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REAL HYPERSURFACES IN COMPLEX

TWO-PLANE GRASSMANNIANS WHOSE SHAPE

OPERATOR IS OF CODAZZI TYPE IN GENERALIZED

TANAKA-WEBSTER CONNECTION

Kyusuk Cho, Hyunjin Lee, and Eunmi Pak

Abstract. In this paper, we give a non-existence theorem of Hopf hyper-
surfaces in complex two-plane Grassmannians G2(Cm+2), m ≥ 3, whose
shape operator is of Codazzi type in generalized Tanaka-Webster connec-

tion ∇̂(k).

Introduction

Let us denote byG2(C
m+2) the set of all complex two-dimensional linear sub-

spaces in Cm+2, which is said to be a complex two-plane Grassmannian. This
Riemannian symmetric space G2(C

m+2) has a remarkable geometric structure.
It is the unique compact irreducible Riemannian manifold being equipped with
both a Kähler structure J and a quaternionic Kähler structure J not containing
J , for details we refer to [2], [3] and [4]. In particular, when m = 1, G2(C

3)
is isometric to the two-dimensional complex projective space CP 2 with con-
stant holomorphic sectional curvature eight. When m = 2, we note that the
isomorphism Spin(6) ≃ SU(4) yields an isometry between G2(C

4) and the real
Grassmann manifold G+

2 (R
6) of oriented two-dimensional linear subspaces in

R
6. In this paper, we will assume m ≥ 3.
Moreover, naturally we could consider two geometric conditions for hyper-

surfaces M in G2(C
m+2) that the 1-dimensional distribution [ξ] = Span{ξ}

and the 3-dimensional distribution D⊥ = Span{ξ1, ξ2, ξ3} are both invariant
under the shape operator A of M (see Berndt and Suh [3]). Here the almost
contact structure vector field ξ defined by ξ = −JN is said to be a Reeb vector
field, where N denotes a local unit normal vector field of M in G2(C

m+2). The
almost contact 3-structure vector fields ξν for the 3-dimensional distribution
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D⊥ of M in G2(C
m+2) are defined by ξν = −JνN (ν = 1, 2, 3), where Jν de-

notes a canonical local basis of a quaternionic Kähler structure J, such that
TxM = D⊕D⊥, x ∈ M .

By using such two geometric conditions and the results in Alekseevskii [1],
Berndt and Suh [3] proved the following:

Theorem A. Let M be a connected real hypersurface in G2(C
m+2), m ≥ 3.

Then both [ξ] and D⊥ are invariant under the shape operator of M if and only

if

(A) M is an open part of a tube around a totally geodesic G2(C
m+1) in

G2(C
m+2), or

(B) m is even, say m = 2n, and M is an open part of a tube around a

totally geodesic HPn in G2(C
m+2).

When the Reeb flow on M in G2(C
m+2) is isometric, we say that the Reeb

vector field ξ on M is Killing. This means that the metric tensor g is invariant
under the Reeb flow of ξ on M . In [4], Berndt and Suh showed that this notion
is equivalent that the shape operator A commutes with the structure tensor φ.
From this, they also gave a characterization of real hypersurfaces of type (A)
in Theorem A in terms of the Reeb flow on M as follows (see [4]) :

Theorem B. Let M be a connected orientable real hypersurface in G2(C
m+2),

m ≥ 3. Then the Reeb flow on M is isometric if and only if M is an open part

of a tube around a totally geodesic G2(C
m+1) in G2(C

m+2).

On the other hand, Lee and Suh [11] gave a new characterization of real
hypersurfaces of type (B) in G2(C

m+2).

Theorem C. Let M be a connected orientable Hopf real hypersurface in

G2(C
m+2), m ≥ 3. Then the Reeb vector field ξ belongs to the distribution

D if and only if M is locally congruent to an open part of a tube around a

totally geodesic HPn in G2(C
m+2), where m = 2n.

As a generalization of the well-known connection defined by Tanaka in [14]
and, independently, by Webster in [16], Tanno [15] introduced the notion of gen-
eralized Tanaka Webster connection (in short, g-Tanaka-Webster connection).
This connection coincides with Tanaka-Webster connection if the associated
CR-structure is integrable. Here Tanaka-Webster connection was defined as
the canonical affine connection on a non-degenerate, pseudo-Hermitian CR-
manifold. Moreover, on real hypersurfaces in Kähler manifolds with almost

contact metric structure (φ, ξ, η, g), the g-Tanaka-Webster connection ∇̂(k) for
a non-zero real number k was given by Cho (see [5]). In particular, if a real
hypersurface satisfies φA + Aφ = 2kφ, then the g-Tanaka-Webster connection
∇̂(k) coincides with the Tanaka-Webster connection.

