
Bull. Korean Math. Soc. 55 (2018), No. 1, pp. 149–163

https://doi.org/10.4134/BKMS.b160905

pISSN: 1015-8634 / eISSN: 2234-3016

RIQUIER AND DIRICHLET BOUNDARY VALUE PROBLEMS

FOR SLICE DIRAC OPERATORS

Hongfen Yuan

Abstract. In recent years, the study of slice Dirac operators has at-

tracted more and more attention in the literature. In this paper, Almansi-
type decompositions for null solutions to the iterated slice Dirac operator

and the generalized slice Dirac operator are obtained without a star-like
domain centered at the origin. As applications, we investigate Riquier

type problems and Dirichlet type problems in the theory of slice mono-

genic functions.

1. Introduction

A lot of attention has been paid to developing a new theory of slice mono-
genic functions (i.e., slice Clifford analysis) (see [5,6]). It is a generalization of
the theory of complex analysis to higher dimensions, where a real Clifford alge-
bra takes over the role played by the complex numbers while still preserving the
essential features of complex analysis. Analytic results in the flavor of complex
analysis has been established in the theory of slice monogenic functions (see
[7, 10, 11]). In other approaches to hypercomplex analysis, an important role
is played by an underlying algebraic structure, namely the Lie superalgebra
osp(1|2), which allows us to find a representation theoretic interpretation of
various function space decompositions (see [8]). In 2015, based on the Lie su-
peralgebra structure, Cnudde, De Bie and Ren [4] defined a slice Dirac operator
as follows.
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Let Ω be a bounded subdomain of Rm+1. Then the slice Dirac operator is
defined as

D0 = e0∂x0
+

x

|x|2
m∑
i=1

xi∂xi
,

where x =
∑m
i=1 xiei and |x|2 =

∑m
i=1 x

2
i = −x2. Here the vectors ei, i =

0, . . . ,m satisfy the equation eiej + ejei = −2δi,j , i, j = 0, . . . ,m, which are
basis vectors of the real Clifford algebra Clm+1. Null solutions to the slice
Dirac operator are called slice monogenic functions. Also, 1-vector x ∈ Clm+1

is defined as

x = x0e0 +

m∑
i=1

xiei = x0e0 + x.

Based on their work, we study the commutativity between D0, x and the shifted
Euler operator Es. Furthermore, using commutativity, we construct Almansi-
type decompositions for slice polymonogenic functions (i.e., null solutions to
the iterated slice Dirac operator Dk

0 ).
The following assertion stated by E. Almansi [1] is well known: if f(x) is a

semiharmonic function of order m in a star domain Ω0 centered at the origin of
coordinates, then there exist unique functions f1(x), . . . , fm(x), each harmonic
in Ω0 such that f(x) = f0(x)+ |x|2f1(x)+ · · ·+ |x|2(m−1)fm−1(x). The classical
decomposition theorem is called the Almansi decomposition, which is related
to the Fischer decomposition of polynomials. The results in the case of com-
plex analysis, Clifford analysis and Clifford analysis in superspace have been
developed in [2, 14, 17, 18]. More recently, the result is useful in the study of
boundary value problems. Riemann-Hilbert problems for null-solutions to iter-
ated generalized Cauchy-Riemann equations in axially symmetric domains are
considered based on Almansi decompositions for generalized Cauchy-Riemann
operators (see [12]). Riquier problems in harmonic and Clifford analysis (see
[3]) are studied by Almansi decompositions (see [13,15,19]). However, Almansi
type decompositions for slice polymonogenic functions and their applications
are still not considered. In this paper, we try to fill part of this gap. We inves-
tigate Riquier type problems and Dirichlet type problems in the theory of slice
monogenic functions by Almansi type decompositions for the slice Dirac oper-
ator. This is a starting point for further research, in particular on boundary
value problems for slice monogenic functions which are studied with the help of
Almansi type decompositions and for which corresponding but quite different
results will be published in a subsequent paper.

2. Almansi type decompositions for slice Dirac operators

In this section we show Almansi type decompositions for slice Dirac operators
by four different forms.
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2.1. Almansi type decomposition I

In [2, 17], the authors investigated Almansi decompositions in star-like do-
main with center 0. In this section, we give an Almansi decomposition for the
iterated slice Dirac operator Dk

0 in star-like domain with center a.
We begin with the following definitions:

Definition 2.1. Let a =
∑m
i=0 eiai ∈ Rm+1 and |a| 6= 0. Let Ωa be a star-like

subdomain of Rm+1 with center a. The shifted Euler operator defined on the
space C1(Ωa, Clm+1) is given by

Es = sIΩa
+

m∑
i=0

(xi − ai)∂xi
,

where s > 0 and IΩa
denotes the identity operator on the space C1(Ωa, Clm+1).

