ANALYTIC FUNCTIONS WITH CONIC DOMAINS ASSOCIATED WITH CERTAIN GENERALIZED q-INTEGRAL OPERATOR

Om P. Ahuja, Asena Çetinkaya, and Naveen Kumar Jain

Abstract

In this paper, we define a new subclass of k-uniformly starlike functions of order $\gamma(0 \leq \gamma<1)$ by using certain generalized q integral operator. We explore geometric interpretation of the functions in this class by connecting it with conic domains. We also investigate q sufficient coefficient condition, q-Fekete-Szegö inequalities, q-BieberbachDe Branges type coefficient estimates and radius problem for functions in this class. We conclude this paper by introducing an analogous subclass of k-uniformly convex functions of order γ by using the generalized q-integral operator. We omit the results for this new class because they can be directly translated from the corresponding results of our main class.

1. Introduction

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

that are analytic in the open unit disc $\mathbb{D}:=\{z:|z|<1\}$. Denote by \mathcal{P} the class of functions p which are analytic and have positive real part in \mathbb{D} with $p(0)=1$. Let Ω be the family of Schwarz functions w which are analytic in \mathbb{D} satisfying the conditions $w(0)=0,|w(z)|<1$ for all $z \in \mathbb{D}$. If f and g are analytic functions in \mathbb{D}, then we say that f is subordinate to g, written as $f \prec g$, if there exists a Schwarz function $w \in \Omega$ such that $f(z)=g(w(z))$. We also note that if g is univalent in \mathbb{D}, then by subordination rules we get $f(0)=g(0)$ and $f(\mathbb{D}) \subset g(\mathbb{D})$.

We denote the class \mathcal{S} of all functions in \mathcal{A} that are univalent in \mathbb{D}. Also, let $\mathcal{S T}$ and $\mathcal{C V}$ denote the subclasses of \mathcal{S} that are starlike and convex, respectively.

[^0]For definitions and properties of these classes, one may refer to the survey article by first author [1].

In 1991, Goodman [13] introduced the concept of uniform convexity and uniform starlike functions in \mathcal{S}. In fact, he defined such uniform classes, denoted by $\mathcal{U C V}$ and $\mathcal{U S T}$, by their geometrical properties. A function f in \mathcal{A} is said to be uniformly convex (uniformly starlike) in \mathbb{D} if f is in $\mathcal{C V}(\mathcal{S T})$ and has the property that for every circular arc γ contained in \mathbb{D} with center ξ also in \mathbb{D}, the arc $f(\gamma)$ is convex (starlike) with respect to $f(\xi)$.

In 1993, Ronning [29] proved the basis for further investigation of the classes $\mathcal{U C V}$ and $\mathcal{U S T}$.

Theorem A ([29]). If $f \in \mathcal{A}$, then $f \in \mathcal{U C V}$ if and only if

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \quad(z \in \mathbb{D})
$$

Applying the classic Alexander Theorem found by Alexander [5] in 1915, Ronning [29] obtained a characterization of the class $\mathcal{U S T}$.

Theorem B ([29]). If a function f belongs to \mathcal{A}, then f belongs to $\mathcal{U S T}$ if and only if

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \quad(z \in \mathbb{D})
$$

For $k \geq 0$, Kanas et al. [21] introduced the class of k-uniformly starlike functions denoted by $k-\mathcal{U S T}$. Such a class consists of functions $f \in \mathcal{A}$ that satisfy the inequality

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>k\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \quad(z \in \mathbb{D})
$$

We note that $1-\mathcal{U S T} \equiv \mathcal{U S T}$. In 1997, Bharati et al. [11] introduced the class of k-uniformly starlike functions of order $\gamma(0 \leq \gamma<1)$ for functions in the class $k-\mathcal{U S T}(\gamma)$.

Definition 1.1 ([11]). Let $0 \leq \gamma<1$ and $k \geq 0$. A function $f \in \mathcal{A}$ is said to be in $k-\mathcal{U S T}(\gamma)$, called k-uniformly starlike functions of order γ, if f satisfies the inequality

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>k\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|+\gamma \quad(z \in \mathbb{D})
$$

We note that $k-\mathcal{U S T}(0) \equiv k-\mathcal{U S T}$. The class $1-\mathcal{U S} \mathcal{T}(\gamma)$ was investigated in [6] and [28].

We next recall some concepts and notations of q-calculus that we need to define a new class which connects $k-\mathcal{U S T}(\gamma)$ and a generalized integral operator defined by q-calculus.

Quantum calculus (or q-calculus) is a theory of calculus where smoothness is not required. A systematic study of q-differentiation and q-integration was
initiated by Jackson $[15,16]$. The q-derivative (or q-difference) operator of a function f, defined on a subset of \mathbb{C}, is defined by

$$
\left(D_{q} f\right)(z)= \begin{cases}\frac{f(z)-f(q z)}{(1-q) z}, & \text { if } z \neq 0 \\ f^{\prime}(0), & \text { if } z=0\end{cases}
$$

where $q \in(0,1)$. Note that $\lim _{q \rightarrow 1^{-}}\left(D_{q} f\right)(z)=f^{\prime}(z)$ if f is differentiable at z. Under the hypothesis of the definition of q-derivative, we have the following rules:

$$
\begin{align*}
D_{q}(a f(z) \pm b g(z)) & =a D_{q} f(z) \pm b D_{q} g(z)(a, b \in \mathbb{C}) \\
D_{q}(f(z) \cdot g(z)) & =f(q z) D_{q} g(z)+g(z) D_{q} f(z) . \tag{1.2}
\end{align*}
$$

It easily follows that if a function f is given by (1.1), then

$$
\left(D_{q} f\right)(z)=\sum_{n=1}^{\infty}[n]_{q} a_{n} z^{n-1}, \quad D_{q}\left(z D_{q} f(z)\right)=\sum_{n=1}^{\infty}[n]_{q}^{2} a_{n} z^{n-1}
$$

where

$$
[n]_{q}=\frac{1-q^{n}}{1-q}
$$

is called q-number or q-bracket of n. Clearly, $\lim _{q \rightarrow 1^{-}}[n]_{q}=n$. In [16], Jackson defined q-integral of a function f as follows:

$$
\int_{0}^{x} f(t) d_{q} t=x(1-q) \sum_{n=0}^{\infty} q^{n} f\left(x q^{n}\right)
$$

provided the series converges. It is known that q-gamma function is given by

$$
\begin{equation*}
\Gamma_{q}(x+1)=[x]_{q} \Gamma_{q}(x), \quad \Gamma_{q}(x+1)=[x]_{q}!, \tag{1.3}
\end{equation*}
$$

where q-factorial $[x]_{q}$! is given by

$$
[x]_{q}!= \begin{cases}{[x]_{q}[x-1]_{q} \cdots[2]_{q}[1]_{q},} & \text { if } x \geq 1 \\ 1, & \text { if } x=0\end{cases}
$$