Recently, by using the g-Tanaka-Webster connection ∇̂(k) Jeong, Suh and
the second author have studied some parallelism of the shape operator on real
hypersurfaces in complex two-plane Grassmannians ([8] and [9]). For example,
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they proved that the shape operator on a Hopf hypersurface in G2(C
m+2) is

D⊥-parallel with respect to the g-Tanaka-Webster connection, that is, the shape

operator A of M satisfies the condition (∇̂(k)
X A)Y = 0 for any tangent vector

fields X ∈ D⊥ and Y ∈ TM if and only if a real hypersurface in G2(C
m+2) is

locally congruent to an open part of a tube around a totally geodesic HPn in
G2(C

m+2), m = 2n (see [9]).
In this paper, let us consider a new notion which becomes another extension

for the parallelism of the shape operator on real hypersurfaces M in G2(C
m+2)

with respect to the g-Tanaka-Webster connection. For given a tensor T of
type (1, 1) on M we will say that T is of Codazzi type with respect to the g-

Tanaka-Webster connection if it satisfies (∇̂(k)
X T )Y = (∇̂(k)

Y T )X for any tangent
vector fields X and Y on M . By virtue of this notion we will consider a
real hypersurface in G2(C

m+2) whose shape operator A is of Codazzi type with

respect to ∇̂(k), that is, the shape operator A of M in G2(C
m+2) satisfies the

property

(∗) (∇̂(k)
X A)Y = (∇̂(k)

Y A)X

for any tangent vector fields X and Y on M . By using such the notion for
the shape operator, we give a classification theorem for real hypersurfaces in
G2(C

m+2) as follows :

Main Theorem. There does not exist any Hopf hypersurface, α 6= 2k, in

complex two-plane Grassmannians G2(C
m+2), m ≥ 3, whose shape operator is

of Codazzi type with respect to the generalized Tanaka-Webster connection if

the distribution D and D⊥-components of the Reeb vector field are invariant by

the shape operator.

Remark. In [7], the authors have remarked the case α = 2k (k is a nonzero
real number) on Hopf hypersurfaces in G2(C

m+2) with ξ ∈ D⊥ (see Proposi-
tion 3.7). That is, under assumptions, ξ ∈ D⊥ and α = 2k, the shape operator
A of M becomes naturally g-Tanaka-Webster Reeb parallel. Thus in this pa-
per, we only consider for a Hopf hypersurface in G2(C

m+2) with α 6= 2k, when
the Reeb vector field ξ belongs to D⊥.

1. Some fundamental formulas for real hypersurfaces in G2(C
m+2)

and the generalized Tanaka-Webster connection

In this section, we first review some basic formulas and the Codazzi equation
for a real hypersurface in G2(C

m+2) introduced in [3], [4], [9], [12], [13], etc.
Let M be a real hypersurface of G2(C

m+2), that is, a submanifold of
G2(C

m+2) with real codimension one. The induced Riemannian metric on M
will also be denoted by g, and ∇ denotes the Riemannian connection of (M, g).
Let N be a local unit normal vector field of M and A the shape operator of M
with respect to N . Now let us put

(1.1) JX = φX + η(X)N, JνX = φνX + ην(X)N
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for any tangent vector field X of a real hypersurface M in G2(C
m+2). From the

Kähler structure J of G2(C
m+2) there exists an almost contact metric structure

(φ, ξ, η, g) induced on M in such a way that

φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, η(X) = g(X, ξ)

for any vector field X on M . Furthermore, let {J1, J2, J3} be a canonical local
basis of J. Then the quaternionic Kähler structure Jν of G2(C

m+2), together
with the condition JνJν+1 = Jν+2 = −Jν+1Jν , induces an almost contact
metric 3-structure (φν , ξν , ην , g) on M as follows :

