• 제목/요약/키워드: fixed point problem

검색결과 353건 처리시간 0.026초

ON STUDY OF f-APPROXIMATION PROBLEMS AND σ-INVOLUTORY VARIATIONAL INEQUALITY PROBLEMS

  • Mitra, Siddharth;Das, Prasanta Kumar
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권2호
    • /
    • pp.223-232
    • /
    • 2022
  • The purpose of the paper is to define f-projection operator to develop the f-projection method. The existence of a variational inequality problem is studied using fixed point theorem which establishes the existence of f-projection method. The concept of ρ-projective operator and σ-involutory operator are defined with suitable examples. The relation in between ρ-projective operator and σ-involutory operator are shown. The concept of σ-involutory variational inequality problem is defined and its existence theorem is also established.

EXISTENCE RESULTS FOR POSITIVE SOLUTIONS OF NON-HOMOGENEOUS BVPS FOR SECOND ORDER DIFFERENCE EQUATIONS WITH ONE-DIMENSIONAL p-LAPLACIAN

  • Liu, Yu-Ji
    • 대한수학회지
    • /
    • 제47권1호
    • /
    • pp.135-163
    • /
    • 2010
  • Motivated by [Science in China (Ser. A Mathematics) 36 (2006), no. 7, 721?732], this article deals with the following discrete type BVP $\LARGE\left\{{{\;{\Delta}[{\phi}({\Delta}x(n))]\;+\;f(n,\;x(n\;+\;1),{\Delta}x(n),{\Delta}x(n + 1))\;=\;0,\;n\;{\in}\;[0,N],}}\\{\;{x(0)-{\sum}^m_{i=1}{\alpha}_ix(n_i) = A,}}\\{\;{x(N+2)-\;{\sum}^m_{i=1}{\beta}_ix(n_i)\;=\;B.}}\right.$ The sufficient conditions to guarantee the existence of at least three positive solutions of the above multi-point boundary value problem are established by using a new fixed point theorem obtained in [5]. An example is presented to illustrate the main result. It is the purpose of this paper to show that the approach to get positive solutions of BVPs by using multifixed-point theorems can be extended to treat nonhomogeneous BVPs. The emphasis is put on the nonlinear term f involved with the first order delta operator ${\Delta}$x(n).

EXISTENCE, MULTIPLICITY AND UNIQUENESS RESULTS FOR A SECOND ORDER M-POINT BOUNDARY VALUE PROBLEM

  • Feng, Yuqiang;Liu, Sang-Yang
    • 대한수학회보
    • /
    • 제41권3호
    • /
    • pp.483-492
    • /
    • 2004
  • Let : [0, 1] $\times$ [0, $\infty$) $\longrightarrow$ [0, $\infty$) be continuous and a ${\in}$ C([0, 1], [0, $\infty$)),and let ${\xi}_{i}$ $\in$ (0, 1) with 0 < {\xi}$_1$ < ${\xi}_2$ < … < ${\xi}_{m-2}$ < 1, $a_{i}$, $b_{i}$ ${\in}$ [0, $\infty$) with 0 < $\Sigma_{i=1}$ /$^{m-2}$ $a_{i}$ < 1 and $\Sigma_{i=1}$$^{m-2}$ < l. This paper is concerned with the following m-point boundary value problem: $\chi$″(t)+a(t) (t.$\chi$(t))=0,t ${\in}$(0,1), $\chi$'(0)=$\Sigma_{i=1}$ $^{m-2}$ /$b_{i}$$\chi$'(${\xi}_{i}$),$\chi$(1)=$\Sigma_{i=1}$$^{m-2}$$a_{i}$$\chi$(${\xi}_{i}$). The existence, multiplicity and uniqueness of positive solutions of this problem are discussed with the help of two fixed point theorems in cones, respectively.

Hybrid Algorithms for Ky Fan Inequalities and Common Fixed Points of Demicontractive Single-valued and Quasi-nonexpansive Multi-valued Mappings

  • Onjai-uea, Nawitcha;Phuengrattana, Withun
    • Kyungpook Mathematical Journal
    • /
    • 제59권4호
    • /
    • pp.703-723
    • /
    • 2019
  • In this paper, we consider a common solution of three problems in real Hilbert spaces: the Ky Fan inequality problem, the variational inequality problem and the fixed point problem for demicontractive single-valued and quasi-nonexpansive multi-valued mappings. To find the solution we present a new iterative algorithm and prove a strong convergence theorem under mild conditions. Moreover, we provide a numerical example to illustrate the convergence behavior of the proposed iterative method.