Note that in the limiting case when $q \rightarrow 1^{-}, \Gamma_{q}(x) \rightarrow \Gamma(x)$; see [14].
The q-beta function has the q-integral representation, which is a q-analogue of Euler's formula (see [16]):

$$
\begin{equation*}
B_{q}(t, s)=\int_{0}^{1} x^{t-1}(1-q x)_{q}^{s-1} d_{q} x, \quad(0<q<1 ; t, s>0) . \tag{1.4}
\end{equation*}
$$

Jackson [14] also showed that the q-beta function defined by the formula

$$
\begin{equation*}
B_{q}(t, s)=\frac{\Gamma_{q}(t) \Gamma_{q}(s)}{\Gamma_{q}(t+s)} \tag{1.5}
\end{equation*}
$$

tends to $B(t, s)$ as $q \rightarrow 1^{-}$. Also, the Gauss q-binomial coefficients are given by

$$
\begin{equation*}
\binom{n}{k}_{q}:=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!} . \tag{1.6}
\end{equation*}
$$

For more details, one may refer to $[12,18]$.
In recent years, quantum calculus approach has led to a great development in geometric function theory. Ahuja and Çetinkaya [3] recently wrote a survey on the use of quantum calculus approach in mathematical sciences and its role in geometric function theory. One may also refer to the recent paper by Ahuja et al. [2].

Motivated by Jung et al. [17], Mahmood et al. [24] introduced the generalized q-integral operator $\chi_{\beta, q}^{\alpha} f: \mathcal{A} \rightarrow \mathcal{A}$ defined by

$$
\begin{equation*}
\chi_{\beta, q}^{\alpha} f(z)=\binom{\alpha+\beta}{\beta}_{q} \frac{[\alpha]_{q}}{z^{\beta}} \int_{0}^{z}\left(1-\frac{q t}{z}\right)_{q}^{\alpha-1} t^{\beta-1} f(t) d_{q} t \tag{1.7}
\end{equation*}
$$

where $\alpha>0, \beta>-1, q \in(0,1)$. Using (1.3), (1.4), (1.5), and (1.6), they observed that

$$
\begin{equation*}
\chi_{\beta, q}^{\alpha} f(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma_{q}(\beta+n)}{\Gamma_{q}(\alpha+\beta+n)} \frac{\Gamma_{q}(\alpha+\beta+1)}{\Gamma_{q}(\beta+1)} a_{n} z^{n} . \tag{1.8}
\end{equation*}
$$

For special values of the parameters, the generalized integral operator (1.8) gives the following known integral operators as special cases:
(i) For $q \rightarrow 1^{-}$, the operator $\chi_{\beta, q}^{\alpha} f$ reduces to the integral operator $\chi_{\beta}^{\alpha} f$ defined in [17] by

$$
\begin{aligned}
\chi_{\beta}^{\alpha} f(z) & =\binom{\alpha+\beta}{\beta} \frac{\alpha}{z^{\beta}} \int_{0}^{z}\left(1-\frac{t}{z}\right)^{\alpha-1} t^{\beta-1} f(t) d t \\
& =z+\sum_{n=2}^{\infty} \frac{\Gamma(\beta+n)}{\Gamma(\alpha+\beta+n)} \frac{\Gamma(\alpha+\beta+1)}{\Gamma(\beta+1)} a_{n} z^{n} .
\end{aligned}
$$

(ii) For $\alpha=1$, the operator $\chi_{\beta, q}^{\alpha} f$ yields the q-Bernardi integral operator $J_{\beta, q} f$ defined in [25] by

$$
J_{\beta, q} f=\frac{[1+\beta]_{q}}{z^{\beta}} \int_{0}^{z} t^{\beta-1} f(t) d_{q} t=\sum_{n=1}^{\infty} \frac{[1+\beta]_{q}}{[n+\beta]_{q}} a_{n} z^{n} .
$$

(iii) For $\alpha=1, q \rightarrow 1^{-}$, the operator $\chi_{\beta, q}^{\alpha} f$ gives the Bernardi integral operator $J_{\beta} f$ defined in [10] by

$$
\begin{equation*}
J_{\beta} f(z)=\frac{1+\beta}{z^{\beta}} \int_{0}^{z} t^{\beta-1} f(t) d t=\sum_{n=1}^{\infty} \frac{1+\beta}{n+\beta} a_{n} z^{n} \tag{1.9}
\end{equation*}
$$

(iv) For $\alpha=1, \beta=0, q \rightarrow 1^{-}$, the operator $\chi_{\beta, q}^{\alpha} f$ reduces to the Alexander integral operator $J_{0} f$ given in [30] by

$$
\begin{equation*}
J_{0} f(z)=\int_{0}^{z} \frac{f(t)}{t} d t=z+\sum_{n=2}^{\infty} \frac{1}{n} a_{n} z^{n} \tag{1.10}
\end{equation*}
$$

Making use of q-integral operator, $\chi_{\beta, q}^{\alpha} f$ and k-uniformly starlike function of order γ given in Definition 1.1, we define the new class $k-\mathcal{J U S T}(q ; \alpha, \beta, \gamma)$.

Definition 1.2. Let $0 \leq \gamma<1, q \in(0,1), k \geq 0, \alpha>0, \beta>-1$. A function $f \in \mathcal{A}$ is in the class k - $\mathcal{J U S T}(q ; \alpha, \beta, \gamma)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)}{\chi_{\beta, q}^{\alpha} f(z)}\right)>k\left|\frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)}{\chi_{\beta, q}^{\alpha} f(z)}-1\right|+\gamma \quad(z \in \mathbb{D}), \tag{1.11}
\end{equation*}
$$

where $\chi_{\beta, q}^{\alpha} f(z)$ is given by (1.8).
In what follows, we shall first look at the geometric interpretation of (1.11). Note that

$$
\begin{align*}
& \frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)}{\chi_{\beta, q}^{\alpha} f(z)} \\
= & 1+\left([2]_{q}-1\right) \psi_{2} a_{2} z+\left[\left([3]_{q}-1\right) \psi_{3} a_{3}-\left([2]_{q}-1\right) \psi_{2}^{2} a_{2}^{2}\right] z^{2}+\cdots, \tag{1.12}
\end{align*}
$$

where

$$
\psi_{n}=\frac{\Gamma_{q}(\beta+n)}{\Gamma_{q}(\alpha+\beta+n)} \frac{\Gamma_{q}(\alpha+\beta+1)}{\Gamma_{q}(\beta+1)} \quad(n \geq 2)
$$

It follows that for $z=0$, we have

$$
\frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)}{\chi_{\beta, q}^{\alpha} f(z)}=1
$$

Thus $p(z)=z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right) / \chi_{\beta, q}^{\alpha} f(z)$, where p belongs to the class \mathcal{P}. Therefore (1.11) is equivalent to

$$
\operatorname{Re} p(z)>k|p(z)-1|+\gamma \quad(z \in \mathbb{D})
$$

Thus, $p(z)$ takes the values in the conic domain $\Omega_{k, \gamma}$ defined by

$$
\Omega_{k, \gamma}=\left\{u+i v: u>k \sqrt{(u-1)^{2}+v^{2}}+\gamma, 0 \leq \gamma<1, k \geq 0\right\}
$$

Note that $1 \in \Omega_{k, \gamma}$ and $\partial \Omega_{k, \gamma}$ is a curve defined by

$$
\partial \Omega_{k, \gamma}=\left\{u+i v:(u-\gamma)^{2}=k^{2}(u-1)^{2}+k^{2} v^{2}, 0 \leq \gamma<1, k \geq 0\right\}
$$

Elementary computations show that $\partial \Omega_{k, \gamma}$ represents a conic section symmetric about the real axis. Hence $\Omega_{k, \gamma}$ is an elliptic domain for $k>1$, parabolic domain for $k=1$, hyperbolic domain for $0<k<1$ and a right half plane $u>\gamma$ for $k=0$.

