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SOME PROPERTIES OF GENERALIZED BESSEL FUNCTION
ASSOCIATED WITH GENERALIZED FRACTIONAL
CALCULUS OPERATORS

RANJAN KUMAR JANA, ANKIT PAL, AND AJAY KUMAR SHUKLA

ABSTRACT. This paper devoted to obtain some fractional integral prop-
erties of generalized Bessel function using pathway fractional integral op-
erator. We also find the pathway transform of the generalized Bessel
function in terms of Fox H-function.

1. Introduction and preliminaries

Bessel functions are directly associated with problems having circular and
cylindrical symmetry. They arise in the study of free vibrations of a circu-
lar membrane and in determining the temperature distribution in a circular
cylinder. They also occur in electromagnetic theory and several other areas of
science and engineering. In 1824, F. W. Bessel gave the systematic study of
Bessel function. The Bessel function of first kind J,(z) [1] is represented as
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M W= wr i ()

where |z| < 00, |arg z| < .
Wright [16] generalized Bessel function which is defined by
N

(2) Jl’}(z) = m7

k=0
where h > 0, |z| < 00, |arg z| < 7.
Galue [1] generalized Bessel function which is represented by

e (—1)k 2\ 2k+v
3) ndu(z) = kzzo T(1 + v+ hk)&! (5) ’

where h > 0, |z| < oo, |arg z| < 7.
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Wright [15] extended the generalized hypergeometric function in the form of
Fox-Wright function which is defined as

] Z D(uy + Uik) - T(up + Upk) 2*
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where i = 1,2,...,p; 7 = 1,2,...,¢q and u;,v; € C, and the coefficients
Up,...,Up € Rt and V4,...,V, € RT satisfying the condition

p
=Y Ui> -1

j=1 i=1
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S

(5)

In particular, when U; = V; =1(i =1,2,...,p; j = 1,2,...,¢), the equation

(4) reduces to
where ,F,(-) is the generalized hypergeometric function [14].

The notion of the Hadamard product [3,13] of two holomorphic functions
is very useful in our present investigation. If one of the power series is an
entire function, then the Hadamard product of two power series is also an
entire function. This can help us to degrade a newly emerged function into two
known functions. Let two power series with radius of convergence R; and Ro,

Z:l _ le F(UZ) F |:7_l,1,...,up

T (o) " [ vr g

Zun |Z| <R1)

Zvn |Z| <R2)

Then, the Hadamard product of two given power series defined by

(7) (f*9)(z Zunvn = (g f)(2), (l2[ <R),
where
R = lim UnUn = ( lim ) . ( lim |—% ) = Ry - Rs.
n—=00 | Up+4+1Un+1 n—00 | Upi1 Nn—00 | Up41

Therefore, in general, R > Ry - Rs.
The H-function [11] is defined by means of a Mellin-Barnes type integral as

follows:
1
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Here =% = exp[—s{|z| +i argz}], z # 0, i = v/—1, where In|z| represents
the natural logarithm of |z| and argz is not necessarily the principal value
and m,n,p,q are integers such that 1 < m < ¢, 0 < n <p, U;,V; € RT,
u,v; € C, 1=1,2,...,p;5 =1,2,...,¢). An empty product in (9) is always
interpreted as unity. The contour L in (8) separates the poles of the gamma
functions I'(v; + Vjs), j = 1,...,m from those of the Gamma functions I'(1 —
u; —Ujs),j=1,...,n.

The specific and vast theory of H-function have well explained in the books
of Mathai [6], Mathai and Saxena ([10], Ch. 2) and Kilbass and Saigo ([2],
Ch. 1 and Ch. 2).

9) h(s) =

2. Pathway integral representation of ,J,(z)

In this section, we establish fractional integration formula of pathway type of
generalized Bessel function (3) in terms of generalized Wright hypergeometric
function.