Definition 2.2. Let Ωa be given as above. The operator Js : C(Ωa, Clm+1)→
C(Ωa, Clm+1) is defined by

Jsf =

∫ 1

0

f [a+ t(x− a)]ts−1dt,

where s > 0.

Then we provide several lemmas with respect to the shifted Euler operator
as follows.

Lemma 2.3. Let Ωa be as stated before. If f(x) ∈ C2(Ωa, Clm+1), then

(1) D0Esf(x) = Es+1D0f(x),

where s > 0.

Proof. With Definition 2.1 and the definition of the slice Dirac operator, we
have

D0Esf(x)

=

[
e0∂x0 +

x

|x|2
m∑
i=1

xi∂xi

][
sIΩa

+

m∑
i=0

(xi − ai)∂xi

]
f(x)

= se0∂x0f(x) + e0∂x0

m∑
i=0

(xi − ai)∂xif(x)

+s
x

|x|2
m∑
i=1

xi∂xif(x) +
x

|x|2
m∑
i=1

xi∂xi

m∑
j=0

(xj − aj)∂xjf(x)

=

[
(s+ 1)e0∂x0

+ (s+ 1)
x

|x|2
m∑
i=1

xi∂xi

]
f(x)

+

 m∑
i=0

(xi − ai)∂xi(e0∂x0) +

m∑
j=0

(xj − aj)∂xj

x

|x|2
m∑
i=1

xi∂xi

 f(x)
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= Es+1D0f(x). �

Lemma 2.4. Suppose the operators Es and Js are given as above. Then on
the space C1(Ωa, Clm+1) we have

(2) EsJs = JsEs = IΩa ,

(3) Es[(x− a)f ] = (x− a)[Es+1f ],

where IΩa denotes the identity operator on the space C1(Ωa, Clm+1).

Proof. Let f ∈ C1(Ωa, Clm+1). Then we calculate

f(x) =

∫ 1

0

d

dt
[f(a+ t(x− a))ts]dt

=

∫ 1

0

{
ts

m∑
i=0

(xi − ai)
∂f

∂xi
[a+ t(x− a)] + sts−1f [a+ t(x− a)]

}
dt

=

∫ 1

0

{
ts−1

[
m∑
i=0

(xi − ai)
∂f

∂xi

]
[a+ t(x− a)] + sts−1f [a+ t(x− a)]

}
dt

=

∫ 1

0

{[
m∑
i=0

(xi − ai)
∂f

∂xi

]
[a+ t(x− a)] + sf [a+ t(x− a)]

}
ts−1dt,

which implies that JsEsf = f. A similar calculation gives

EsJsf = f.

Using the definition of the shifted Euler operator, we have

Es(x− a)f

=

[
sI +

m∑
i=0

(xi − ai)∂xi

]
m∑
j=0

(xj − aj)ejf

= s

m∑
j=0

(xj − aj)ejf +

m∑
j=0

(xj − aj)ejf +

m∑
i,j=0

(xj − aj)ej(xi − ai)∂xi
f

= (s+ 1)f + (x− a)

m∑
j=0

∂xj
(xj − aj)f

= (x− a)Es+1f,

which completes the proof. �

Lemma 2.5. Let Ωa be given as in Definition 2.1. If f ∈ C1(Ωa, Clm+1) is
slice monogenic, then Esf(x) and Jsf(x) are slice monogenic in Ωa.

Proof. Assume f ∈ C1(Ωa, Clm+1) is slice monogenic. Then D0f(x) = 0 and

D0Jsf =

(
e0∂x0

+
x

|x|2
m∑
i=1

xi∂xi

)[∫ 1

0

f(a+ t(x− a))ts−1dt

]
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=

∫ 1

0

[(
e0∂x0

+
x

|x|2
m∑
i=1

xi∂xi

)
f

]
(a+ t(x− a))tsdt = 0.

