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ON THE LIE DERIVATIVE OF REAL HYPERSURFACES IN

CP
2 AND CH

2 WITH RESPECT TO THE GENERALIZED

TANAKA-WEBSTER CONNECTION

Konstantina Panagiotidou and Juan de Dios Pérez

Abstract. In this paper the notion of Lie derivative of a tensor field
T of type (1,1) of real hypersurfaces in complex space forms with re-
spect to the generalized Tanaka-Webster connection is introduced and
is called generalized Tanaka-Webster Lie derivative. Furthermore, three
dimensional real hypersurfaces in non-flat complex space forms whose
generalized Tanaka-Webster Lie derivative of 1) shape operator, 2) struc-
ture Jacobi operator coincides with the covariant derivative of them with
respect to any vector field X orthogonal to ξ are studied.

1. Introduction

A complex space form is an n-dimensional Kähler manifold of constant holo-
morphic sectional curvature c. A complete and simply connected complex space
form is analytically isometric to a complex projective space CPn if c > 0, or to
a complex Euclidean space Cn if c = 0, or to a complex hyperbolic space CHn

if c < 0. The complex projective and complex hyperbolic spaces are called
non-flat complex space forms, since c 6= 0 and the symbol Mn(c) is used to
denote them when it is not necessary to distinguish them.

A real hypersurface M is an immersed submanifold with real co-dimension
one in Mn(c). The Kähler structure (J,G), where J is the complex structure
and G is the Kähler metric of Mn(c), induces on M an almost contact metric
structure (ϕ, ξ, η, g). The vector field ξ is called structure vector field and when
it is an eigenvector of the shape operator A of M the real hypersurface is called
Hopf hypersurface and the corresponding eigenvalue is α = g(Aξ, ξ).

The study of real hypersurfaces M in Mn(c) was initiated by Takagi, who
classified homogeneous real hypersurfaces in CPn and divided them into six
types, namely (A1), (A2), (B), (C), (D) and (E) in [13]. These real hyper-
surfaces are Hopf ones with constant principal curvatures. In case of CHn,
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the study of real hypersurfaces with constant principal curvatures, was started
by Montiel in [5] and completed by Berndt in [1]. They are divided into two
types, namely (A) and (B), depending on the number of constant principal
curvatures. The real hypersurfaces found by them are homogeneous and Hopf
ones.

Last years many geometers have studied real hypersurfaces in Mn(c) when
they satisfy certain geometric conditions. More precisely, the structure Jacobi

operator of them plays an important role in their study. Generally, the Jacobi

operator with respect to a vector field X on a manifold is defined by R(·, X)X ,
where R is the Riemannian curvature of the manifold. In case of real hyper-
surfaces for X = ξ the Jacobi operator is called structure Jacobi operator and
is denoted by l = Rξ = R(·, ξ)ξ.

Another topic that has been of great importance is the study of real hy-
persurfaces in Mn(c) in terms of their generalized Tanaka-Webster connection.
The notion of generalized Tanaka-Webster connection was first introduced by
Tanno in [14] in case of contact metric manifolds in the following way

∇̂XY = ∇XY + (∇Xη)(Y )ξ − η(Y )∇Xξ − η(X)ϕY.

In [2] Cho extended Tanno’s work by defining the notion of generalized Tanaka-
Webster connection for real hypersurfaces M in Mn(c) in the following way

∇̂
(k)
X Y = ∇XY + g(ϕAX, Y )ξ − η(Y )ϕAX − kη(X)ϕY,

where X , Y are tangent to M and k is a non-null real number. The notion of
k-th Cho operator associated to a vector field X was introduced by the second

author in [11] and is given by F
(k)
X Y = g(ϕAX, Y )ξ − η(Y )ϕAX − kη(X)ϕY .