Denote by $\mathcal{P}\left(p_{k, \gamma}\right)$ the family of functions p such that $p \in \mathcal{P}$ and $p \prec p_{k, \gamma}$ in \mathbb{D}, where $p_{k, \gamma}$ maps \mathbb{D} conformally onto the domain $\Omega_{k, \gamma}$.

Kanas et al. $[20,21]$ found that the function $p_{k, \gamma}(z)$ plays a role of extremal function of the class $\mathcal{P}\left(p_{k, \gamma}\right)$ and is given by

$$
\begin{aligned}
& p_{k, \gamma}(z) \\
& = \begin{cases}\frac{1+(1-2 \gamma) z}{1-z}, & (k=0) \\
\frac{1-\gamma}{1-k^{2}} \cos \left\{\frac{2}{\pi}\left(\cos ^{-1} k\right) i \log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right\}-\frac{k^{2}-\gamma}{1-k^{2}}, & (0<k<1) \\
1+\frac{2(1-\gamma)}{\pi^{2}}\left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2}, & (k=1) \\
\frac{1-\gamma}{k^{2}-1} \sin \left\{\frac{\pi}{2 K(t)} \int_{0}^{u(z) / \sqrt{t}} \frac{d x}{\sqrt{1-x^{2}} \sqrt{1-t^{2} x^{2}}}\right\}+\frac{k^{2}-\gamma}{k^{2}-1}, & (k>1)\end{cases}
\end{aligned}
$$

where $u(z)=(z-\sqrt{t}) /(1-\sqrt{t} z), t \in(0,1)$ and t is chosen such that $k=$ $\cosh \frac{\pi K^{\prime}(t)}{4 K(t)}$ and $K(t)$ is Legendre's complete elliptic integral of the first kind and $K^{\prime}(t)$ is complementary integral of $K(t)$. Furthermore, since $p_{k, \gamma}(\mathbb{D})=\Omega_{k, \gamma}$ and $p_{k, \gamma}(\mathbb{D})$ is convex univalent in \mathbb{D} (see [20]), it follows that (1.11) is equivalent to

$$
\frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)}{\chi_{\beta, q}^{\alpha} f(z)} \prec p_{k, \gamma}(z)
$$

Remark 1.3. For special values of parameters q, α, β, γ and k, we get the following new classes as special cases of Definition 1.2; for example:

1. If $q \rightarrow 1^{-}$and $\alpha=1$, we get $k-\mathcal{J U S T}(\beta, \gamma):=\lim (k-\mathcal{J U S T}(q ; 1, \beta, \gamma))$ with Bernardi operator (1.9).
2. If $q \rightarrow 1^{-}, \alpha=1, \beta=0$ and $k=0$, we get $\mathcal{J U S T}(\gamma):=\lim (0-$ $\mathcal{J U S T}(q ; 1,0, \gamma))$ with Alexander operator (1.10).

In this paper, we shall investigate the class k - $\mathcal{J U S} \mathcal{T}(q ; \alpha, \beta, \gamma)$. In particular, we obtain q-sufficient coefficient condition, q-Fekete-Szegö inequalities, q-Bieberbach-De Branges type coefficient estimates and solve radius problem for the functions in this class. In the concluding section, we introduce another new class $k-\mathcal{J U C} \mathcal{V}(q ; \alpha, \beta, \gamma)$ and omit the results for this class, because analogous results can be directly translated from the corresponding results found in Section 2 for the class $k-\mathcal{J U S T}(q ; \alpha, \beta, \gamma)$.

Unless otherwise stated, we assume in the reminder of the article that $0 \leq$ $\gamma<1, q \in(0,1), k \geq 0, \alpha>0, \beta>-1$ and $z \in \mathbb{D}$.

2. Main results

We first obtain q-sufficient coefficient condition for the functions belonging to the class k - $\mathcal{J U S T}(q ; \alpha, \beta, \gamma)$.

Theorem 2.1. If a function f defined by (1.1) satisfies the inequality

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left([n]_{q}(k+1)-(k+\gamma)\right) \frac{\Gamma_{q}(\beta+n)}{\Gamma_{q}(\alpha+\beta+n)} \frac{\Gamma_{q}(\alpha+\beta+1)}{\Gamma_{q}(\beta+1)}\left|a_{n}\right| \leq 1-\gamma \tag{2.1}
\end{equation*}
$$

then f belongs to $k-\mathcal{J U S T}(q ; \alpha, \beta, \gamma)$. The result is sharp.

Proof. To show that $f \in k-\mathcal{J U S T}(q ; \alpha, \beta, \gamma)$, it suffices to prove that

$$
k\left|\frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)}{\chi_{\beta, q}^{\alpha} f(z)}-1\right|-\operatorname{Re}\left(\frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)}{\chi_{\beta, q}^{\alpha} f(z)}-1\right) \leq 1-\gamma
$$

We note that

$$
\begin{aligned}
\left|\frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)}{\chi_{\beta, q}^{\alpha} f(z)}-1\right| & =\left|\frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)-\chi_{\beta, q}^{\alpha} f(z)}{\chi_{\beta, q}^{\alpha} f(z)}\right| \\
& =\left|\frac{\sum_{n=2}^{\infty}\left([n]_{q}-1\right) \frac{\Gamma_{q}(\beta+n)}{\Gamma_{q}(\alpha+\beta+n)} \frac{\Gamma_{q}(\alpha+\beta+1)}{\Gamma_{q}(\beta+1)} a_{n} z^{n}}{z+\sum_{n=2}^{\infty} \frac{\Gamma_{q}(\beta+n)}{\Gamma_{q}(\alpha+\beta+n)} \frac{\Gamma_{q}(\alpha+\beta+1)}{\Gamma_{q}(\beta+1)} a_{n} z^{n}}\right| \\
& \leq \frac{\sum_{n=1}^{\infty}\left([n]_{q}-1\right) \frac{\Gamma_{q}(\beta+n)}{\Gamma_{q}(\alpha+\beta+n)} \frac{\Gamma_{q}(\alpha+\beta+1)}{\Gamma_{q}(\beta+1)}\left|a_{n}\right|}{1-\sum_{n=1}^{\infty} \frac{\Gamma_{q}(\beta+n)}{\Gamma_{q}(\alpha+\beta+n)} \frac{\Gamma_{q}(\alpha+\beta+1)}{\Gamma_{q}(\beta+1)}\left|a_{n}\right|}
\end{aligned}
$$

