2

1− |ϕ(z)|2
)1/q

= 0;

(iii) Cϕ : Ap
α → Bβ

0 is bounded if and only if Cϕ : Ap
α → Bβ is bounded and

ϕ ∈ Bβ
0 ;

(iv) Cϕ : Ap
α → Bβ

0 is compact if and only if

lim
|z|→1

(1− |z|2)β |ϕ′(z)|
(

ln
2

1− |ϕ(z)|2
)1/q

= 0.

2.3. Case n + 1 + α + p < 0

Theorem 9. Suppose p > 0 and n + 1 + α + p < 0. Let ϕ be a holomorphic
self-map of B, g ∈ H(B) with g(0) = 0 and 0 < β < ∞. Then the following
statements are equivalent.

(i) Cg
ϕ : Ap

α → Bβ is bounded;
(ii) Cg

ϕ : Ap
α → Bβ is compact;

(iii)

sup
z∈B

(1− |z|2)β |g(z)| < ∞.(38)

Proof. (ii) ⇒ (i). It is obvious.
(i) ⇒ (iii). Suppose that Cg

ϕ : Ap
α → Bβ is bounded. Taking fa(z) =

〈z,a〉
|a|2 , a 6= 0, then by the boundedness of Cg

ϕ : Ap
α → Bβ we get (38), as desired.

(iii)⇒ (ii). Suppose that (38) holds. When n+1+α+p < 0 or n+1+α+p = 0
and 0 < p ≤ 1. From Lemma 1, we see that <f is continuous on the closed unit
ball and so is bounded in B. Then for arbitrary z ∈ B and f ∈ Ap

α, similarly
to the proof of Theorem 1 we have

(39)
(1− |z|2)β |<(Cg

ϕf)(z)| = (1− |z|2)β |<f(ϕ(z))||g(z)|
≤ C‖<f‖Ap

α+p
(1− |z|2)β |g(z)| ≤ C‖f‖Ap

α
(1− |z|2)β |g(z)|.

From the above inequality we see that Cg
ϕ : Ap

α → Bβ is bounded. Let
(fk)k∈N be any bounded sequence in Ap

α such that fk → 0 uniformly on
compact subsets of B as k → ∞. By Lemma 1, it can be easily prove that
limk→∞ supz∈B |<fk(w)| = 0. Hence we have

lim
k→∞

‖Cg
ϕfk‖Bβ = lim

k→∞
sup
z∈B

(1− |z|2)β |<fk(ϕ(z))g(z)|

≤ sup
z∈B

(1− |z|2)β |g(z)| lim
k→∞

sup
z∈B

|<fk(ϕ(z))| = 0.

Then the result follows from Lemma 3. The proof is completed. �

Theorem 10. Suppose p > 0 and n + 1 + α + p < 0. Let ϕ be a holomorphic
self-map of B, g ∈ H(B) with g(0) = 0 and 0 < β < ∞. Then the following
statements are equivalent.
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(i) Cg
ϕ : Ap

α → Bβ
0 is bounded;

(ii) Cg
ϕ : Ap

α → Bβ
0 is compact;

(iii)

(40) lim
|z|→1

(1− |z|2)β |g(z)| = 0.

Proof. (ii) ⇒ (i). This implication is obvious.
(i) ⇒ (iii). Suppose that Cg

ϕ : Ap
α → Bβ

0 is bounded. Taking f(z) =
〈z, a〉/|a|2, |a| > 1/2, and employing the boundedness of Cg

ϕ : Ap
α → Bβ

0 we see
that (40) holds.

(iii) ⇒ (ii). Suppose that (40) holds. For any f ∈ Ap
α with ‖f‖Ap

α
≤ 1, by

(39) we have

(41) (1− |z|2)β |<(Cg
ϕf)(z)| ≤ C‖f‖Ap

α
(1− |z|2)β |g(z)|,

from which we obtain
(42)

lim
|z|→1

sup
‖f‖A

p
α
≤1

(1− |z|2)β |<(Cg
ϕf)(z)| ≤ C lim

|z|→1
sup

‖f‖A
p
α
≤1

(1− |z|2)β |g(z)| = 0.

By Lemma 2 we see that Cg
ϕ : Ap

α → Bβ
0 is compact. This completes the proof

of the theorem. �

From Theorems 9 and 10 we obtain the following two corollaries.

Corollary 5. Suppose p > 0 and n + 1 + α + p < 0. Let g ∈ H(B) and
0 < β < ∞. Then the following statements hold.

(i) Lg : Ap
α → Bβ is bounded if and only if Lg : Ap

α → Bβ is compact if and
only if

sup
z∈B

(1− |z|2)β |g(z)| < ∞;

(ii) Lg : Ap
α → Bβ

0 is bounded if and only if Lg : Ap
α → Bβ

0 is compact if and
only if

lim
|z|→1

(1− |z|2)β |g(z)| = 0.

Corollary 6. Suppose p > 0 and 2 + α + p < 0. Let ϕ be a holomorphic
self-map of D and 0 < β < ∞. Then the following statements hold.

(i) Cϕ : Ap
α → Bβ is bounded if and only if Cϕ : Ap

α → Bβ is compact if and
only if ϕ ∈ Bβ ;

(ii) Cϕ : Ap
α → Bβ

0 is bounded if and only if Cϕ : Ap
α → Bβ

0 is compact if and
only if ϕ ∈ Bβ

0 .
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