It is easy to see that D0Esf = 0 by the definition of the shifted Euler operator.
�

Theorem 2.6. If f ∈ Ck(Ωa, Clm+1) is slice polymonogenic, then there exist
unique slice monogenic functions f1, . . . , fk in Ωa such that

(4) f(x) =

k−1∑
i=0

(x− a)ifi(x),

where f1, . . . , fk are given by

(5)



f0(x) = [IΩa − (x− a)G1D0] · · ·
[
IΩa − (x− a)

k−1
Gk−1D

k−1
0

]
f(x),

f1(x) = G1D0[
IΩa − (x− a)

2
G2D

2
0

]
· · ·
[
IΩa − (x− a)

k−1
Gk−1D

k−1
0

]
f(x),

...

fk−2(x) = Gk−2D
k−2
0

[
IΩa − (x− a)

k−1
Gk−1D

k−1
0

]
f(x),

fk−1(x) = Gk−1D
k−1
0 f(x),

with Gk = 1
Ck

J1 · · · J1+[ k−1
2 ], Ck = (−2)k

[
k
2

]
!.

Conversely, if functions f1, . . . , fk are slice monogenic, then the sum in (4)
is a slice polymonogenic function.

Proof. First of all, we prove that if q(x) is slice monogenic, then

(6) Dk
0 (x− a)kq(x) = CkE1+[ k−1

2 ] · · ·E1q(x),

where Ck = (−2)k
[
k
2

]
!. We prove (6) by induction. For k = 1, inspired by

Cnudde [4], we have

D0(x− a)q(x) = −[(x− a)D0 + 2E + 2]q(x) = (−2)E1q(x).

Thus, we have

D0(x−a)2sq(x) = −2s(x−a)2s−1q(x)+(x−a)2sD0q(x) = −2s(x−a)2s−1q(x)

and

D0(x− a)2s+1q(x) = −2(x− a)2s(s+ E + 1)q(x)− (x− a)2s+1D0q(x)

= −2(x− a)2sEs+1q(x).

Suppose that

Dl
0(x− a)lq(x) = ClE1+[ l−1

2 ] · · ·E1q(x)

for k = l. We prove (6) for k = l + 1. If l = 2s, then

D2s+1
0 (x− a)2s+1q(x) = D2s

0 D0x
2s+1q(x) = D2s

0 [−2(x− a)2sEs+1q(x)],
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and
D2s

0 [−2(x− a)2sEs+1q(x)] = D2s−1
0 [4s(x− a)2s−1Es+1q(x)].

Equation (6) follows directly from the above induced formulas and the assump-
tion of induction.

Then we apply the operator Dk−1
0 on both sides of the equation (4):

Dk−1
0 f(x) = Dk−1

0

(
k−1∑
i=0

(x− a)ifi(x)

)
= Dk−1

0

[
(x− a)k−1fk−1(x)

]
= Ck−1E1+[ k−2

2 ] · · ·E1fk−1(x),

which implies that

fk(x) =
1

Ck−1
J1 · · · J1+[ k−2

2 ]D
k−1
0 f(x).

Thus, (5) follows by induction.
Finally, it is easy to prove that the sum in (4) is a slice polymonogenic

function if f1, . . . , fk are slice monogenic. �

From Theorem 2.6, we can also get the Fischer decomposition for polynomi-
als. In fact, if f is a homogeneous polynomial of degree k − 1, then Dk

0f = 0.

2.2. Almansi type decomposition II

In this section, we obtain the Almansi type decomposition for the operator
D2k

0 by another way.

Theorem 2.7. Let f(x) ∈ C2k(Ωa, Clm+1). If f(x) is a solution to the equation
D2k

0 f = 0, then there exist unique functions f0, . . . , fk−1 such that

(7) f(x) =

k−1∑
i=0

(x− a)2ifi(x), x ∈ Ωa,

where each fi(x) satisfies the equation D2
0f = 0, and given by

(8)



fk−1(x) =
Jk−1 · · · J1D

2(k−1)
0 f(x)

4k−1(k − 1)!
,

fk−2(x) =
Jk−2 · · · J1D

2(k−2)
0 [f(x)− (x− a)2(k−1)fk−1(x)]

4k−2(k − 2)!
,

fk−3(x) =
Jk−3 · · · J1

4k−3(k − 3)!

