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REAL HYPERSURFACES IN COMPLEX
TWO-PLANE GRASSMANNIANS WHOSE SHAPE
OPERATOR IS OF CODAZZI TYPE IN GENERALIZED
TANAKA-WEBSTER CONNECTION

Kyusuk CHo, HyunJiN LEE, AND EuNMI PAK

ABSTRACT. In this paper, we give a non-existence theorem of Hopf hyper-
surfaces in complex two-plane Grassmannians Ga ((C"“r2)7 m > 3, whose
shape operator is of Codazzi type in generalized Tanaka-Webster connec-
tion V (k).

Introduction

Let us denote by G2 (C™%2) the set of all complex two-dimensional linear sub-
spaces in C™ %2, which is said to be a complex two-plane Grassmannian. This
Riemannian symmetric space G2(C™%?) has a remarkable geometric structure.
It is the unique compact irreducible Riemannian manifold being equipped with
both a Kahler structure J and a quaternionic Kéhler structure J not containing
J, for details we refer to [2], [3] and [4]. In particular, when m = 1, Go(C?)
is isometric to the two-dimensional complex projective space CP? with con-
stant holomorphic sectional curvature eight. When m = 2, we note that the
isomorphism Spin(6) ~ SU(4) yields an isometry between G5(C*) and the real
Grassmann manifold G5 (R%) of oriented two-dimensional linear subspaces in
RS. In this paper, we will assume m > 3.

Moreover, naturally we could consider two geometric conditions for hyper-
surfaces M in G3(C™*?) that the 1-dimensional distribution [¢] = Span{¢}
and the 3-dimensional distribution ®+ = Span{&,&;, &3} are both invariant
under the shape operator A of M (see Berndt and Suh [3]). Here the almost
contact structure vector field £ defined by £ = —JN is said to be a Reeb vector
field, where N denotes a local unit normal vector field of M in Go(C™*?). The
almost contact 3-structure vector fields &, for the 3-dimensional distribution
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D+ of M in Go(C™*2) are defined by &, = —J,N (v = 1,2,3), where J,, de-
notes a canonical local basis of a quaternionic Kéahler structure J, such that
T.M=D3D, zc M.

By using such two geometric conditions and the results in Alekseevskii [1],
Berndt and Suh [3] proved the following:

Theorem A. Let M be a connected real hypersurface in Go(C™F2), m > 3.
Then both [£] and D+ are invariant under the shape operator of M if and only
if
(A) M is an open part of a tube around a totally geodesic Go(C™T1) in
G2 (C™*2), or
(B) m is even, say m = 2n, and M is an open part of a tube around a
totally geodesic HP™ in Go(C™+2).

When the Reeb flow on M in Ga(C™%2) is isometric, we say that the Reeb
vector field € on M is Killing. This means that the metric tensor g is invariant
under the Reeb flow of € on M. In [4], Berndt and Suh showed that this notion
is equivalent that the shape operator A commutes with the structure tensor ¢.
From this, they also gave a characterization of real hypersurfaces of type (A)
in Theorem A in terms of the Reeb flow on M as follows (see [4]):

Theorem B. Let M be a connected orientable real hypersurface in Go(C™+2),
m > 3. Then the Reeb flow on M is isometric if and only if M is an open part
of a tube around a totally geodesic Go(C™ 1) in Go(C™*?).

On the other hand, Lee and Suh [11] gave a new characterization of real
hypersurfaces of type (B) in Go(C™*2).

Theorem C. Let M be a connected orientable Hopf real hypersurface in
G2(C™*+2), m > 3. Then the Reeb vector field & belongs to the distribution
© if and only if M 1is locally congruent to an open part of a tube around a
totally geodesic HIP™ in Go(C™%2), where m = 2n.