In view of (2.1), it follows that

$$
1-\sum_{n=1}^{\infty} \frac{\Gamma_{q}(\beta+n)}{\Gamma_{q}(\alpha+\beta+n)} \frac{\Gamma_{q}(\alpha+\beta+1)}{\Gamma_{q}(\beta+1)}\left|a_{n}\right|>0 .
$$

Using (2.2), we have

$$
\begin{aligned}
& k\left|\frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)}{\chi_{\beta, q}^{\alpha} f(z)}-1\right|-\operatorname{Re}\left(\frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)}{\chi_{\beta, q}^{\alpha} f(z)}-1\right) \\
\leq & k\left|\frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)}{\chi_{\beta, q}^{\alpha} f(z)}-1\right|+\left|\frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)}{\chi_{\beta, q}^{\alpha} f(z)}-1\right| \\
\leq & (k+1)\left|\frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)-\chi_{\beta, q}^{\alpha} f(z)}{\chi_{\beta, q}^{\alpha} f(z)}\right| \\
\leq & (k+1)\left\{\frac{\sum_{n=2}^{\infty}\left([n]_{q}-1\right) \frac{\Gamma_{q}(\beta+n)}{\Gamma_{q}(\alpha+\beta+n)} \frac{\Gamma_{q}(\alpha+\beta+1)}{\Gamma_{q}(\beta+1)}\left|a_{n}\right|}{1-\sum_{n=1}^{\infty} \frac{\Gamma_{q}(\beta+n)}{\Gamma_{q}(\alpha+\beta+n)} \frac{\Gamma_{q}(\alpha+\beta+1)}{\Gamma_{q}(\beta+1)}\left|a_{n}\right|}\right\} \\
\leq & 1-\gamma
\end{aligned}
$$

which proves (2.1).
For sharpness, consider the function $f_{n}: \mathbb{D} \rightarrow \mathbb{C}$ defined by

$$
f_{n}(z)=z-\frac{(1-\gamma) \Gamma_{q}(\alpha+\beta+n)}{\left([n]_{q}(k+1)-(k+\gamma)\right) \Gamma_{q}(\beta+n)} \frac{\Gamma_{q}(\beta+1)}{\Gamma_{q}(\alpha+\beta+1)} z^{n} .
$$

Since

$$
\begin{aligned}
\operatorname{Re}\left(\frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)}{\chi_{\beta, q}^{\alpha} f(z)}\right) & =\operatorname{Re}\left(\frac{[n]_{q}(k+1)-(k+\gamma)-(1-\gamma)[n]_{q} z^{n-1}}{[n]_{q}(k+1)-(k+\gamma)-(1-\gamma) z^{n-1}}\right) \\
& >\frac{k+\gamma}{k+1}
\end{aligned}
$$

and

$$
\begin{aligned}
k\left|\frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)}{\chi_{\beta, q}^{\alpha} f(z)}-1\right| & =k\left|\frac{(1-\gamma)\left(1-[n]_{q}\right) z^{n-1}}{[n]_{q}(k+1)-(k+\gamma)-(1-\gamma) z^{n-1}}\right| \\
& <\frac{k(1-\gamma)}{k+1}
\end{aligned}
$$

it follows that $f_{n} \in k$ - $\mathcal{J U S T}(q ; \alpha, \beta, \gamma)$. Also, it is easy to show that the equality holds in (2.1) for the function f_{n}. Thus the result is sharp.
Corollary 2.2. If $f(z)=z+a_{n} z^{n}$ and

$$
\left|a_{n}\right| \leq \frac{(1-\gamma) \Gamma_{q}(\alpha+\beta+n)}{\left([n]_{q}(k+1)-(k+\gamma)\right) \Gamma_{q}(\beta+n)} \frac{\Gamma_{q}(\beta+1)}{\Gamma_{q}(\alpha+\beta+1)}, \quad(n \geq 2)
$$

then $f \in k-\mathcal{J U S T}(q ; \alpha, \beta, \gamma)$.
Using Remark 1.3.1 and Remark 1.3.2, Theorem 2.1 gives the following new results.
Corollary 2.3. If a function f defined by (1.1) is in the class $k-\mathcal{J U S T}(\beta, \gamma)$, then

$$
\sum_{n=2}^{\infty}(n(k+1)-(k+\gamma)) \frac{1+\beta}{n+\beta}\left|a_{n}\right| \leq 1-\gamma
$$

Corollary 2.4. If a function f defined by (1.1) is in the class $\mathcal{J U S T}(\gamma)$, then

$$
\sum_{n=2}^{\infty}(n-\gamma) \frac{1}{n}\left|a_{n}\right| \leq 1-\gamma
$$

In order to determine q-Fekete-Szegö inequalities for the functions in the class k - $\mathcal{J U S T}(q ; \alpha, \beta, \gamma)$, we need next three lemmas.
Lemma 2.5 ([7,20]). Let $k \geq 0$ be fixed and $p_{k, \gamma}$ defined by (1.13). If

$$
p_{k, \gamma}(z)=1+P_{1} z+P_{2} z^{2}+\cdots
$$

then

$$
P_{1}(z)= \begin{cases}\frac{8(1-\gamma)(\arccos k)^{2}}{\pi^{2}\left(1-k^{2}\right)}, & 0 \leq k<1 \tag{2.3}\\ \frac{8(1-\gamma)}{\pi^{2}}, & k=1, \\ \frac{\pi^{2}(1-\gamma)}{4 \sqrt{t}(1+t) K^{2}(t)\left(k^{2}-1\right)}, & k>1,\end{cases}
$$

and

$$
P_{2}(z)= \begin{cases}\frac{\left(A^{2}+2\right)}{3} P_{1}, & 0 \leq k<1, \\ \frac{2}{3} P_{1}, & k=1, \\ \frac{4 K^{2}(t)\left(t^{2}+6 t+1\right)-\pi^{2}}{24 \sqrt{t} K^{2}(t)(1+t)} P_{1}, & k>1,\end{cases}
$$

where $A=\frac{2}{\pi}\left(\cos ^{-1} k\right)$ and $t \in(0,1)$ are chosen such that $k=\cosh \left(\pi K^{\prime}(t) / 4 K(t)\right)$ and $K(t)$ is Legendre's complete elliptic integral of the first kind and $K^{\prime}(t)$ is complementary integral of $K(t)$.