D
2(k−3)
0 [f(x)− (x− a)2(k−1)fk−1(x)− (x− a)2(k−2)fk−2(x)],

...

f1(x) =
J1D

2
0[f(x)− (x− a)2(k−1)fk−1(x)− · · · − (x− a)2f2(x)]

4
,

f0(x) = f(x)− (x− a)2(k−1)fk−1(x)− · · · − (x− a)2f1(x).
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Conversely, if functions f0, . . . , fk−1 satisfy the equation D2
0f = 0, then the

function f(x) given by (7) is a solution to the equation D2k
0 f = 0.

Proof. First of all, we prove that

D2s
0 [(x− a)2sf(x)] = 4ss!E1 · · ·Esf(x),

where f(x) ∈ C2s(Ωa, Clm+1) is a solution to the equation D2
0f = 0. Direct

calculation yields

D2s
0 [(x− a)2sf(x)]

= D
(2s−1)
0 D0[(x− a)2sf(x)]

= D
(2s−1)
0 [−2s(x− a)(2s−1)f(x) + (x− a)2sD0f(x)]

= D
2(s−1)
0 D0[−2s(x− a)(2s−1)f(x) + (x− a)2sD0f(x)]

= D
2(s−1)
0 [22s(x− a)2(s−1)(s+ E + 1)f(x) + 2s(x− a)(2s−1)D0f(x)]

+D
2(s−1)
0 [−2s(x− a)(2s−1)D0f(x) + (x− a)2sD2

0f(x)]

= D
2(s−1)
0 [22s(x− a)2(s−1)(s+ E + 1)]f(x)

= D
2(s−1)
0 [22s(x− a)2(s−1)(s+ E)]f(x) +D

2(s−1)
0 [22s(x− a)2(s−1)f(x)]

= · · ·
= 4ss!E1 · · ·Esf(x).

Secondly, differentiating both sides of the equation (7), we have

D
2(k−1)
0 f(x) = D

2(k−1)
0

[
k−1∑
i=0

(x− a)2ifi(x)

]
= D

2(k−1)
0

[
(x− a)2(k−1)fk−1(x)

]
= 4k−1(k − 1)!E1 · · ·Ek−1fk−1(x).

Thus, we see that

fk−1(x) =
1

4k−1(k − 1)!
Jk−1 · · · J1D

2(k−1)
0 f(x)

by Lemma 2.4. Using the same steps, it can be shown that

fk−2(x) =
1

4k−2(k − 2)!
Jk−2 · · · J1D

2(k−2)
0 [f(x)− (x− a)2(k−1)fk−1(x)].

Thus, we have (7) by induction.
Conversely, if f1, . . . , fk−1 satisfy the equation D2

0f = 0, then by Lemma
2.5, we find that

D2k
0 f(x) = D2k

0

[
k−1∑
i=0

(x− a)2ifi(x)

]
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= D2
0D

2(k−1)
0

[
k−1∑
i=0

(x− a)2ifi(x)

]
= 4k−1(k − 1)!D2

0E1 · · ·Ek−1fk−1(x) = 0,

which implies that the function f(x) given by (7) is a solution to the equation
D2k

0 f = 0. �

2.3. Almansi type decomposition III

In this section, in a similar way as in the proof of Theorem 2.7, we obtain
the Almansi type decomposition for the iterated slice Dirac operator D2k

0 by
another form as follows.

Theorem 2.8. If f(x) ∈ C2k(Ωa, Clm+1) is a solution to the equation D2k
0 f =

0, then there exist unique functions f0, . . . , fk−1 in Ωa satisfying the equation
D2

0f = 0 such that

(9) f(x) =

k−1∑
i=0

[1 + (x− a)2]ifi(x),

where
(10)

fk−1(x) = 1
4k−1(k−1)!

Jk−1 · · · J1D
2(k−1)
0 f(x),

fk−2(x) = 1
4k−2(k−2)!

Jk−2 · · · J1

[f(x)− (1 + (x− a)2)k−1fk−1(x)],
fk−3(x) = 1

4k−3(k−3)!
Jk−3 · · · J1

[f(x)− (1 + (x− a)2)k−1fk−1(x)− (1 + (x− a)2)k−2fk−2(x)],
...

f1(x) = 1
4J1D

2
0

[f(x)− (1 + (x− a)2)k−1fk−1(x)− · · · − (1 + (x− a)2)2f2(x)],
f0(x) = f(x)− [1 + (x− a)2]k−1fk−1(x)− · · · − [1 + (x− a)2]f1(x).