In 2009, Nair [12] introduced the pathway fractional integral operator by
using the pathway idea of Mathai [7] which was further developed by Mathai
and Haubold [8,9]. This operator is a generalization of the classical Riemann-
Liouville fractional integral operator which is defined below:

Let f(z) € L(p,q), £ € C, R(&) > 0, p € RT and w < 1 be the pathway
operator. Then

(10) (%Hy@—ﬁf“”ﬁlp“ﬂ“yiﬂwu

T

where L(p, q) is the set of Lebesgue measurable function. For a real scalar w,
the pathway model for scalar random variables is represented by the following
probability density function (p.d.f.):

(11) fla) = el 1 - p(1 — w)|z|] ™=,

provided that z € R, v,7 € RT, A > 0, 1 — p(1 — w)|z|” > 0, where c is
normalizing constant and w is pathway parameter.
The normalizing constants ¢ for pathway parameter w is as follows:

Tlp(1-w) T (2 + 55 +1)
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For w < 1, it is a finite range density with 1 — p(1 — w)|z|™ > 0 which is
known as extended generalized type-1 beta family of densities for real x. It
also includes the type-1 beta density function, triangular density function, the
uniform density function and many other probability density function.

If w > 1, then (10) can be represented as follows:

2 (ren) @ = [T e e 7 o

and
(13) f(x) = clz|" 1 + p(w — 1)|$|T]ﬁ7

provided that z € R, v,7 € R*,A\ > 0, w > 1 which is known as extended
generalized type-2 beta family of densities for real z. It also includes the type-
2 beta density function, the F' density function, the Student-¢ density function
and many different density function.

For w — 1, (11) and (13) will give the exponential form as

lim cz|" "Y1 — p(1 — w)|z|"] ™% = lim clz|* 1 + p(w — 1)|z|7] =D
w—1 w—1
(14) = clz|" e P x|

When p = 1, w = 0 and replacing £ by £ — 1, then (10) gives
1) (P @) = [ =0 0 =T (15.5) o).

where (Ig n f) (x) denotes the left-sided Riemann-Liouville fractional integral
operator [12].
Now, [1 - M} T L e Bt asw o 1_, then the operator (10) reduces

to the Laplace transform of f with parameter %5, which is represented as

i §.w — T gy _ PE
a6 i (RES) @) =af [ o=ty (x) |
Now we prove Theorem 2.2 using the following Lemma 2.1 given in [12].

Lemma 2.1. Let £ € C, R(€) >0, peC,pe R andw < 1. If R(u) > 0
and R (%) > —1, then

(17) (PEce) @) =
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Theorem 2.2. Let &, u,v € C, h >0, pe R" and w < 1, such that R(¢) > 0,
R(u) > 0, R(w) > —1, R(u+v) > 0, R (ﬁ) > 1. Then

Etnp v

(ric e 2un0) ) = G (5) T (0 755)
(U+V72) .ZE2

" R RO I B e

Proof. Let Py be the left-hand side of (18). Then, using (3), we have

P = Pfaw t,u—l i (_1)m t v+2m (x)
1 0+ — T(1+v+hm)m! \ 2 .

On reversing the order of summation and integration, we obtain

oo

P=3 o (=H™ (1

v+2m
Pf,w tu+y+2m—1) .
A= D(1+ v+ hm)m! 2) ( i (@)

On using Lemma 2.1, we obtain

+v+hm)m! \ 2

putvrem T (% + 1) I'(pw+v+2m)

(=@ 2 (1w 4 2m 4 15)
with the help of (4), this leads to the right-hand side of (18).

O
When w — 1_, 2= — oo, then in (19), we can expand gamma function by
using Stirling formula:
¢
(1 —w)rtvezm p (1+u+u+2m+ ﬁ)
%+l B
NG 1
4ot omt-S 41 T eptvi2m”
(1 — w)#-&-u—t—Qm1 /o (%)M trw 2 e‘ﬁ E
Hence,
E+utv 2
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wli)ﬂ]-li PO+ t th(t) (93) 2V(p€)ﬂ+l’ 1*1 |:(1 =+ v, h) 4p2£2 )

which corresponds to the Laplace transform of the function t#~1;,J, ().