φ2
νX = −X + ην(X)ξν , ην(ξν) = 1, φνξν = 0,

φν+1ξν = −ξν+2, φνξν+1 = ξν+2,

φνφν+1X = φν+2X + ην+1(X)ξν ,

φν+1φνX = −φν+2X + ην(X)ξν+1

(1.2)

for any vector field X tangent to M . Moreover, from the commuting property
of JνJ = JJν , ν = 1, 2, 3 and (1.1), the relation between these two contact
metric structures (φ, ξ, η, g) and (φν , ξν , ην , g), ν = 1, 2, 3, can be given by

φφνX = φνφX + ην(X)ξ − η(X)ξν ,

ην(φX) = η(φνX), φξν = φνξ.
(1.3)

On the other hand, as J is a Kähler structure (i.e., ∇̃J = 0) and J a quater-

nionic Kähler structure (i.e., ∇̃XJν = qν+2(X)Jν+1 − qν+1(X)Jν+2 for any
tangent vector fields X on G2(C

m+2)), together with Gauss and Weingarten
formulas it follows that

(1.4) (∇Xφ)Y = η(Y )AX − g(AX, Y )ξ, ∇Xξ = φAX,

(1.5) ∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX,

(∇Xφν)Y =− qν+1(X)φν+2Y + qν+2(X)φν+1Y

+ ην(Y )AX − g(AX, Y )ξν .
(1.6)

Using the expression for the curvature tensor R̃ ofG2(C
m+2) in [9], the equation

of Codazzi is given by

(∇XA)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+

3
∑

ν=1

{

ην(X)φνY − ην(Y )φνX − 2g(φνX,Y )ξν

}

+

3
∑

ν=1

{

ην(φX)φνφY − ην(φY )φνφX
}

+

3
∑

ν=1

{

η(X)ην(φY )− η(Y )ην(φX)
}

ξν .

(1.7)
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As mentioned in Theorem A, the complete classification of real hypersurfaces
in G2(C

m+2), m ≥ 3, with two kinds of A-invariancy for the distributions
[ξ] = Span{ξ} and D⊥ = Span{ξ1, ξ2, ξ3} was obtained by Berndt and Suh [3].
Accordingly we introduce the following two propositions related to the principal
curvatures of the model spaces (A) and (B), respectively.

Proposition A. Let M be a connected real hypersurface of G2(C
m+2). Sup-

pose that AD ⊂ D, Aξ = αξ, and ξ is tangent to D⊥. Let J1 ∈ J be the almost

Hermitian structure such that JN = J1N . Then M has the following three (if

r = π/2
√
8) or four (otherwise) distinct constant principal curvatures:

principal curvature multiplicity eigenspace

α =
√
8 cot(

√
8r) 1 Tα = Rξ = RJN = Rξ1 = Span{ξ}

β =
√
2 cot(

√
2r) 2 Tβ = C

⊥ξ = Span{ξ2, ξ3}
λ = −

√
2 tan(

√
2r) 2(m− 1) Tλ = {X | X⊥Hξ, JX = J1X}

µ = 0 2(m− 1) Tµ = {X | X⊥Hξ, JX = −J1X}

with some r ∈ (0, π/
√
8). Here Rξ, Cξ and Hξ respectively denotes real, com-

plex and quaternionic span of the structure vector field ξ and C⊥ξ denotes the

orthogonal complement of Cξ in Hξ.

Proposition B. Let M be a connected real hypersurface of G2(C
m+2). Sup-

pose that AD ∈ D, Aξ = αξ, and ξ is tangent to D. Then the quaternionic

dimension m of G2(C
m+2) is even, say m = 2n, and M has five distinct con-

stant principal curvatures and the corresponding multiplicities with respect to

the eigenspaces:

principal curvature multiplicity eigenspace

α = −2 tan(2r) 1 Tα = Span{ξ}
β = 2 cot(2r) 3 Tβ = Span{ξν | ν = 1, 2, 3}
γ = 0 3 Tγ = Span{φνξ | ν = 1, 2, 3}
λ = cot(r) 4n− 4 Tλ

µ = − tan(r) 4n− 4 Tµ

where r ∈ (0, π/
√
8) and Tλ ⊕ Tµ = (HCξ)⊥, JTλ = Tλ, JTµ = Tµ, JTλ = Tµ.

From now on, we introduce the generalized Tanaka-Webster (shortly, g-
Tanaka-Webster) connection for a real hypersurface in Kähler manifolds (see
[5], [6], [8], [9] and [10]).