Lemma 2.6 ([22, Lemma 3, p. 254]). If $p(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots$ is in class \mathcal{P} and η is a complex number, then

$$
\left|c_{2}-\eta c_{1}^{2}\right| \leq 2 \max \{1,|2 \eta-1|\}
$$

The result is sharp for the functions $p(z)=\left(1+z^{2}\right) /\left(1-z^{2}\right)$ and $p(z)=$ $(1+z) /(1-z)$.
Lemma 2.7 ([23, Lemma 1, p. 162]). If $p(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots$ is in class \mathcal{P} and η is a real number, then

$$
\left|c_{2}-\eta c_{1}^{2}\right| \leq\left\{\begin{array}{cll}
-4 \eta+2 & \text { if } & \eta \leq 0 \\
2 & \text { if } 0 \leq \eta \leq 1, \\
4 \eta-2 & \text { if } & \eta \geq 1
\end{array}\right.
$$

When $\eta<0$ and $\eta>1$, equality holds if and only if $p(z)=(1+z) /(1-z)$ or one of its rotations. If $0<\eta<1$, then equality holds if and only if $p(z)=$ $\left(1+z^{2}\right) /\left(1-z^{2}\right)$ or one of its rotations. If $\eta=0$, equality holds if and only if

$$
p(z)=\frac{1+\lambda}{2}\left(\frac{1+z}{1-z}\right)+\frac{1-\lambda}{2}\left(\frac{1-z}{1+z}\right), \quad 0 \leq \lambda \leq 1
$$

or one of its rotations. If $\eta=1$, equality holds if and only if $p(z)$ is the reciprocal of one of the functions such that the equality holds in the case $\eta=0$.
Theorem 2.8. Let $k \geq 0$ and $f \in k-\mathcal{J U S T}(q ; \alpha, \beta, \gamma)$, where f is of the form (1.1). Then, for a complex number η, q-Fekete-Szegö inequality is given by

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \frac{P_{1}}{2\left([3]_{q}-1\right) \psi_{3}} \max \{1,|2 \nu-1|\}
$$

where

$$
\begin{align*}
\nu & =\frac{1}{2}-\frac{P_{2}}{2 P_{1}}-\frac{P_{1}}{2\left([2]_{q}-1\right)}+\eta \frac{P_{1}\left([3]_{q}-1\right) \psi_{3}}{2\left([2]_{q}-1\right)^{2} \psi_{2}^{2}} \tag{2.4}\\
\psi_{n} & =\frac{\Gamma_{q}(\beta+n)}{\Gamma_{q}(\alpha+\beta+n)} \frac{\Gamma_{q}(\alpha+\beta+1)}{\Gamma_{q}(\beta+1)}, \quad(n=2,3)
\end{align*}
$$

and where P_{1} and P_{2} are given by Lemma 2.5.
Proof. If $f \in k$ - $\mathcal{J U S T}(q ; \alpha, \beta, \gamma)$, then there is a Schwarz function w, analytic in \mathbb{D} with $w(0)=0$ and $|w(z)|<1$ such that

$$
\frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)}{\chi_{\beta, q}^{\alpha} f(z)}=p_{k, \gamma}(w(z))
$$

Define the function p by

$$
p(z)=\frac{1+w(z)}{1-w(z)}=1+c_{1} z+c_{2} z^{2}+\cdots \quad(z \in \mathbb{D})
$$

Since $p \in \mathcal{P}$ is a function with $p(0)=1$ and $\operatorname{Re}(p(z))>0$, we get

$$
p_{k, \gamma}(w(z))=p_{k, \gamma}\left(\frac{p(z)-1}{p(z)+1}\right)
$$

$$
\begin{align*}
& =p_{k, \gamma}\left(\frac{c_{1}}{2} z+\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) z^{2}+\frac{1}{2}\left(c_{3}-c_{1} c_{2}+\frac{c_{1}^{3}}{4}\right) z^{3}+\cdots\right) \\
& =1+\frac{P_{1} c_{1}}{2} z+\left(\frac{P_{1}}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{P_{2} c_{1}^{2}}{4}\right) z^{2}+\cdots . \tag{2.5}
\end{align*}
$$

Comparing coefficients of (2.5) and (1.12), we get

$$
a_{2}=\frac{P_{1} c_{1}}{2\left([2]_{q}-1\right) \psi_{2}}
$$

and

$$
a_{3}=\frac{P_{1}}{2\left([3]_{q}-1\right) \psi_{3}}\left\{c_{2}-\frac{c_{1}^{2}}{2}+\frac{c_{1}^{2}}{2}\left(\frac{P_{2}}{P_{1}}+\frac{P_{1}}{[2]_{q}-1}\right)\right\} .
$$

For any complex number η, we have

$$
\begin{align*}
& a_{3}-\eta a_{2}^{2} \\
= & \frac{P_{1}}{2\left([3]_{q}-1\right) \psi_{3}}\left\{c_{2}-\frac{c_{1}^{2}}{2}+\frac{c_{1}^{2}}{2}\left(\frac{P_{2}}{P_{1}}+\frac{P_{1}}{[2]_{q}-1}\right)\right\}-\eta \frac{P_{1}^{2} c_{1}^{2}}{4\left([2]_{q}-1\right)^{2} \psi_{2}^{2}} . \tag{2.6}
\end{align*}
$$

Equation (2.6) can be written as:

$$
\begin{equation*}
a_{3}-\eta a_{2}^{2}=\frac{P_{1}}{2\left([3]_{q}-1\right) \psi_{3}}\left\{c_{2}-\nu c_{1}^{2}\right\}, \tag{2.7}
\end{equation*}
$$

where ν is defined by (2.4). Applying Lemma 2.6, the proof is completed. The result is sharp for a function f given by

$$
\frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)}{\chi_{\beta, q}^{\alpha} f(z)}=p_{k, \gamma}(z) \quad \text { or } \quad \frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)}{\chi_{\beta, q}^{\alpha} f(z)}=p_{k, \gamma}\left(z^{2}\right) .
$$

In view of Remark 1.3.1 and Remark 1.3.2, we get the following new results as special cases of Theorem 2.8.
Corollary 2.9. If a function f defined by (1.1) is in the class $k-\mathcal{J U S T}(\beta, \gamma)$, then

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \frac{P_{1}(3+\beta)}{4(1+\beta)} \max \left\{1,\left|-\frac{P_{2}}{P_{1}}-P_{1}+\eta \frac{2 P_{1}(2+\beta)^{2}}{(3+\beta)(1+\beta)}\right|\right\}
$$

Corollary 2.10. If a function f defined by (1.1) is in the class $\mathcal{J U S T}(\gamma)$, then

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \frac{3 P_{1}}{4} \max \left\{1,\left|-\frac{P_{2}}{P_{1}}-P_{1}+\eta \frac{8 P_{1}}{3}\right|\right\} .
$$