Conversely, if functions f0, . . . , fk−1 satisfy the equation D2
0f = 0, then the

function f(x) given by (9) is a solution to the equation D2k
0 f = 0.

2.4. Almansi type decomposition IV

In this section, we obtain the Almansi type decomposition for the generalized
iterated slice Dirac operator Dk

0,λ by the generalized Euler operator.

Definition 2.9. We define the generalized slice Dirac operator by

D0,λ = D0 − λ,

where D0 is the slice Dirac operator and λ is a complex number.
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Definition 2.10. Let Ω ⊂ Rm+1. The generalized Euler operator defined on
the space C1(Ω, Clm+1) is given by

Uλ = λIΩ +

m∑
i=0

xi∂xi ,

where λ is a complex number and IΩ is the identity operator on the space
C1(Ω, Clm+1).

Lemma 2.11. If f(x) ∈ C1(Ω, Clm+1) is a solution to the equation D0,λf = 0,
then

(11) CkD
k
0,λU

k
λf = f,

where Ck = 1
k!λk and k ∈ N.

Proof. Assume that f is a solution to the equation D0,λf = 0. Then for k = 1,
it follows that

D0,λUλf = (D0 − λ)Uλf = D0Uλf − λUλf = Uλ+1D0f − λUλf = λf.

Suppose that for k = l, ClD
l
0,λU

l
λf = f, where Cl = 1

l!λl . For k = l + 1,

Dl+1
0,λ Ul

λf = D0,λD
l
0,λU

l
λf =

1

Cl
D0,λf = 0.

Then it follows that

Dl+1
0,λ Ul+1

λ f = Dl
0,λD0,λUλU

l
λf

= Dl
0,λ(Uλ+1D0,λ + λ)Ul

λf

= Dl−1
0,λD0,λUλ+1D0,λU

l
λf +

λ

Cl
f

= Dl−1
0,λ Uλ+2D

2
0,λU

l
λf +

2λ

Cl
f

= · · ·

= Uλ+l+1D
l+1
0,λ Ul

λf +
(l + 1)λ

Cl
f =

1

Cl+1
f.

Therefore, we have (11) by induction. �

Theorem 2.12. If f(x) ∈ Ck(Ω, Clm+1) satisfies the equation Dk
0,λf = 0, then

there exist unique functions f0, . . . , fk−1 such that

(12) f(x) =

k−1∑
i=0

Ui
λfi(x), x ∈ Ω,
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where f0, . . . , fk−1 are solutions to the equation D0,λf = 0 and given by

(13)



f0(x) = (IΩ − C1UλD0,λ) · · ·
(
IΩ − Ck−1U

k−1
λ Dk−1

0,λ

)
f(x),

f1(x) = C1D0,λ

(
IΩ − C2U

2
λD

2
0,λ

)
· · ·
(
IΩ − Ck−1U

k−1
λ Dk−1

0,λ

)
f(x),

...

fk−2(x) = Ck−2D
k−2
0,λ (IΩ − Ck−1U

k−1
λ Dk−1

0,λ )f(x),

fk−1(x) = Ck−1D
k−1
0,λ f(x),

with Ck = 1
k!λk .

Conversely, if functions f0, . . . , fk−1 satisfy the equation D0,λf = 0, then
the function f(x) given by (12) is a solution to the equation Dk

0,λf = 0.

Proof. If we let the operator Dk−1
0,λ act on Eq. (12), then it follows by Lemma

2.11 that

Dk−1
0,λ f(x) = Dk−1

0,λ

(
f0(x) +

k−1∑
i=1

(Uλ)ifi(x)

)
= Dk−1

0,λ Uk−1
λ fk−1(x) =

fk−1(x)

Ck−1
,

which implies that

fk−1(x) = Ck−1D
k−1
0,λ f(x).

Similarly, if we let the operator Dk−2
0,λ act on f(x)−Uk−1

λ fk−1(x), then we have

fk−2(x) = Ck−2D
k−2
0,λ (I− Ck−1U

k−1
λ Dk−1

0,λ )f(x).