Now, we prove the following result by assuming the case w > 1 and using
the equation (12).
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Theorem 2.3. Let &, u,v € C, h >0, pe R" and w > 1, such that R(&) > 0,

R(u) > 0, R(v) > —1, R(u +v) > 0, %(1—7) > 0. Then
Etn v £
P{,w p—1 _ T E (1=
(P #71000)) ) R (3) w1
(n+1,2) a?
(20) X v {(1+y,h)7(1+u+u— %,2)' ~ 4[—p(w - 1)}2}'
Proof. Proof of Theorem 2.3 is similar as given in Theorem 2.2. ]

2.1. Representations in terms of product of two functions

In this section, we establish some results in terms of product of two functions
using Hadamard product of power series defined in (7).

Theorem 2.4. Let &, u,v € C, h>0,p € R and w < 1, such that R(€) > 0,
R(u) >0, R(v) > -1, R(u+v) >0, R (ﬁ) > —1. Then

E+np
Ew yu—1 - r L §
(P du0) () = b —w)]/“r’/ (3)r (H 1—0.))
h ;1+1/ 2) 1:72
@ < (=) Lo e o)
Proof. Let Pz be the left-hand side of (21).
o) m v+2m
_ §w pu—1 (-1) E
Py = (Po+ t mz;o T(1+ v+ hm)m! <2 (@).

On reversing the order of summation and integration, we obtain

Then, using (3), we find that

o0

1 veam &,w p+rv+2m—1
Z + v + hm)m' (2) (PO+ ! ) ().

m=0

Using Lemma 2.1, we arrive at

B [es} (—l)m 1 v4+2m
(22) & _mz::OI‘(l—l—u-i-hm)m! (2>

pEtntvizm T (% + 1) L(p+ v +2m)
(=@l 2 (1 v 2m e+ £5)

X

By applying the Hadamard product (7) in (22) and in the view of (2) and (4),
this leads to the right-hand side of (21). O

Now, one can prove the following theorem for w > 1 and using (12).
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Theorem 2.5. Let &, u,v € C, h >0, pe R" and w > 1, such that R(¢) > 0,
R(u) > 0, R(w) > —1, R(u+v) > 0, R (1 - %) > 0. Then

(Pse P n0) (2) = — e (5)'T (1 - 5)

[l — 1]+ w1

(23) 2 (qmmtr) 0 [0S | e

Proof. Proof of Theorem 2.5 is similar as given in Theorem 2.4. O

3. P-transform or pathway transform of ,J,(2)

In this section, we determine the pathway transform of generalized Bessel
function (3) in terms of Fox H-function defined in (8) and (9).

The P-transform or pathway transform is a generalization of Krétzel trans-
form and of many existing integral transforms. In 2011, Kumar [5] gave the
pathway transform which is obtained by using the pathway model of Mathai
[7] and further developed by Mathai and Haubold [8] which is represented as,

(24) (PO @) = [ DL £0) dt, w0,
0

where D[ }(x) is given as
(25) D i(x) = / u’ ML+ a(y — 1)u“’]_ﬁ6_”75du, x>0,
0

where v € C,a > 0,0 >0and w € R, w # 0, v > 1. In this case, we say that
(24) is a type-2 P-transform. If we use kernel function

w,d

[ﬁ]% 1 _
(26) DY (z) = / k u’THL = a(l — y)u®] = e “du, >0,
0

with v € C,a > 0,6 > 0 and w > 0, v < 1 then we say that (24) is type-1
P-transform. The P-transform of both type-1 and type-2 are defined in the
space L, , consisting of the Lebesgue measurable complex-valued functions f
for which

(27) I, ={ [ It”f(t)lr}}' <o

for 1 <r <oo,v€R.
When 6 =1,a =1 and v — 1, one can observe that

(28) lim D] = Z3(a),

where ZY(x) is the kernel function of the Krétzel transform, introduced by
Krétzel [4] which is defined below as,

(20) K2 f () = / T 22at) £t dt, x>0,



48 R. K. JANA, A. PAL, AND A. K. SHUKLA

where
(30) Z:j(x):/ u? e T gy,
0

Here, we find the type-2 P-transform of generalized Bessel function by using
the following lemma given in [5].