Theorem 2.11. Let $k \geq 0$ and $f \in k-\mathcal{J U S T}(q ; \alpha, \beta, \gamma)$, where f is of the form (1.1). Then, for a real number η, we have
$\left|a_{3}-\eta a_{2}^{2}\right| \leq \frac{1}{\left([3]_{q}-1\right) \psi_{3}} \times \begin{cases}P_{2}+\frac{P_{1}^{2}}{[2]_{q}-1}-\eta \frac{P_{1}^{2}\left([3]_{q}-1\right) \psi_{3}}{\left([2]_{q}-1\right)^{2} \psi_{2}^{2}}, & \text { if } \eta \leq \sigma_{1}, \\ P_{1}, & \text { if } \sigma_{1} \leq \eta \leq \sigma_{2}, \\ -P_{2}-\frac{P_{1}^{2}}{[2]_{q}-1}+\eta \frac{P_{1}^{2}\left([3]_{q}-1\right) \psi_{3}}{\left([2]_{q}-1\right)^{2} \psi_{2}^{2}}, & \text { if } \eta \geq \sigma_{2},\end{cases}$
where

$$
\begin{aligned}
\psi_{n} & =\frac{\Gamma_{q}(\beta+n)}{\Gamma_{q}(\alpha+\beta+n)} \frac{\Gamma_{q}(\alpha+\beta+1)}{\Gamma_{q}(\beta+1)}, \quad(n=2,3), \\
\sigma_{1} & =\frac{\left([2]_{q}-1\right)^{2} \psi_{2}^{2}}{\left([3]_{q}-1\right) \psi_{3}}\left(\frac{P_{2}}{P_{1}^{2}}+\frac{1}{[2]_{q}-1}-\frac{1}{P_{1}}\right), \\
\sigma_{2} & =\frac{\left([2]_{q}-1\right)^{2} \psi_{2}^{2}}{\left([3]_{q}-1\right) \psi_{3}}\left(\frac{P_{2}}{P_{1}^{2}}+\frac{1}{[2]_{q}-1}+\frac{1}{P_{1}}\right),
\end{aligned}
$$

and P_{1} and P_{2} are given by Lemma 2.5.
Proof. Using (2.4), (2.7) and Lemma 2.7, we get the proof. The bounds are sharp as can be seen by defining the following functions for $n \geq 2$ and $0 \leq \lambda \leq 1$.

$$
\begin{gathered}
\frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} F_{n}(z)\right)}{\chi_{\beta, q}^{\alpha} F_{n}(z)}=p_{k, \gamma}\left(z^{n-1}\right), \quad \mathcal{F}_{n}(0)=\mathcal{F}^{\prime}{ }_{n}(0)-1=0, \\
\frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} G_{\lambda}(z)\right)}{\chi_{\beta, q}^{\alpha} G_{\lambda}(z)}=p_{k, \gamma}\left(\frac{z(z+\lambda)}{1+\lambda z}\right), \quad \mathcal{G}_{\lambda}(0)=\mathcal{G}^{\prime}{ }_{\lambda}(0)-1=0, \\
\frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} H_{\lambda}(z)\right)}{\chi_{\beta, q}^{\alpha} H_{\lambda}(z)}=p_{k, \gamma}\left(-\frac{z(z+\lambda)}{1+\lambda z}\right), \quad \mathcal{H}_{\lambda}(0)=\mathcal{H}_{\lambda}^{\prime}{ }_{\lambda}(0)-1=0 .
\end{gathered}
$$

When $\eta<\psi_{1}$ or $\eta>\psi_{2}$, equality holds if and only if f is \mathcal{F}_{2} or one of its rotations. When $\psi_{1}<\eta<\psi_{2}$, equality holds if and only if f is \mathcal{F}_{3} or one of its rotations. If $\eta=\psi_{1}$, equality holds if and only if f is \mathcal{G}_{λ} or one of its rotations and if $\eta=\psi_{2}$, equality holds if and only if f is \mathcal{H}_{λ} or one of its rotations.

For investigating q-Bieberbach-De Branges inequalities, we need the following result called Rogogonki's Theorem.

Lemma 2.12 ([27, Theorem 2.3, p. 70]). Let $p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$ be subordinate to $p_{k, \gamma}(z)=1+\sum_{n=1}^{\infty} P_{n} z^{n}$ in \mathbb{D}. If $p_{k, \gamma}$ is univalent in \mathbb{D} and $p_{k, \gamma}(\mathbb{D})$ is convex, then

$$
\left|c_{n}\right| \leq P_{1}, \quad(n \geq 1)
$$

Theorem 2.13. If a function f of the form (1.1) belongs to the class k $\mathcal{J U S T}(q ; \alpha, \beta, \gamma)$, then

$$
\left|a_{2}\right| \leq \frac{P_{1}}{q \psi_{2}} \quad \text { and } \quad\left|a_{3}\right| \leq \frac{q P_{2}+P_{1}^{2}}{q^{2}(1+q) \psi_{3}}
$$

These results are sharp for the function given by (2.12).
Proof. Let $p(z)=\frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)}{\chi_{\beta, q}^{\alpha} f(z)}$. Using the relation (1.8) for $p(z)=1+c_{1} z+$ $c_{2} z^{2}+\cdots$, we have

$$
\left([n]_{q}-1\right) \psi_{n} a_{n}=\sum_{k=1}^{n-1} \psi_{k} a_{k} c_{n-k}, \quad a_{1}=1
$$

Comparing the coefficients for $n=2$ and $n=3$, we get

$$
\begin{equation*}
a_{2}=\frac{c_{1}}{\left([2]_{q}-1\right) \psi_{2}} \text { and } a_{3}=\frac{c_{2}+c_{1} \psi_{2} a_{2}}{\left([3]_{q}-1\right) \psi_{3}} . \tag{2.8}
\end{equation*}
$$

It is obvious that

$$
\begin{equation*}
\left|a_{2}\right|=\frac{\left|c_{1}\right|}{\left([2]_{q}-1\right) \psi_{2}} \leq \frac{P_{1}}{q \psi_{2}}, \tag{2.9}
\end{equation*}
$$

where $\left|c_{1}\right| \leq P_{1}$.
Now, Lemma 2.12, (2.8) together with inequality $\left|c_{1}^{2}\right|+\left|c_{2}\right| \leq\left|P_{1}\right|^{2}+\left|P_{2}\right|$ (see [19]) yield

$$
\begin{aligned}
\left|a_{3}\right| & =\left|\frac{q c_{2}+c_{1}^{2}}{q^{2}(1+q) \psi_{3}}\right| \leq \frac{q\left(\left|c_{2}\right|+\left|c_{1}\right|^{2}\right)+(1-q)\left|c_{1}^{2}\right|}{q^{2}(1+q) \psi_{3}} \\
& \leq \frac{q\left(\left|P_{2}\right|+\left|P_{1}\right|^{2}\right)+(1-q)\left|P_{1}^{2}\right|}{q^{2}(1+q) \psi_{3}} \leq \frac{q P_{2}+P_{1}^{2}}{q^{2}(1+q) \psi_{3}} .
\end{aligned}
$$

In our next result, we state and prove a q-Bieberbach-De Branges inequality.
Theorem 2.14. If $f \in k-\mathcal{J U S T}(q ; \alpha, \beta, \gamma)$, then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{P_{1}}{\left([n]_{q}-1\right) \psi_{n}} \prod_{k=1}^{n-2}\left(1+\frac{P_{1}}{\left([k+1]_{q}-1\right)}\right), \quad(n \geq 3) \tag{2.10}
\end{equation*}
$$

where P_{1} is given by (2.3) and

$$
\begin{equation*}
\psi_{n}=\frac{\Gamma_{q}(\beta+n)}{\Gamma_{q}(\alpha+\beta+n)} \frac{\Gamma_{q}(\alpha+\beta+1)}{\Gamma_{q}(\beta+1)}, \quad(n \geq 3) . \tag{2.11}
\end{equation*}
$$