As stated in the introduction, the Tanaka-Webster connection is the canon-
ical affine connection defined on a non-degenerate pseudo-Hermitian CR-mani-
fold (see [14] and [16]). Tanno [15] defined the g-Tanaka-Webster connection
for contact metric manifolds by the canonical connection as follows :

∇̂XY = ∇XY + (∇Xη)(Y )ξ − η(Y )∇Xξ − η(X)φY
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for any vector fields X and Y . It coincides with the Tanaka-Webster connection
if the associated CR-structure is integrable.

On the other hand, a real hypersurface M in Kähler manifolds has the
property Aφ + φA = ±2φ (the sign depends on the orientation) for the shape
operator A and the structure tensor φ of M if and only if the almost contact
metric structure of M is contact metric (see [5]). From such a point of view,

Cho defined the generalized Tanaka-Webster connection ∇̂(k) on M by the
naturally extended one of Tanno’s g-Tanaka-Webster connection ∇̂ for contact
metric manifolds:

(1.8) ∇̂(k)
X Y = ∇XY + g(φAX, Y )ξ − η(Y )φAX − kη(X)φY

for a non-zero real number k. Moreover, if a real hypersurface in Kähler man-
ifolds satisfies Aφ + φA = 2kφ, then the associated CR-structure is pseudo-
hermitian, strongly pseudo-convex, integrable. Thus under the assumption
Aφ+ φA = 2kφ, we obtain the following facts (see [5], [8] and [10]) :

(1) if k = 1, then we see that ∇̂(k) = ∇̂,

(2) the connection ∇̂(k) coincides with the Tanaka-Webster connection de-
fined as the canonical affine connection on a non-degenerate, pseudo-
Hermitian CR-manifold.

Thus we see that the connection ∇̂(k) is a natural generalization of Tanaka-
Webster connection and call it generalized Tanaka-Webster connection (or
shortly, g-Tanaka-Webster connection) on real hypersurfaces of Kähler man-
ifolds.

2. Proof of Main Theorem

First of all, we will prove that the Reeb vector field ξ belongs to either the
distribution D or the distribution D⊥ for a Hopf hypersurface M in G2(C

m+2)
whose shape operator is of Codazzi type with respect to the generalized Tanaka-
Webster connection ∇̂(k).

Lemma 2.1. Let M be a Hopf hypersurface in G2(C
m+2), m ≥ 3, whose shape

operator is of Codazzi type with respect to the generalized Tanaka-Webster con-

nection. If D and D⊥-components of ξ are invariant under the shape operator

of M , then the principal curvature α = g(Aξ, ξ) is constant. Furthermore, the

Reeb vector field ξ belongs to either the distribution D or the distribution D⊥.

Proof. To show this fact, we assume that the Reeb vector field ξ satisfies

(∗∗) ξ = η(X0)X0 + η(ξ1)ξ1 such that η(X0)η(ξ1) 6= 0

for some unit vectors X0 ∈ D and ξ1 ∈ D⊥.
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Let us consider the case that the smooth function α = g(Aξ, ξ) vanishes.
In [3] Berndt and Suh gave

(2.1) Y α = (ξα)η(Y )− 4

3
∑

ν=1

ην(ξ)ην(φY )

for any tangent vector field Y on M under the assumption that M is Hopf.
Now, as α = 0, it implies that

3
∑

ν=1

ην(ξ)φνξ = 0.

Moreover, using the equation (∗∗), we have η(X0)φX0 = 0. Since η(X0) 6= 0,
the tangent vector φX0 ∈ TxM becomes a zero one. This gives a contradiction
and we see that ξ belongs to either D or D⊥ when α is vanishing. In addition,
from the equation (2.1) we see that if α is constant, then ξ belongs to either D
or D⊥.