Thus, we have (13) by induction.
Conversely, suppose that the functions f0, . . . , fk−1 satisfy the equation

D0,λf = 0. It follows by Lemma 2.11 that

Dk
0,λf(x) = Dk

0,λ

[
f0(x) +

k−1∑
i=1

(Uλ)ifi(x)

]
= 0,

which completes the proof. �

3. Riquier type problems for slice Dirac operators

In [15], the Riquier problem for polyharmonic equations is established. In
[13], Karachik obtained a solution of the Riquier problem in harmonic analysis
by using the 0-normalized system of functions with respect to the Laplace
operator. In [19], the authors studied the Riquier problem in superspace by the
0-normalized system of functions with respect to the super Laplace operator.
In this section, we investigate Riquier type problems in the theory of slice
monogenic functions by another method.
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3.1. Riquier type problem for slice Dirac operators

In this section, using Theorem 2.6, we consider the Riquier type problem for
the iterated slice Dirac operator Dk

0 as follows.
Given φi(y) ∈ C(∂Ωa, Clm+1), find a function f such that

Di
0f ∈ C(Ωa, Clm+1)

for i = 0, . . . , k − 1, and

(14)

{
Dk

0f = 0, f ∈ Ck(Ωa, Clm+1),
Di

0f |∂Ω = φi(y).

Theorem 3.1. Suppose that fi(x), i = 0, . . . , k − 1, satisfy the following equa-
tions

(15)


D0fi(x) = 0, fi(x) ∈ C(Ωa, Clm+1),

fi(x)|∂Ωa = 1
Ci

J1 · · · J[ i+1
2 ]

(
φi(y)−

∑k−1
j=i+1D

i
0[(x− a)jfj(x)]

)
,

fi(x) ∈ Ci(Ωa, Clm+1), E0 = J0 = IΩa
, Ci = (−2)i

[
i
2

]
!.

Then the function f(x) ∈ Ck(Ωa, Clm+1) given by

(16) f(x) =

k−1∑
i=0

(x− a)ifi(x)

is a solution of the problem (14).

Proof. Let f(x) ∈ Ck(Ωa, Clm+1). Because the functions fi(x) satisfy the
equations D0fi(x) = 0, it follows by Theorem 2.6 that

Dk
0f(x) = 0,

where f(x) is given in (16).
For i = 0, using (15), we have

f(x)|∂Ω = f0(x)|∂Ω +

k−1∑
i=1

(x− a)ifi(x)|∂Ω

= φ0(y)−
k−1∑
i=1

(x− a)ifi(x)|∂Ω +

k−1∑
i=1

(x− a)ifi(x)|∂Ω = φ0(y).

For i = k − 1,

(17) Dk−1
0 f(x) = Dk−1

0

(
k−1∑
i=0

(x− a)ifi(x)

)
= Ck−1E[ k

2 ] · · ·E1fk−1(x).
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For 0 < i < k − 1,

(18)

Di
0f(x) = Di

0

k−1∑
j=0

(x− a)jfj(x)


= CiE[ i+1

2 ] · · ·E1fi(x) +

k−1∑
j=i+1

Di
0[(x− a)jfj(x)].

Letting x→ ∂Ω, and using the second equality in (15), we have

Di
0f |∂Ω = φi(y), i = 1, . . . , k − 1.

Thus, we have the conclusion. �

3.2. Riquier type problem for generalized slice Dirac operators

In this section, we investigate the Riquier type problem for the generalized
slice Dirac operator Dk

0,λ by Theorem 2.12, as follows:

Assume ϕi(y) ∈ C(∂Ω, Clm+1). Find a function f such that

Di
0,λf ∈ C(Ω, Clm+1)

for i = 0, . . . , k − 1, and

(19)

{
Dk

0,λf = 0, f ∈ Ck(Ω, Clm+1),

Di
0,λf |∂Ω = ϕi(y).

Theorem 3.2. Suppose that fi(x), i = 0, . . . , k − 1, satisfy the following equa-
tions

(20)



D0,λfi(x) = 0, fi(x) ∈ C1(Ω, Clm+1),

fi(x)|∂Ω =
1

i!λi

ϕi(y)−
k−1∑
j=i+1

Di
0,λU

j
λfj(x)|∂Ω

 , i = 0, . . . , k − 2,

fi(x) ∈ C(Ω, Clm+1), Di
0,λU

j
λfj(x) ∈ C(Ω, Clm+1),

fk−1(x)|∂Ω =
1

(k − 1)!λk−1
ϕk−1(y), fk−1(x) ∈ C(Ω, Clm+1).

Then the function f(x) given by

(21) f(x) =

k−1∑
i=0

Ui
λfi(x)

is a solution of the problem (19).