Proof. In view of Definition 1.2, we can write

$$
\frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)}{\chi_{\beta, q}^{\alpha} f(z)}=p(z) \prec p_{k, \gamma},
$$

where $p \in \mathcal{P}$ is analytic in \mathbb{D}. Since $p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$ and $\chi_{\beta, q}^{\alpha} f$ given by (1.8), we have

$$
z+\sum_{n=2}^{\infty}[n]_{q} \psi_{n} a_{n} z^{n}=\left(z+\sum_{n=2}^{\infty} \psi_{n} a_{n} z^{n}\right)\left(1+\sum_{n=1}^{\infty} c_{n} z^{n}\right)
$$

where ψ_{n} is given by (2.11).
Comparing the coefficients of z^{n} on both sides, we observe

$$
[n]_{q} \psi_{n} a_{n}=a_{n}+c_{1} \psi_{n-1} a_{n-1}+c_{2} \psi_{n-2} a_{n-2}+\cdots+c_{n-2} \psi_{2} a_{2}+c_{n-1}
$$

for all integer $n \geq 3$. Taking absolute value on both sides and applying Lemma 2.12, we have

$$
\left|a_{n}\right| \leq \frac{P_{1}}{\left([n]_{q}-1\right) \psi_{n}}\left\{1+\psi_{2}\left|a_{2}\right|+\cdots+\psi_{n-2}\left|a_{n-2}\right|+\psi_{n-1}\left|a_{n-1}\right|\right\}
$$

We will prove (2.10) by using mathematical induction. For $n=2$, the result follows by (2.9). Let us assume that (2.10) is true for $n \leq m$, that is

$$
\begin{aligned}
\left|a_{m}\right| & \leq \frac{P_{1}}{\left([m]_{q}-1\right) \psi_{m}}\left\{1+\psi_{2}\left|a_{2}\right|+\cdots+\psi_{m-1}\left|a_{m-1}\right|\right\} \\
& \leq \frac{P_{1}}{\left([m]_{q}-1\right) \psi_{m}} \prod_{k=1}^{m-2}\left(1+\frac{P_{1}}{\left([k+1]_{q}-1\right)}\right) .
\end{aligned}
$$

Consider

$$
\begin{aligned}
\left|a_{m+1}\right| \leq & \frac{P_{1}}{\left([m+1]_{q}-1\right) \psi_{m+1}}\left\{1+\psi_{2}\left|a_{2}\right|+\cdots+\psi_{m}\left|a_{m}\right|\right\} \\
\leq & \frac{P_{1}}{\left([m+1]_{q}-1\right) \psi_{m+1}}\left\{1+\frac{P_{1}}{\left([2]_{q}-1\right)}+\frac{P_{1}}{\left([3]_{q}-1\right)}\left(1+\frac{P_{1}}{\left([2]_{q}-1\right)}\right)\right. \\
& \left.+\cdots+\frac{P_{1}}{\left([m]_{q}-1\right)} \prod_{k=1}^{m-2}\left(1+\frac{P_{1}}{\left([k+1]_{q}-1\right)}\right)\right\} \\
= & \frac{P_{1}}{\left([m+1]_{q}-1\right) \psi_{m+1}} \prod_{k=1}^{m-1}\left(1+\frac{P_{1}}{\left([k+1]_{q}-1\right)}\right) .
\end{aligned}
$$

Thus (2.10) is true for $n=m+1$. Consequently, mathematical induction shows that (2.10) holds for $n, n \geq 2$. This completes the proof. The result is sharp for a function f given by

$$
\begin{equation*}
\frac{z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)}{\chi_{\beta, q}^{\alpha} f(z)}=p_{k, \gamma}(z) \tag{2.12}
\end{equation*}
$$

For different values of the parameters, Theorem 2.14 gives several new results. In particular, in view of Remark 1.3.1 and Remark 1.3.2, Theorem 2.14 gives the following results.

Corollary 2.15. If a function f defined by (1.1) is in the class $k-\mathcal{J U S T}(\beta, \gamma)$, then

$$
\left|a_{n}\right| \leq \frac{P_{1}(\beta+n)}{(n-1)(\beta+1)} \prod_{k=1}^{n-2}\left(1+\frac{P_{1}}{k}\right), \quad(n \geq 3)
$$

Corollary 2.16. If a function f defined by (1.1) is in the class $\mathcal{J U S T}(\gamma)$, then

$$
\left|a_{n}\right| \leq \frac{n P_{1}}{(n-1)} \prod_{k=1}^{n-2}\left(1+\frac{P_{1}}{k}\right), \quad(n \geq 3)
$$

We now conclude this section by exploring q-radius for the functions in the class k - $\mathcal{J U S T}(q ; \alpha, \beta, \gamma)$. For recent radius problems, see $[4,8,9,26]$.

Theorem 2.17. If $f \in k-\mathcal{J U S T}(q ; \alpha, \beta, \gamma)$, then $f(\mathbb{D})$ contains an open disc of radius

$$
r=\frac{q \psi_{2}}{2 q \psi_{2}+P_{1}}
$$

where P_{1} is given by (2.3).
Proof. Let $w_{0} \neq 0$ be a complex number such that $f(z) \neq w_{0}$ for $z \in \mathbb{D}$. Then

$$
f_{1}(z)=\frac{w_{0} f(z)}{w_{0}-f(z)}=z+\left(a_{2}+\frac{1}{w_{0}}\right) z^{2}+\cdots
$$

Since f_{1} is univalent in \mathbb{D}, it follows that

$$
\left|a_{2}+\frac{1}{w_{0}}\right| \leq 2
$$

By using (2.9), we get

$$
\left|\frac{1}{w_{0}}\right| \leq 2+\frac{P_{1}}{q \psi_{2}}=\frac{2 q \psi_{2}+P_{1}}{q \psi_{2}} .
$$

Consequently, we obtain

$$
\left|w_{0}\right| \geq \frac{q \psi_{2}}{2 q \psi_{2}+P_{1}} .
$$

3. Concluding remarks

Using the well-known formula (1.2) and replacing $\chi_{\beta, q}^{\alpha} f(z)$ in (1.11) by $z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)$, we obtain a new subclass $k-\mathcal{J U C} \mathcal{V}(q ; \alpha, \beta, \gamma)$ of k-uniformly convex functions of order γ associated with the generalized q-integral operator given by (1.7).