If X is any vector field orthogonal to ξ the k-th Cho operator associated to X

becomes FXY = g(ϕAX, Y )ξ−η(Y )ϕAX and is called Cho operator associated
to X . Furthermore, the relation of generalized Tanaka-Webster connection due
to the above becomes

∇̂
(k)
X Y = ∇XY + F

(k)
X Y.(1.1)

In [12] the second author and Suh studied commuting conditions of k-th Cho
operator associated to 1) any vectorX orthogonal to ξ, 2) structure vector field
ξ with the shape operator. More precisely, they classified real hypersurfaces in
CPn, n ≥ 3, whose k-th Cho operator associated to ξ commutes with the shape
operator and they also proved that the shape operator only of ruled hypersur-
faces in CPn, n ≥ 3, commutes with Cho operator associated to any vector X
orthogonal to ξ. In [11] the second author studied the commuting conditions
of k-th Cho operator associated to vector field X with the structure Jacobi
operator. More precisely, he proved that the k-th Cho operator associated to ξ

commutes with the structure Jacobi operator only in case of real hypersurfaces
of type (A) or of real hypersurfaces with α = 0 in CPn, n ≥ 3. Furthermore, he
proved that ruled hypersurfaces are the only real hypersurfaces in CPn, n ≥ 3,
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whose Cho operator associated to any vector X orthogonal to ξ commutes with
the structure Jacobi operator.

The Lie derivative of a tensor field T of type (1,1) with respect to the

generalized Tanaka-Webster connection is denoted by L̂
(k)
X T , called generalized

Tanaka-Webster Lie derivative with respect to X and is given by

(L̂
(k)
X T )Y = ∇̂

(k)
X TY − ∇̂

(k)
TY X − T ∇̂

(k)
X Y + T ∇̂

(k)
Y X,

where X , Y are tangent to M . Taking into account relation (1.1) the above
relation implies

(L̂
(k)
X T )Y = ∇XTY + F

(k)
X TY −∇TY X − F

(k)
TY X − T∇XY − TF

(k)
X Y(1.2)

+ T∇Y X + TF
(k)
Y X.

In [10] the second author began the study of real hypersurfaces in CPn,
n ≥ 3, whose Lie derivative with respect to ξ of 1) shape operator, 2) structure
Jacobi operator coincides with the covariant derivative of them with respect

to ξ and the generalized Tanaka-Webster connection, i.e (LξT )Y = (∇̂
(k)
ξ T )Y ,

where T is either the shape operator or the structure Jacobi operator.
Motivated by the work that so far has been done the following question

raised

Question. Are there real hypersurfaces in Mn(c), n ≥ 2, whose generalized
Lie derivative of a tensor field T of type (1, 1) with respect to a vector field X

coincides with the covariant derivative of them, i.e., (L̂
(k)
X T )Y = (∇XT )Y ?

The aim of the present paper is to answer the above question in case of three
dimensional real hypersurfaces in M2(c) in case of 1) shape operator and 2)
structure Jacobi operator. Let M be a three dimensional real hypersurface in
M2(c), whose shape or structure Jacobi operator satisfy the relation

(L̂
(k)
ξ T )Y = (∇ξT )Y.

The above relation due to (1.1) and since ∇̂(k)ξ = 0 implies F
(k)
ξ TY = TF

(k)
ξ Y ,

where T is either the shape or the structure Jacobi operator. Real hypersur-
faces satisfying this condition have been studied by the authors in [7] and [8]
respectively.

So in this paper we are focused on the study of three dimensional real hy-
persurfaces in M2(c), whose shape or structure Jacobi operator, denoted when
it is not necessary to be distinguished by T satisfy relation

(L̂
(k)
X T )Y = (∇XT )Y,(1.3)

where X is any vector field orthogonal to ξ and Y is tangent vector to M .
More precisely, the following Theorems are proved.

Theorem 1.1. There do not exist real hypersurfaces in M2(c) whose gen-

eralized Tanaka-Webster Lie derivative of shape operator coincides with the

covariant derivative of it with respect to any vector field X orthogonal to ξ.
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Theorem 1.2. There do not exist real hypersurfaces in M2(c) whose general-

ized Tanaka-Webster Lie derivative of structure Jacobi operator coincides with

the covariant derivative of it with respect to any vector field X orthogonal to ξ.