As a generalization of the well-known connection defined by Tanaka in [14]
and, independently, by Webster in [16], Tanno [15] introduced the notion of gen-
eralized Tanaka Webster connection (in short, g-Tanaka-Webster connection).
This connection coincides with Tanaka-Webster connection if the associated
CR-structure is integrable. Here Tanaka-Webster connection was defined as
the canonical affine connection on a non-degenerate, pseudo-Hermitian CR-
manifold. Moreover, on real hypersurfaces in Kahler manifolds with almost
contact metric structure (¢, &, 7, g), the g-Tanaka-Webster connection V&) for
a non-zero real number k& was given by Cho (see [5]). In particular, if a real
hypersurface satisfies A + A¢p = 2k¢, then the g-Tanaka-Webster connection
V®) coincides with the Tanaka-Webster connection.

Recently, by using the g-Tanaka-Webster connection v*) Jeong, Suh and
the second author have studied some parallelism of the shape operator on real
hypersurfaces in complex two-plane Grassmannians ([8] and [9]). For example,
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they proved that the shape operator on a Hopf hypersurface in G5(C™%2) is
D~+-parallel with respect to the g-Tanaka-Webster connection, that is, the shape
operator A of M satisfies the condition (@E?)A)Y = 0 for any tangent vector
fields X € ®% and Y € TM if and only if a real hypersurface in Go(C™*2) is
locally congruent to an open part of a tube around a totally geodesic HP" in
G2(C™*+2), m = 2n (see [9]).

In this paper, let us consider a new notion which becomes another extension
for the parallelism of the shape operator on real hypersurfaces M in Go(C™*2)
with respect to the g-Tanaka-Webster connection. For given a tensor T of
type (1,1) on M we will say that T is of Codazzi type with respect to the g-
Tanaka- Webster connection if it satisfies (@g?)T)Y = (@gf)T)X for any tangent
vector fields X and Y on M. By virtue of this notion we will consider a
real hypersurface in Go(C™%2) whose shape operator A is of Codazzi type with
respect to V®) | that is, the shape operator A of M in Gs (C™*2) satisfies the
property
() (V' A)Y = (VP A)x

for any tangent vector fields X and Y on M. By using such the notion for

the shape operator, we give a classification theorem for real hypersurfaces in
G2 (C™*2) as follows:

Main Theorem. There does not exist any Hopf hypersurface, o # 2k, in
complex two-plane Grassmannians Go(C™2), m > 3, whose shape operator is
of Codazzi type with respect to the generalized Tanaka-Webster connection if
the distribution ® and D+-components of the Reeb vector field are invariant by
the shape operator.

Remark. In [7], the authors have remarked the case o« = 2k (k is a nonzero
real number) on Hopf hypersurfaces in Go(C™+?) with ¢ € D+ (see Proposi-
tion 3.7). That is, under assumptions, ¢ € D+ and a = 2k, the shape operator
A of M becomes naturally g-Tanaka-Webster Reeb parallel. Thus in this pa-
per, we only consider for a Hopf hypersurface in Go(C™%2) with o # 2k, when
the Reeb vector field ¢ belongs to D+.

1. Some fundamental formulas for real hypersurfaces in G5 (C™12)
and the generalized Tanaka-Webster connection

In this section, we first review some basic formulas and the Codazzi equation
for a real hypersurface in Go(C™*2) introduced in [3], [4], [9], [12], [13], etc.

Let M be a real hypersurface of Go(C™*2), that is, a submanifold of
G2(C™*?) with real codimension one. The induced Riemannian metric on M
will also be denoted by g, and V denotes the Riemannian connection of (M, g).
Let N be a local unit normal vector field of M and A the shape operator of M
with respect to N. Now let us put