Definition 3.1. Let $0 \leq \gamma<1, q \in(0,1), k \geq 0, \alpha>0, \beta>-1$. A function $f \in \mathcal{A}$ is in the class $k-\mathcal{J U C V}(q ; \alpha, \beta, \gamma)$ if and only if

$$
\operatorname{Re}\left(1+q \frac{z D_{q}^{2}\left(\chi_{\beta, q}^{\alpha} f(z)\right)}{D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)}\right)>k\left|q \frac{z D_{q}^{2}\left(\chi_{\beta, q}^{\alpha} f(z)\right)}{D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right)}\right|+\gamma \quad(z \in \mathbb{D})
$$

where $\chi_{\beta, q}^{\alpha} f(z)$ is given by (1.7) and (1.8).
Alexander-type relationship between functions of these classes is

$$
\chi_{\beta, q}^{\alpha} f(z) \in k-\mathcal{J U C V}(q ; \alpha, \beta, \gamma) \Leftrightarrow z D_{q}\left(\chi_{\beta, q}^{\alpha} f(z)\right) \in k-\mathcal{J U S T}(q ; \alpha, \beta, \gamma) ;
$$

that is,

$$
\chi_{\beta, q}^{\alpha} f(z) \in k-\mathcal{J U S T}(q ; \alpha, \beta, \gamma) \Leftrightarrow \int_{0}^{z} \frac{\chi_{\beta, q}^{\alpha} f(z)}{t} d t \in k-\mathcal{J U C} \mathcal{V}(q ; \alpha, \beta, \gamma)
$$

In view of the classical Alexander Theorem and the results for the class k $\mathcal{J U S T}(q ; \alpha, \beta, \gamma)$, it is easy to obtain the corresponding properties for the class k - $\mathcal{J U C V}(q ; \alpha, \beta, \gamma)$. Therefore, we omit the statements and proofs of the corresponding results of the class $k-\mathcal{J U C} \mathcal{V}(q ; \alpha, \beta, \gamma)$.

References

[1] O. P. Ahuja, The Bieberbach conjecture and its impact on the developments in geometric function theory, Math. Chronicle 15 (1986), 1-28.
[2] O. P. Ahuja, S. Anand, and N. K. Jain, Bohr radius problems for some classes of analytic functions using quantum calculus approach, Mathematics 8 (2020), 623. https: //doi.org/10.3390/math8040623
[3] O. P. Ahuja and A. Çetinkaya, Use of quantum calculus approach in mathematical sciences and its role in geometric function theory, AIP Conf. Proc. 2019, 2095, 020001-1-020001-14.
[4] O. P. Ahuja, A. Çetinkaya, and N. K. Jain, Mittag-Leffler operator connected with certain subclasses of Bazilevic̆ functions, J. Math. 2022 (2022), Art. ID 2065034, 7 pp. https://doi.org/10.1155/2022/2065034
[5] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. (2) 17 (1915), no. 1, 12-22. https://doi.org/10.2307/2007212
[6] R. M. Ali and V. Singh, Coefficients of parabolic starlike functions of order ρ, in Computational methods and function theory 1994 (Penang), 23-36, Ser. Approx. Decompos., 5, World Sci. Publ., River Edge, NJ, 1995.
[7] F. M. Al-Oboudi and K. A. Al-Amoudi, On classes of analytic functions related to conic domains, J. Math. Anal. Appl. 339 (2008), no. 1, 655-667. https://doi.org/10.1016/ j.jmaa.2007.05.087
[8] S. Anand, N. K. Jain, and S. Kumar, Sharp Bohr radius constants for certain analytic functions, Bull. Malays. Math. Sci. Soc. 44 (2021), no. 3, 1771-1785. https://doi.org/ 10.1007/s40840-020-01071-x
[9] S. Anand, N. K. Jain, and S. Kumar, Normalized analytic functions with fixed second coefficient, J. Anal., to appear.
[10] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446. https://doi.org/10.2307/1995025
[11] R. Bharati, R. Parvatham, and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math. 28 (1997), no. 1, 17-32.
[12] G. Gasper and M. Rahman, Basic hypergeometric series, second edition, Encyclopedia of Mathematics and its Applications, 96, Cambridge Univ. Press, Cambridge, 2004. https://doi.org/10.1017/CB09780511526251
[13] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), no. 1, 87-92. https://doi.org/10.4064/ap-56-1-87-92
[14] F. H. Jackson, A generalization of the functions $\Gamma(n)$ and x^{n}, Proc. Royal Soc. London 74 (1904), 64-72.
[15] F. H. Jackson, On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh 46 (1908), no. 2, 253-281.
[16] F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193-203.
[17] I. B. Jung, Y. C. Kim, and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176 (1993), no. 1, 138-147. https://doi.org/10.1006/jmaa.1993.1204
[18] V. Kac and P. Cheung, Quantum Calculus, Universitext, Springer, New York, 2002. https://doi.org/10.1007/978-1-4613-0071-7
[19] S. R. Kanas and A. Wiśniowska-Wajnryb, Conic regions and k-uniform convexity. II, Zeszyty Nauk. Politech. Rzeszowskiej Mat. No. 22 (1998), 65-78.
[20] S. R. Kanas and A. Wiśniowska-Wajnryb, Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), no. 1-2, 327-336. https://doi.org/10.1016/S0377-0427(99)00018-7
[21] S. R. Kanas and A. Wiśniowska-Wajnryb, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl. 45 (2000), no. 4, 647-657 (2001).
[22] R. J. Libera and E. J. Złotkiewicz, Coefficient bounds for the inverse of a function with derivative in \mathcal{P}, Proc. Amer. Math. Soc. 87 (1983), no. 2, 251-257. https://doi.org/ 10.2307/2043698
[23] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1994.
[24] S. Mahmood, N. Raza, E. S. A. Abujarad, G. Srivastava, H. M. Srivastava, and S. N. Malik, Geometric properties of certain classes of analytic functions associated with q-integral operators, Symmetry 11 (2019), 719.
[25] K. I. Noor, S. Riaz, and M. A. Noor, On q-Bernardi integral operator, TWMS J. Pure Appl. Math. 8 (2017), no. 1, 3-11.
[26] S. Rana, O. Ahuja, and N. K. Jain, Radii Constants for Functions with Fixed Second Coefficient, Mathematics 10 (2022), no. 23, 4428. https://doi.org/10.3390/ math10234428
[27] W. W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (2) 48 (1943), 48-82. https://doi.org/10.1112/plms/s2-48.1.48
[28] F. Rønning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Sklodowska Sect. A 45 (1991), 117-122 (1992).
[29] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), no. 1, 189-196. https://doi.org/10.2307/2160026
[30] Z. Shareef, S. Hussain, and M. Darus, Convolution operators in the geometric function theory, J. Inequal. Appl. 2012 (2012), 213, 11 pp. https://doi.org/10.1186/1029-242X-2012-213

Om P. Ahuja
Department of Mathematical Sciences
Kent State University
Ohio, 44021, USA
Email address: oahuja@kent.edu
Asena Çetinkaya
Department of Mathematics and Computer Sciences
İstanbul Kültür University
İstanbul, Türkiye
Email address: asnfigen@hotmail.com
Naveen Kumar Jain
Department of Mathematics
Aryabhatta College
Delhi, 110021, India
Email address: naveenjain@aryabhattacollege.ac.in

[^0]: Received January 3, 2023; Accepted April 26, 2023.
 2010 Mathematics Subject Classification. 30C45, 30C50, 30C80.
 Key words and phrases. Quantum calculus, q-derivative operator, q-difference operator, q-gamma function, q-integral operator, conic domains, k-uniformly starlike functions of order gamma, coefficient estimates.