This paper is organized as follows: In Section 2 basic relations and results
about real hypersurfaces in Mn(c), n ≥ 2, are given. In Section 3 the proof
of Theorem 1.1 is provided. Finally, in Section 4 the proof of Theorem 1.2 is
given.

2. Preliminaries

Throughout this paper all manifolds, vector fields etc are assumed to be of
class C∞ and all manifolds are assumed to be connected. Furthermore, the
real hypersurfaces M are supposed to be without boundary.

Let M be a real hypersurface immersed in a non-flat complex space form
(Mn(c), G) with complex structure J of constant holomorphic sectional curva-
ture c. In case of CPn we have c = 4 and in case of CHn we have c = −4.

Let N be a locally defined unit normal vector field on M and ξ = −JN be
the structure vector field of M . For a vector field X tangent to M relation

JX = ϕX + η(X)N

holds, where ϕX and η(X)N are respectively the tangential and the normal
component of JX . The Riemannian connections ∇ in Mn(c) and ∇ in M are
related for any vector fields X , Y on M by

∇XY = ∇XY + g(AX, Y )N,

where g is the Riemannian metric induced from the metric G.
The shape operator A of the real hypersurface M in Mn(c) with respect to

N is given by
∇XN = −AX.

The real hypersurface M has an almost contact metric structure (ϕ, ξ, η, g)
induced from J of Mn(c), where ϕ is the structure tensor, which is a tensor
field of type (1,1) and η is an 1-form such that

g(ϕX, Y ) = G(JX, Y ), η(X) = g(X, ξ) = G(JX,N).

Moreover, the following relations hold

ϕ2X = −X + η(X)ξ, η ◦ ϕ = 0, ϕξ = 0, η(ξ) = 1,

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), g(X,ϕY ) = −g(ϕX, Y ).

The fact that J is parallel implies ∇J = 0 and this leads to

∇Xξ = ϕAX, (∇Xϕ)Y = η(Y )AX − g(AX, Y )ξ.(2.1)

The ambient space Mn(c) is of constant holomorphic sectional curvature c and
this results in the Gauss and Codazzi equations are respectively given by

R(X,Y )Z =
c

4
[g(Y, Z)X − g(X,Z)Y + g(ϕY,Z)ϕX(2.2)
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−g(ϕX,Z)ϕY − 2g(ϕX, Y )ϕZ] + g(AY,Z)AX − g(AX,Z)AY,

(∇XA)Y − (∇Y A)X =
c

4
[η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ],

where R denotes the Riemannian curvature tensor on M and X , Y , Z are any
vector fields on M .

Relation (2.2) implies that the structure Jacobi operator l is given by

lX =
c

4
[X − η(X)ξ] + αAX − η(AX)Aξ,(2.3)

for any vector field X tangent to M , where α = η(Aξ) = g(Aξ, ξ).
The tangent space TPM at every point P ∈ M can be decomposed as

TPM = span{ξ} ⊕ D,

where D = ker η = {X ∈ TPM : η(X) = 0} and is called (maximal) holomor-

phic distribution (if n ≥ 3). Due to the above decomposition the vector field
Aξ can be written

Aξ = αξ + βU,

where β = |ϕ∇ξξ| and U = − 1
β
ϕ∇ξξ ∈ ker(η) is a unit vector field, provided

that β 6= 0.
Next, the following results concern any non-Hopf real hypersurface M in

M2(c) with local orthonormal basis {U,ϕU, ξ} at a point P of M .