From now on, let us consider the case α 6= 0. Since the shape operator A of

M satisfies the Codazzi type equation for ∇̂(k), that is, (∇̂(k)
X A)Y = (∇̂(k)

Y A)X
for any tangent vector fields X , Y on M , we have

(∇XA)Y + g(φAX,AY )ξ − η(AY )φAX − kη(X)φAY

− g(φAX, Y )Aξ + η(Y )AφAX + kη(X)AφY

= (∇Y A)X + g(φAY,AX)ξ − η(AX)φAY − kη(Y )φAX

− g(φAY,X)Aξ + η(X)AφAY + kη(Y )AφX,

together with the equation (1.8). Moreover, it can be written as

η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+ 2g(AφAX, Y )ξ − αη(Y )φAX − kη(X)φAY − αg(φAX, Y )ξ

+ η(Y )AφAX + kη(X)AφY + αη(X)φAY + kη(Y )φAX

− αg(AφX, Y )ξ − η(X)AφAY − kη(Y )AφX

+

3
∑

ν=1

{

ην(X)φνY − ην(Y )φνX − 2g(φνX,Y )ξν + ην(φX)φνφY

− ην(φY )φνφX + η(X)ην(φY )ξν − η(Y )ην(φX)ξν

}

= 0,

(2.2)

using the assumption Aξ = αξ and the Codazzi equation (1.7).
Putting Y by ξ in (2.2), we get

− φX +

3
∑

ν=1

{

ην(X)φνξ − ην(ξ)φνX − 3g(φνX, ξ)ξν

}

− αφAX +AφAX + kφAX − kAφX = 0

(2.3)

for any vector field X tangent on M .
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Substituting X = X0 in (2.3) and using (∗∗), we have

(2.4) φX0 + η(ξ1)φ1X0 + αφAX0 −AφAX0 − kφAX0 + kAφX0 = 0.

Since φξ = 0 and (∗∗), we see that φX0 = −η(ξ1)φ1X0. From this, the equa-
tion (2.4) is written as

(2.5) αφAX0 −AφAX0 − kφAX0 + kAφX0 = 0.

On the other hand, from our assumptions that the D and D⊥-components of
ξ are invariant under the shape operator of M and M is Hopf, we see that the
unit vector field X0 ∈ D becomes a principal one, AX0 = αX0. Thus (2.5)
changes to

α2φX0 − αAφX0 − kαφX0 + kAφX0 = 0.

In addition, if the D-component of ξ is a principal vector field with the cor-
responding principal curvature α(6= 0), then φX0 is also principal vector field,
that is, AφX0 = ((α2 + 4η2(X0))/α)φX0 (see Proposition 2 in [4]). Thus we
have

α2φX0 −
(

α2 + 4η2(X0)
)

φX0 − kαφX0 +
k
(

α2 + 4η2(X0)
)

α
φX0 = 0,

it follows that 4η2(X0)(k − α)φX0 = 0. Taking the inner product with φX0,
we obtain −4η2(X0)η

2(ξ1)(k − α) = 0. Since η(X0)η(ξ1) 6= 0, we have α = k.
It implies that the smooth function α is constant. By virtue of the proof for
the case α = 0, the Reeb vector field ξ belongs to either the distribution D or
the distribution D⊥. �

From Lemma 2.1, we can consider the following two cases:

• The Reeb vector field ξ belongs to distribution D⊥, that is, ξ ∈ D⊥,
• ξ belongs to D, that is, ξ ∈ D.

Now, we assume that ξ ∈ D⊥. For the sake of convenience we put ξ = ξ1.

Lemma 2.2. Let M be a Hopf hypersurface, α 6= 2k, in G2(C
m+2), m ≥ 3,

whose shape operator is of Codazzi type in generalized Tanaka-Webster connec-

tion. If the Reeb vector field ξ belongs to the distribution D⊥, then the shape

operator A commutes with the structure tensor φ.

Proof. Using ξ = ξ1 and (2.3), we have

− φX +
{

η2(X)φ2ξ + η3(X)φ3ξ − φ1X − 3g(φ2X, ξ)ξ2 − 3g(φ3X, ξ)ξ3
}

− αφAX +AφAX + kφAX − kAφX = 0,

that is,

(2.6) −φX−φ1X+2η2(X)ξ3−2η3(X)ξ2−αφAX+AφAX+kφAX−kAφX = 0

for any tangent vector field X on M .
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Now we introduce the formula derived from Aξ = αξ (see [4]) as follows:

αAφX + αφAX − 2AφAX + 2φX

= − 2

3
∑

ν=1

{

ην(X)φνξ + ην(φX)ξν + ην(ξ)φνX

− 2η(X)ην(ξ)φνξ − 2ην(φX)ην(ξ)ξ
}

.