(1.1) JX = ¢X +n(X)N, J,X = ¢, X +n,(X)N
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for any tangent vector field X of a real hypersurface M in Go(C™*2). From the
Kihler structure J of Go(C™+2) there exists an almost contact metric structure
(¢,€,m, g) induced on M in such a way that

for any vector field X on M. Furthermore, let {.J, J2, J35} be a canonical local
basis of J. Then the quaternionic Kihler structure J,, of Go(C™*2), together
with the condition J,J,+1 = Jy42 = —Jy41J,, induces an almost contact
metric 3-structure (¢,,&,,1,,9) on M as follows:

oo X =-X+n(X)&, n(&) =1 ¢& =0,
Gv+18 = —8vt2,  Duéut1 = Euta,

P Pr+1X = P2 X + M1 (X)Ew,

G100 X = =2 X + 10 (X)Et1

for any vector field X tangent to M. Moreover, from the commuting property
of J,J = JJ,, v = 1,2,3 and (1.1), the relation between these two contact
metric structures (¢,€,n,¢9) and (é,,&,, M0, 9), v = 1,2,3, can be given by

PPu X = P9 X + UV(X)E - U(X)ﬁu,
UV(¢X) = n(¢VX)7 P& = Pu€.

On the other hand, as J is a Kahler structure (i.e., VJ = 0) and J a quater-
nionic Kéhler structure (i.e., VxJ, = qu+2(X)Jv+1 — qu+1(X)Jo42 for any

tangent vector fields X on Go(C™%2)), together with Gauss and Weingarten
formulas it follows that

(1.4) (Vx9)Y =n(Y)AX — g(AX,Y ), Vx&=0pAX,

(1.2)

(1.3)

(1.5) Vx& = qi2(X)6r1 — qui1(X)E12 + 9, AX,
(Vx,)Y == qui1(X)pu42Y + qui2(X) 1Y
+m(Y)AX — g(AX,Y)E.
Using the expression for the curvature tensor R of Go (C™*2) in [9], the equation
of Codazzi is given by
(1.7)
(VxA)Y — (VyA)X =n(X)oY —n(Y)pX —29(¢X,Y)¢

(1.6)

3

+ 3 {mX)6.Y —nu(V)6, X — 296, X, V), }
3

+ > {m(6X)8,0Y = n.(6Y)6,0X |

+ {H(X)nu(aﬁY) - n(Y)m(qﬁX)}gV .
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As mentioned in Theorem A, the complete classification of real hypersurfaces
in Go(C™*2), m > 3, with two kinds of A-invariancy for the distributions
[€] = Span{¢} and D+ = Span{¢1, &, &3} was obtained by Berndt and Suh [3].
Accordingly we introduce the following two propositions related to the principal
curvatures of the model spaces (A) and (B), respectively.

Proposition A. Let M be a connected real hypersurface of Go(C™*2). Sup-
pose that AD C D, A = af, and & is tangent to D+. Let J, € J be the almost
Hermitian structure such that JN = JiN. Then M has the following three (if
r = m/2V/8) or four (otherwise) distinct constant principal curvatures:

principal curvature | multiplicity etgenspace
o = \/8cot(\/8r) 1 T, =R¢ =RJIN = R¢ = Span{¢}
B = v/2cot(v/2r) 2 Ty = C+¢ = Span{&, &}

A= —V2tan(v2r) | 2(m—1) | Th ={X| X1H¢, JX = J, X}
pw=0 2m —1) | T, ={X| X1H¢, JX = -], X}

with some r € (O,W/\/g). Here RE, CE and HE respectively denotes real, com-
plex and quaternionic span of the structure vector field & and C+¢ denotes the
orthogonal complement of C& in HE.

Proposition B. Let M be a connected real hypersurface of Go(C™*+2). Sup-
pose that AD € D, A = af, and £ is tangent to ©. Then the quaternionic
dimension m of Go(C™*2) is even, say m = 2n, and M has five distinct con-
stant principal curvatures and the corresponding multiplicities with respect to
the eigenspaces:

principal curvature | multiplicity eigenspace

a = —2tan(2r) 1 T, = Span{¢}

B = 2cot(2r) 3 Ts = Span{&, | v =1,2,3}
v=0 3 T, = Span{¢,¢| v =1,2,3}
A = cot(r) dn —4 Ty

w=—tan(r) dn — 4 T,

where v € (0,7/V/8) and Ty ® T, = (HCE)*, 3T\ =Ty, JT) =Ty, JTr =T),.