Lemma 2.1. Let M be a non-Hopf real hypersurface in M2(c). The following

relations hold on M

AU = γU + δϕU + βξ, AϕU = δU + µϕU, Aξ = αξ + βU,(2.4)

∇Uξ = −δU + γϕU, ∇ϕUξ = −µU + δϕU, ∇ξξ = βϕU,

∇UU = κ1ϕU + δξ, ∇ϕUU = κ2ϕU + µξ, ∇ξU = κ3ϕU,

∇UϕU = −κ1U − γξ, ∇ϕUϕU = −κ2U − δξ, ∇ξϕU = −κ3U − βξ,

where α, β, γ, δ, µ, κ1, κ2, κ3 are smooth functions on M and β 6= 0.

Remark 2.2. The proof of Lemma 2.1 is included in [9].

The structure Jacobi operator for X = U , X = ϕU and X = ξ due to (2.4)
is given by

(2.5) lU = (
c

4
+αγ − β2)U +αδϕU, lϕU = αδU + (

c

4
+αµ)ϕU and lξ = 0.

The Codazzi equation for X ∈ {U,ϕU} and Y = ξ because of Lemma 2.1
implies the following relations

ξδ = αγ + βκ1 + δ2 + µκ3 +
c

4
− γµ− γκ3 − β2,(2.6)

ξµ = αδ + βκ2 − 2δκ3,(2.7)

(ϕU)α = αβ + βκ3 − 3βµ,(2.8)
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(ϕU)β = αγ + βκ1 + 2δ2 +
c

2
− 2γµ+ αµ,(2.9)

and for X = U and Y = ϕU

Uδ − (ϕU)γ = µκ1 − κ1γ − βγ − 2δκ2 − 2βµ.(2.10)

Furthermore, combination of the Gauss equation (2.2) with the formula of
Riemannian curvature R(X,Y )Z = ∇X∇Y Z−∇Y ∇XZ−∇[X,Y ]Z, taking into
account relations of Lemma 2.1, implies

Uκ2 − (ϕU)κ1 = 2δ2 − 2γµ− κ2
1 − γκ3 − κ2

2 − µκ3 − c,(2.11)

(ϕU)κ3 − ξκ2 = 2βµ− µκ1 + δκ2 + κ3κ1 + βκ3.(2.12)

Finally, the following Theorem which in case of CPn is owed to Maeda [4]
and in case of CHn is owed to Montiel [5] (also Corollary 2.3 in [6]).

Theorem 2.3. Let M be a Hopf hypersurface in Mn(c), n ≥ 2. Then

i) α is constant.

ii) If W is a vector field which belongs to D such that AW = λW , then

(λ −
α

2
)AϕW = (

λα

2
+

c

4
)ϕW.

iii) If the vector field W satisfies AW = λW and AϕW = νϕW , then

λν =
α

2
(λ+ ν) +

c

4
.(2.13)

Remark 2.4. In case of real hypersurfaces of dimension greater to three the
third case of Theorem 2.3 occurs when α2 + c 6= 0, since in this case relation
λ 6= α

2 holds. Furthermore, the first of (2.1) and (2.3) for X = W and X = ϕW

respectively implies

∇W ξ = λϕW and ∇ϕW ξ = −νW,(2.14)

lW = (
c

4
+ αλ)W and lϕW = (

c

4
+ αν)ϕW.(2.15)

Remark 2.5. In case of three dimensional Hopf hypersurfaces we can always
consider a local orthonormal basis {W,ϕW, ξ} at some point P ∈ M such that
AW = λW and AϕW = νϕW . So relations (2.13), (2.14) and (2.15) hold.

3. Proof of Theorem 1.1

LetM be a real hypersurface inM2(c) whose shape operator satisfies relation
(1.3) for T = A with respect to any vector field X ∈ D. The latter due to

F
(k)
X Y = g(ϕAX, Y )ξ − η(Y )ϕAX − kη(X)ϕY and X ∈ D becomes

g(ϕAX,AY )ξ + g(AY,AϕX)ξ + kη(AY )ϕX + η(Y )AϕAX(3.1)

+A∇Y X + g(ϕAY,X)Aξ

= η(AY )ϕAX +∇AY X + g(ϕAX, Y )Aξ + kη(Y )AϕX,

where X ∈ D and Y ∈ TM .
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We consider the open subset N of M such that

N = {P ∈ M : β 6= 0 in a neighborhood of P}.