Lemma 3.1. Let v,y € C,a>0,0>0,weR, w#0,v>1 and R(u) >0
such that R(v 4+ o) > 0 and R(1/(v — 1) — (v 4+ 0u)/w) > 0 when w > 0,
Rv+dp) <0 and R(1/(y —1) — (v+ du)/w) > 0 when w < 0. Then type-2
P-transform of power function is given by

D( )T ( 201 _ vtop
(31) ('PZJ’(S”YQ?M_I)(LL'): (/J) ( w ) (’Y 1 w )

v+op

jwlzmfa(y — D0

Remark 3.2. If a =1, = 1 with existing conditions of Lemma 3.1, then

v+p
(32) fim (P37~ ) = (K1) () = )

=1 ||z

)

where R(u) > 0 and R(v + p) > 0 when w > 0 and R(v + ) < 0 when w < 0.

Theorem 3.3. Let v,u € C,a >0, >0, we R, w#0,~v>1b>
0 and R(pu + 7(v — 2s8)) > 0, such that R(v + 6(p + 7(v — 25))) > 0 and
R/ (v=1)—(v+d(p+7(r—25)))/w) > 0 whenw > 0, R(v+d(u+7(r—2s))) <0
and R(1/(v—1) = (v+6(p+ 7(v — 25)))/w) < 0 when w < 0. Then, type-2
P-transform of generalized Bessel function (3) is given by,

if w> 0,
[P k=1 T, (ba”)] () = 15 (é)u
v wrk T [a(y — 1)) C T(1/(y—1) \2
1—p—vr,27), (w, 267)
33 x PRl 0 5
(33) 2,3 sz[a(v —1))%" {(0,1), (=1, 1), (771 — vHlutvr) 237)
and if w < 0
1 b\"
(P8 ah 1, (b () = G ()
v v wartt[a(y — )] ET2 D) (v — 1) \2
2.2 2 (1—;L71/T,27),(17ﬁ+W‘72%)
(34) X Ha [un (O.1), (~w, by, (Ulaen) o) )

Proof. Let w > 0. Then from (24) and (25), we have

[Pesagh1, / DY (at) 14

T'(s) b\
(35) X% LT tv—sh (2) ds dt.
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Further simplification yields,

[P0, (b)) = 5 /L mff’ﬁ_sh) (g)Q

o0
36 X DY (xt) thHT =281 g4 s,
( ) w,8

0

Using Lemma 3.1, we obtain
(37)  [Pyoat g, (ba")] ()

B i F(S) é v—2s
C2mi J, T(1+v—sh) \2

+(ut7(r—2s)) 1 +6(ut7(r—2s))

w2 fa(y — DR (y - 1))

with the help of (8) and (9), this leads to the right-hand side of (33). Similarly,
we can prove the result (34) for w < 0. O

X

)

Corollary 3.4. If a = 1,0 = 1 with ezisting conditions of Theorem 3.3, then
Krdtzel transform of generalized Bessel function (3) is given by

(38) lim [P0 zH =1, T, (ba™)](z)
y—1
= (K&a" ', (ba7))(x)
1 b\ 20| b
CwapktrT (2> a2 l4x27

for w >0 and
(39) I (PEOrw (b))

w T w

(Oa 1)7 (_Vv h)

(1—p—vr,27), (w 27)1

(Kt =00, (b27)) @)
1 b\" ool B?
W<2) il Lx
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for w < 0.
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