From now on, we introduce the generalized Tanaka-Webster (shortly, g-
Tanaka-Webster) connection for a real hypersurface in Kéahler manifolds (see
51, [6], [8], [9) and [10]).

As stated in the introduction, the Tanaka-Webster connection is the canon-
ical affine connection defined on a non-degenerate pseudo-Hermitian CR-mani-
fold (see [14] and [16]). Tanno [15] defined the g-Tanaka-Webster connection
for contact metric manifolds by the canonical connection as follows:

VxY =VxY + (Vxn)(Y)E = n(Y)Vx€ —n(X)pY
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for any vector fields X and Y. It coincides with the Tanaka-Webster connection
if the associated CR-structure is integrable.

On the other hand, a real hypersurface M in Kéahler manifolds has the
property A¢ + ¢pA = +2¢ (the sign depends on the orientation) for the shape
operator A and the structure tensor ¢ of M if and only if the almost contact
metric structure of M is contact metric (see [5]). From such a point of view,
Cho defined the generalized Tanaka-Webster connection V®) on M by the
naturally extended one of Tanno’s g-Tanaka-Webster connection V for contact
metric manifolds:

(1.8) VY = VY + g(¢AX,Y)E - n(Y)pAX — kn(X)gY

for a non-zero real number k. Moreover, if a real hypersurface in Kéhler man-
ifolds satisfies Ap + ¢pA = 2k¢, then the associated CR-structure is pseudo-
hermitian, strongly pseudo-convex, integrable. Thus under the assumption
Ap + A = 2k¢, we obtain the following facts (see [5], [8] and [10]):

(1) if k = 1, then we see that V(¥ =V,

(2) the connection V*) coincides with the Tanaka-Webster connection de-
fined as the canonical affine connection on a non-degenerate, pseudo-
Hermitian CR-manifold.

Thus we see that the connection V*) is a natural generalization of Tanaka-
Webster connection and call it generalized Tanaka-Webster connection (or
shortly, g-Tanaka-Webster connection) on real hypersurfaces of Kédhler man-
ifolds.

2. Proof of Main Theorem

First of all, we will prove that the Reeb vector field £ belongs to either the
distribution ® or the distribution D+ for a Hopf hypersurface M in Go(C™*?)
whose shape operator is of Codazzi type with respect to the generalized Tanaka-
Webster connection V*).

Lemma 2.1. Let M be a Hopf hypersurface in Go(C™2), m > 3, whose shape
operator is of Codazzi type with respect to the generalized Tanaka- Webster con-
nection. If ® and D+ -components of & are invariant under the shape operator
of M, then the principal curvature o = g(AE, ) is constant. Furthermore, the
Reeb vector field & belongs to either the distribution © or the distribution D=+.

Proof. To show this fact, we assume that the Reeb vector field £ satisfies

() §=n(Xo0)Xo +n(&1)é1 such that n(Xo)n(§1) # 0

for some unit vectors Xo € ® and & € D+ .
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Let us consider the case that the smooth function o = g(Ag, ) vanishes.
In [3] Berndt and Suh gave

(2.1) Ya=(EanY) =4 n(E)m(eY)

v=1
for any tangent vector field Y on M under the assumption that M is Hopf.
Now, as a = 0, it implies that

3
D m(©)du = 0.
v=1

Moreover, using the equation (xx), we have n(Xo)$Xo = 0. Since n(Xg) # 0,
the tangent vector ¢p.Xo € T, M becomes a zero one. This gives a contradiction
and we see that ¢ belongs to either ® or ®+ when « is vanishing. In addition,
from the equation (2.1) we see that if « is constant, then £ belongs to either ©
or D+

From now on, let us consider the case a # 0. Since the shape operator A of
M satisfies the Codazzi type equation for V(*) | that is, (@g?)A)Y = (@SC)A)X
for any tangent vector fields X, Y on M, we have