On N the inner product of (3.1) for X = U and Y = ξ with ξ due to (2.4)
and relations of Lemma 2.1 implies δ = 0 and relation (2.4) becomes

AU = γU + βξ, AϕU = µϕU and Aξ = αξ + βU.(3.2)

The inner product of relation (3.1) for X = U and Y = ϕU with U because of
(3.2) and relations of Lemma 2.1 results in γ = 0. Moreover, the inner product
of relation (3.1) for X = ϕU and Y = ξ with ξ and for X = ϕU and Y = U

with ξ due to (3.2), relations of Lemma 2.1 and γ = 0 respectively implies

k = 2µ+ κ3 and κ1β = αµ.(3.3)

The inner product of relation (3.1) for X = U and Y = ξ with ϕU because
of (3.3) yields

µ(2µ− α) = 0.

If α 6= 2µ the above relation implies µ = 0 and the second of (3.3) yields
κ1 = 0. Relation (2.6) because of δ = γ = µ = κ1 = 0 yields β2 = c

4 .
Differentiating the latter with respect to ϕU and taking into account relation
(2.9) and µ = γ = δ = κ1 = 0 we obtain c = 0, which is a contradiction.

So on N relations δ = γ = 0, α = 2µ and (3.3) hold. Relation (2.10) due to
γ = 0 implies µ(κ1 − 2β) = 0. If κ1 6= 2β, then µ = 0 and following similar
steps to those in the previous case leads to a contradiction. Thus, κ1 = 2β
and the second of (3.3) taking into account also that α = 2µ implies µ2 = β2.
Relation (2.6) because of the first of (3.3) and the relations for µ and κ1 implies
β2 = kµ + c

4 . Differentiation of the latter with respect to ϕU and taking into

account relations (2.8), (2.9), (ϕU)α = 2(ϕU)µ, κ1 = 2β, β2 = µ2, κ3 = k−2µ,
α = 2µ and β2 = kµ+ c

4 results in 11β2 = k2− c
4 . Differentiating the latter with

respect to ϕU yields (ϕU)β = 0 and because of (2.9) results in 4β2 + c
2 = 0.

Finally, the inner product of relation (3.1) for X = Y = ϕU with ξ implies
κ2 = 0. So relation (2.11) due to κ2 = 0, κ1 = 2β, µ2 = β2, the first of (3.3),
(ϕU)κ1 = 2β(ϕU)β = 0 and 4β2 + c

2 yields c = 0, which is a contradiction.
Therefore, N is empty and the following proposition is proved:

Proposition 3.1. Every real hypersurface in M2(c) whose shape operator sat-

isfies relation (1.3) is Hopf.

Because of the above proposition, Theorem 2.3 and Remark 2.4 hold. The
inner product of (3.1) for X = ϕW and Y = W with ξ implies

ν(λ− α) = 0.

Let ν 6= 0 then the above relation results in λ = α. The inner product of
(3.1) for X = W and Y = ϕW with ξ due to the previous relation yields
α(ν − α) = 0. If α 6= 0, then ν = α and M is umbilical, which is impossible
since such real hypersurfaces do not exist. So α = λ = 0 and substitution of
this in (2.13) leads to c = 0, which is a contradiction.
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So ν = 0 and the inner product of (3.1) for X = W and Y = ϕW with ξ

implies αλ = 0. Substitution of the latter in (2.13) results in c = 0, which is a
contradiction and this completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

Let M be a real hypersurface in M2(c) whose structure Jacobi operator
satisfies relation (1.3) for T = l with respect to any vector field X ∈ D. The

latter due to F
(k)
X Y = g(ϕAX, Y )ξ−η(Y )ϕAX−kη(X)ϕY and X ∈ D becomes

(4.1) g(ϕAX, lY )ξ+η(Y )lϕAX+l∇Y X = g(ϕAlY,X)ξ+kη(Y )lϕX+∇lY X,

where X ∈ D and Y ∈ TM .
We consider the open subset N of M such that

N = {P ∈ M : β 6= 0 in a neighborhood of P}.