(2.7)

Combining above equations, we have

φX + φ1X − 2η2(X)ξ3 + 2η3(X)ξ2 + αφAX − kφAX + kAφX

= AφAX

=
α

2
AφX +

α

2
φAX + φX

+
3

∑

ν=1

{

ην(X)φνξ + ην(φX)ξν + ην(ξ)φνX

− 2η(X)ην(ξ)φνξ − 2ην(φX)ην(ξ)ξ
}

=
α

2
AφX +

α

2
φAX + φX

+
{

η2(X)φ2ξ + η3(X)φ3ξ + η2(φX)ξ2 + η3(φX)ξ3 + φ1X
}

=
α

2
AφX +

α

2
φAX + φX

− η2(X)ξ3 + η3(X)ξ2 + η3(X)ξ2 − η2(X)ξ3 + φ1X.

Therefore, we get

(α

2
− k

)

φAX −
(α

2
− k

)

AφX = 0,

that is,
(α

2
− k

)(

φA−Aφ
)

X = 0.

Since α 6= 2k, we obtain (φA − Aφ)X = 0 for any tangent vector field X on
M . It means that the shape operator A commutes with the structure tensor
φ. �

Due to Berdnt and Suh [4], the Reeb flow on M is isometric if and only if
the structure tensor field φ commutes with the shape operator A of M , that
is, Aφ = φA. Thus, from Lemma 2.2 and Theorem B, we conclude that M is
of type (A) under our assumptions.

Conversely, let M be a real hypersurface of type (A) in G2(C
m+2) and check

if the shape operator A of M satisfies the Codazzi type equation (∗) for the
g-Tanaka-Webster connection. In order to do this, we suppose that the shape
operator A of M satisfies (∗).
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Putting X ∈ Tλ and Y ∈ Tµ in (2.2), we get

0 = −2

3
∑

ν=1

g(φνX,Y )ξν

= −2g(φ1X,Y )ξ1 − 2g(φ2X,Y )ξ2 − 2g(φ3X,Y )ξ3.

Taking the inner product with ξ2, we have g(φ2X,Y ) = 0 for any tangent vector
fields X ∈ Tλ and Y ∈ Tµ. Since φ2X ∈ Tµ for any tangent vector field X ∈ Tλ,
it follows that g(φ2X,φ2X) = 0, which means that φ2X becomes a zero vector
field. This gives a contradiction. So we assert that the shape operator of a
real hypersurface of type (A) in G2(C

m+2) does not satisfy the Codazzi type
equation (∗) with respect to the generalized Tanaka-Webster connection.

Next, we consider the case that the Reeb vector field ξ belongs to the distri-
bution D. In fact, under this assumption we conclude that a Hopf hypersurface
M satisfying (∗) is locally congruent to a model space of (B) by virtue of The-
orem C. Hence, to prove our main theorem, we may check the condition (∗)
for the real hypersurface of type (B) in G2(C

m+2).
By putting Y = ξ in (2.2), we already obtain the equation (2.3). As setting

X = ξ1 in (2.3), we have

− φξ1 +

3
∑

ν=1

{

ην(ξ1)φνξ − ην(ξ)φνξ1 − 3g(φνξ1, ξ)ξν

}

− αφAξ1 +AφAξ1 + kφAξ1 − kAφξ1 = 0.

Since Aξ1 = βξ1 (see Proposition B), we get

−φξ1 + φ1ξ − αβφξ1 + βAφξ1 + kβφξ1 − kAφξ1 = 0,

that is,

β(α− k)φξ1 = 0.

For some r ∈ (0, π/4), the principal curvature β can not equal to 0. So, we
know that α = k where k is non-zero constant. Substituting α = k into (2.3),
we have

(2.8) −φX+
3

∑

ν=1

{

ην(X)φνξ−ην(ξ)φνX−3g(φνX, ξ)ξν

}

+AφAX−kAφX = 0

for any tangent vector field X on M .
By putting X ∈ Tλ in (2.8), we get (−λµ + αµ + 1)φX = 0, because if

X ∈ Tλ, then X is orthogonal to ξν and φξν for ν = 1, 2, 3. Moreover, we see
that φTλ ⊂ Tµ for X ∈ Tλ. From this, we see that λµ− αµ− 1 = 0. By using
the properties in Proposition B, we have 1 + tan2 r = 0 for some r ∈ (0, π/4).
This gives a contradiction.

Hence summing up these discussions, we give a complete proof of our Main
Theorem in the introduction.
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