(VX A)Y + g(6AX, AY ) — gAY )AX — kn(X)pAY
— g(pAX, Y)AE + n(Y)APAX + kn(X)ApY
= (VyA)X + g(¢AY, AX)¢ — n(AX)pAY — kn(Y)pAX
— g(@AY, X)AE + n(X)APAY + kn(Y)AdX,
together with the equation (1.8). Moreover, it can be written as

n(X)Y —n(Y)oX —29(¢X,Y)¢
+29(APAX, Y )E — an(Y)$AX — kn(X)9AY — ag(6AX,Y )¢
+n(Y)APAX + kn(X)A¢Y + an(X)pAY + kn(Y)pAX

(22) —9(ASXY)E—n(X)APAY — kn(Y)ApX

3
+ 3 (XY = (V)0 X = 29(6, X, V) + 1u(6X)6,0Y
v=1

=1 (6Y)0u X + n(X)m(8Y )& — (Y Im(X)E, | =0,

using the assumption A{ = o and the Codazzi equation (1.7).
Putting Y by £ in (2.2), we get

3
—oX + > {m(X)6.€ —n (€6, X — 39(6, X, )6, |
v=1

— apAX + APAX + k¢pAX — kAYX =0

(2.3)

for any vector field X tangent on M.
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Substituting X = X in (2.3) and using (x%), we have
(24) ¢X0 + 7’](61)¢1X0 + aqﬁAXO - A¢AXO - I{?(bAXO + I{/’A(bXO =0.

Since ¢ = 0 and (xx), we see that ¢pXo = —n(£1)d1Xo. From this, the equa-
tion (2.4) is written as

On the other hand, from our assumptions that the ® and ®-components of
& are invariant under the shape operator of M and M is Hopf, we see that the
unit vector field Xy € © becomes a principal one, AXy = aXy. Thus (2.5)
changes to

20Xy — aApXy — kapXo + kApXo = 0.

In addition, if the ®-component of ¢ is a principal vector field with the cor-
responding principal curvature a(# 0), then ¢Xj is also principal vector field,
that is, ApXo = ((a® + 4n*(Xo))/a)$Xo (see Proposition 2 in [4]). Thus we
have

k(o? 4 41%(Xo))

?¢Xo — (o + 4n*(Xo))pXo — kagpXo + $Xo =0,

it follows that 4n%(Xo)(k — a)¢Xo = 0. Taking the inner product with ¢Xo,
we obtain —4n%(Xo)n?(&1)(k — «) = 0. Since n(Xq)n(&1) # 0, we have « = k.
It implies that the smooth function « is constant. By virtue of the proof for
the case @ = 0, the Reeb vector field £ belongs to either the distribution © or
the distribution -+, O

From Lemma 2.1, we can consider the following two cases:

e The Reeb vector field € belongs to distribution ©+, that is, £ € D+,
e ¢ belongs to ®, that is, £ € D.

Now, we assume that & € ©+. For the sake of convenience we put & = &;.

Lemma 2.2. Let M be a Hopf hypersurface, a # 2k, in Go(C™2), m > 3,
whose shape operator is of Codazzi type in generalized Tanaka- Webster connec-
tion. If the Reeb vector field & belongs to the distribution ©=, then the shape
operator A commutes with the structure tensor ¢.