On N the inner product of (4.1) for X = Y = ϕU with ξ because of (2.4)
and (2.5) yields δ = 0. So relation (2.4) becomes

AU = γU + βξ, AϕU = µϕU and Aξ = αξ + βU.

The inner product of (4.1) for X = U and Y = ϕU with ξ and for X = ϕU

and Y = U with ξ owing to the above relation and (2.5) yields respectively

γ(
c

4
+ αµ) = 0 and µ(

c

4
+ αγ − β2) = 0.(4.2)

Suppose that γ 6= 0 then the first of (4.2) implies c
4 +αµ = 0. Thus, µ 6= 0 and

the second results in c
4 + αγ = β2. The last two relations due to (2.5) yields

lU = lϕU = 0, which implies that the structure Jacobi operator vanishes
identically, which is impossible due to Proposition 8 [3].

So on N relation γ = 0 holds and the second of (4.2) becomes

µ(
c

4
− β2) = 0.

Let β2 6= c
4 then we have µ = 0 and the first of (2.5) implies that lU 6= 0.

Relation (4.1) for X = ϕU and Y = ξ because of AϕU = 0 and Lemma
2.1 results in (k − κ3)lU = 0, which implies that κ3 = k. Since δ = µ = 0
relation (2.7) implies that κ2 = 0. Thus relation (2.12) due to κ3 = k gives
κ1 = −β. Therefore, relation (2.6) due to γ = δ = µ = 0 and the latter implies
β2 = c

2 . Differentiation of the latter with respect to ϕU yields (ϕU)β = 0
and due to κ1 = −β we obtain (ϕU)κ1 = 0. So relation (2.11) leads to
β2 = −c. Combination of the last one with β2 = c

2 results in c = 0, which is a
contradiction.

Therefore, on N we have

γ = 0 and β2 =
c

4
,

which implies that lU = 0. Relation (4.1) for X = U and Y = ξ due to
AU = βξ and Lemma 2.1 implies (k − κ3)lϕU = 0. The last one yields that
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κ3 = k, since if lϕU = 0, then the structure Jacobi operator vanishes and this
is impossible due to Proposition 8 in [3].

Relation (2.10) due to all the above relations implies µ(κ1−2β) = 0. Suppose
that κ1 6= 2β then µ = 0 and following similar steps as above we lead to
a contradiction. So κ1 = 2β. Relation (2.6) because of the last one, γ = 0,
β2 = c

4 and κ3 = k implies 2β2+kµ = 0. Differentiating the latter with respect

to ξ and taking into account that ξβ = 0, since β2 = c
4 results in ξµ = 0. The

last one because of (2.7) gives κ2 = 0. Thus, relation (2.11) due to all the
previous relations implies 6β2+ c = 0 which in combination to β2 = c

4 leads to
a contradiction.

Thus, N is empty and the following proposition is proved:

Proposition 4.1. Every real hypersurface in M2(c) whose structure Jacobi

operator satisfies relation (1.3) is Hopf.

Due to the above proposition, relations in Theorem 2.3 and Remark 2.4
hold. The inner product of (4.1) for X = W and Y = ϕW and for X = ϕW

and Y = W with ξ due to (2.14) and (2.15) implies respectively

λ(
c

4
+ αν) = 0 and ν(

c

4
+ αλ) = 0.

Suppose that λ 6= 0 then above two relations implies c
4 + αν = 0. Thus, ν 6= 0

and relation c
4 + αλ = 0 holds. Substitution of the above relations in (2.13)

yields λν = 0, which is a contradiction.
Therefore, onM relation λ = 0 holds and the second relation results in ν = 0.

Substitution of the previous in (2.13) leads to c = 0, which is a contradiction
and this completes the proof of Theorem 1.2.
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