Proof. The proof is similar to that of Theorem 3.1. We have the result by
Theorem 2.12. �
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4. Dirichlet type problems for null solutions to the iterated slice
Dirac operator

In mathematics, a Dirichlet problem for Laplace’s equation can be stated
as follows: Given a function f that has values everywhere on the boundary of
a region in Rn, there is a unique function u twice continuously differentiable
in the interior and continuous on the boundary, such that u is harmonic in
the interior and u = f on the boundary (see [9]). The Dirichlet problem
is named after Peter Gustav Lejeune Dirichlet, which can be investigated for
many PDEs, although originally it was posed for Laplace’s equation. In [16], the
author investigated Dirichlet type problems for Dunkl-Poisson equations. In
this section, we study Dirichlet type problems for iterated slice Dirac equations.

4.1. Dirichlet type problem I

In this section, we consider the homogeneous boundary value problem for
the inhomogeneous iterated slice Dirac equation in the ball as follows: Let B
be the ball with center a and radius 1. Suppose that f(x) is a solution to the
equation D2

0f = 0. Find a function u(x) satisfying

(22)

{
D2k

0 u(x) = 0, x ∈ B,
u(x) |∂B= 0, x ∈ ∂B,

where ∂B = {x||x− a|2 = 1, x ∈ Rm+1}.

Theorem 4.1. Suppose that f(x) is a solution to the equation D2
0f = 0. Then

Problem (22) has a solution.

Proof. Let
u(x) = [1 + (x− a)2]k−1f(x),

where f(x) is a solution to the equation D2
0f = 0. Then

D2k
0 [1 + (x− a)2]k−1f(x) = 0

by Theorem 2.8. It is easy to see that [1 + (x − a)2]k−1f(x) |∂B= 0, which
implies that u(x) is a solution of Problem (22). �

4.2. Dirichlet type problem II

In this section, we derive a solution of the following homogeneous boundary
value problem for the inhomogeneous iterated slice Dirac equation in the ball:
Let B be the ball with center a and radius 1. Suppose that f(x) is a solution
to the equation D2

0f = 0. Find a function u(x) satisfying

(23)

{
D2k

0 u(x) = f, x ∈ B,
u(x) |∂B= 0, x ∈ ∂B.

Theorem 4.2. Suppose that f(x) is a solution to the equation D2
0f(x) = 0.

Then Problem (23) has a solution

u(x) =
1

4kk!
[1 + (x− a)2]kJk · · · J1f(x).
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Proof. Let

u(x) =
1

4kk!
[1 + (x− a)2]kJk · · · J1f(x).

Because f(x) is a solution to the equation D2
0f = 0, it follows by Lemma 2.5

that the functions Jk · · · J1f(x) satisfy the equation D2
0f = 0. Applying Lemma

2.4, we find that

D2k
0 u(x) = D2k

0

[
1

4kk!
(1 + x2)kJk · · · J1f(x)

]
=

1

4kk!
4kk!E1 · · ·EkJk · · · J1f(x)

= f(x).

Therefore, the function u(x) is a solution of Problem (23). �

4.3. Dirichlet type problem III

In this section, we study the inhomogeneous boundary value problem for
the inhomogeneous iterated slice Dirac equation in the ball as follows: Let B
be the ball with center a and radius 1. Suppose that f(x) is a solution to the
equation D2

0f = 0. Find a function u(x) satisfying

(24)

{
D2k

0 u(x) = 0, x ∈ B,
u(x) |∂B= P (x), x ∈ ∂B,

where ∂B = {x | |x− a|2 = 1, x ∈ Rm+1} and P (x) is a homogeneous polyno-
mial of degree 2k − 1.

Theorem 4.3. Suppose that f(x) is a solution to the equation D2
0f(x) = 0.

Then Problem (24) has a solution

u(x) = P (x) + [1 + (x− a)2]k−1f(x),

where P (x) is a homogeneous polynomial of degree 2k − 1.

Proof. Applying Theorems 2.7 and 4.2, we have the conclusion. �

5. Conclusions and future research

In this paper we have explicitly constructed Almansi-type decompositions in
slice Clifford analysis. Furthermore, applying these decompositions, we inves-
tigate Riquier type problems and Dirichlet type problems. Therefore, Almansi
decompositions are of great importance when studying boundary value prob-
lems in slice Clifford analysis. Based on Almansi-type decompositions, we will
consider Riemann boundary value problems for null solutions to the iterated
slice Dirac operator in a subsequent paper.
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