Proof. Using £ = & and (2.3), we have

— X 4+ {n2(X) 28 + n3(X)P3& — p1X — 3g(02X, )& — 3g(d3X,€)Es }
— agAX + APAX + kpAX — kASX =0,

that is,
(2.6) =X =01 X+2m2(X)&—2n3(X)E2—adAX +APAX +kPAX —kAdX =0

for any tangent vector field X on M.
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Now we introduce the formula derived from A¢ = af (see [4]) as follows:

aApX + apAX — 2A0AX + 20X
3
2.7) = =23 {n(X)6u& + n(6X)8 + m ()6 X
v=1

= 2(X )0 ()60 — 2n(6X)m ()¢ |-
Combining above equations, we have
dX + )1 X — 2m2(X )& + 2n3(X)& + apAX — k¢AX + kAPX
= ApAX
_ %Aqu + %qﬁAX +oX

3
+ 3 {m(X)6uE + m9X)& +m (€6, X
v=1

= 20(X)n(€)8u€ — 2, (6X ) ()¢ }
- %Aqu + %¢AX +oX

+ {(X)bat +15(X) 056 + 1R (6X)Ea + 1 (X5 + r X |
- %Ang n %(bAX L oX
— 12(X)&3 + n3(X)&2 + m3(X)E2 — m2(X)Es + d1 X

Therefore, we get

(5 — K)oAX — (5 — k) AsX =0,

that is,
(5 — k) (¢4 - A¢)X =0.

Since o # 2k, we obtain (¢4 — Ap)X = 0 for any tangent vector field X on
M. Tt means that the shape operator A commutes with the structure tensor

o 0

Due to Berdnt and Suh [4], the Reeb flow on M is isometric if and only if
the structure tensor field ¢ commutes with the shape operator A of M, that
is, Ap = ¢A. Thus, from Lemma 2.2 and Theorem B, we conclude that M is
of type (A) under our assumptions.

Conversely, let M be a real hypersurface of type (A) in Go(C™*2) and check
if the shape operator A of M satisfies the Codazzi type equation (x) for the
g-Tanaka-Webster connection. In order to do this, we suppose that the shape
operator A of M satisfies ().
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Putting X € Ty and Y € T}, in (2.2), we get

3
0=-2> g(¢X,Y)&

v=1

= —29(01 X, Y)&1 — 29(02X,Y)E2 — 29(03X,Y)Es.

Taking the inner product with &2, we have g(¢2X,Y") = 0 for any tangent vector
fields X € T\ and Y € T},. Since ¢ X € 1), for any tangent vector field X € T},
it follows that g(¢2X, ¢2X) = 0, which means that ¢2X becomes a zero vector
field. This gives a contradiction. So we assert that the shape operator of a
real hypersurface of type (A) in G2(C™%2) does not satisfy the Codazzi type
equation () with respect to the generalized Tanaka-Webster connection.

Next, we consider the case that the Reeb vector field £ belongs to the distri-
bution ®. In fact, under this assumption we conclude that a Hopf hypersurface
M satisfying (x) is locally congruent to a model space of (B) by virtue of The-
orem C. Hence, to prove our main theorem, we may check the condition (x)
for the real hypersurface of type (B) in Go(C™*2).

By putting Y = £ in (2.2), we already obtain the equation (2.3). As setting
X =& in (2.3), we have

3
=6+ {m(€)ont — n(©)ont — 396,61, 006 |
v=1

— A&y + APA&L + koA — kAPE = 0.
Since A&y = & (see Proposition B), we get

=981 + $1€ — afpéy + BAGG + kBp& — kAPE =0,
that is,
Bla —k)gp& = 0.
For some r € (0,7/4), the principal curvature 8 can not equal to 0. So, we

know that o = k where k is non-zero constant. Substituting a = k into (2.3),
we have

3
(2.8) —6X+3 {m(X) B~ (€6, X ~39(6, X, )6 b+ ASAX —kASX =0
v=1

for any tangent vector field X on M.

By putting X € T\ in (2.8), we get (—Ap + ap + 1)¢X = 0, because if
X € Ty, then X is orthogonal to &, and ¢¢, for v = 1,2,3. Moreover, we see
that ¢T\ C T}, for X € T. From this, we see that Ay — ap — 1 = 0. By using
the properties in Proposition B, we have 1 + tan?7 = 0 for some r € (0, 7/4).
This gives a contradiction.

Hence summing up these discussions, we give a complete proof of our Main
Theorem in the introduction.
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