Sensitivity Analysis for Generalized Nonlinear Implicit Quasi-variational Inclusions

  • Jeong, Jae Ug
    • Kyungpook Mathematical Journal
    • /
    • 제46권3호
    • /
    • pp.345-356
    • /
    • 2006
  • In this paper, by using the concept of the resolvent operator, we study the behavior and sensitivity analysis of the solution set for a new class of parametric generalized nonlinear implicit quasi-variational inclusion problem in $L_p(p{\geq}2)$ spaces. The results presented in this paper are new and generalize many known results in this field.

  • PDF

EXISTENCE OF POSITIVE SOLUTIONS FOR GENERALIZED LAPLACIAN PROBLEMS WITH A PARAMETER

  • Kim, Chan-Gyun
    • East Asian mathematical journal
    • /
    • 제38권1호
    • /
    • pp.33-41
    • /
    • 2022
  • In this paper, we study singular Dirichlet boundary value problems involving ϕ-Laplacian. Using fixed point index theory, the existence of positive solutions is established under the assumption that the nonlinearity f = f(u) has a positive falling zero and is either superlinear or sublinear at u = 0.

EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS FOR SINGULAR GENERALIZED LAPLACIAN PROBLEMS WITH A PARAMETER

  • Kim, Chan-Gyun
    • East Asian mathematical journal
    • /
    • 제38권5호
    • /
    • pp.593-601
    • /
    • 2022
  • In this paper, we consider singular 𝜑-Laplacian problems with nonlocal boundary conditions. Using a fixed point index theorem on a suitable cone, the existence results for one or two positive solutions are established under the assumption that the nonlinearity may not satisfy the L1-Carathéodory condition.

A GENERAL ITERATIVE ALGORITHM FOR A FINITE FAMILY OF NONEXPANSIVE MAPPINGS IN A HILBERT SPACE

  • Thianwan, Sornsak
    • Journal of applied mathematics & informatics
    • /
    • 제28권1_2호
    • /
    • pp.13-30
    • /
    • 2010
  • Let C be a nonempty closed convex subset of a real Hilbert space H. Consider the following iterative algorithm given by $x_0\;{\in}\;C$ arbitrarily chosen, $x_{n+1}\;=\;{\alpha}_n{\gamma}f(W_nx_n)+{\beta}_nx_n+((1-{\beta}_n)I-{\alpha}_nA)W_nP_C(I-s_nB)x_n$, ${\forall}_n\;{\geq}\;0$, where $\gamma$ > 0, B : C $\rightarrow$ H is a $\beta$-inverse-strongly monotone mapping, f is a contraction of H into itself with a coefficient $\alpha$ (0 < $\alpha$ < 1), $P_C$ is a projection of H onto C, A is a strongly positive linear bounded operator on H and $W_n$ is the W-mapping generated by a finite family of nonexpansive mappings $T_1$, $T_2$, ${\ldots}$, $T_N$ and {$\lambda_{n,1}$}, {$\lambda_{n,2}$}, ${\ldots}$, {$\lambda_{n,N}$}. Nonexpansivity of each $T_i$ ensures the nonexpansivity of $W_n$. We prove that the sequence {$x_n$} generated by the above iterative algorithm converges strongly to a common fixed point $q\;{\in}\;F$ := $\bigcap^N_{i=1}F(T_i)\;\bigcap\;VI(C,\;B)$ which solves the variational inequality $\langle({\gamma}f\;-\;A)q,\;p\;-\;q{\rangle}\;{\leq}\;0$ for all $p\;{\in}\;F$. Using this result, we consider the problem of finding a common fixed point of a finite family of nonexpansive mappings and a strictly pseudocontractive mapping and the problem of finding a common element of the set of common fixed points of a finite family of nonexpansive mappings and the set of zeros of an inverse-strongly monotone mapping. The results obtained in this paper extend and improve the several recent results in this area.

무선센서네트워크에서 노드의 위치추정을 위한 반복최소자승법의 지역최소 문제점 및 이에 대한 해결책 (Local Minimum Problem of the ILS Method for Localizing the Nodes in the Wireless Sensor Network and the Clue)

  • 조성윤
    • 제어로봇시스템학회논문지
    • /
    • 제17권10호
    • /
    • pp.1059-1066
    • /
    • 2011
  • This paper makes a close inquiry into ill-conditioning that may be occurred in wireless localization of the sensor nodes based on network signals in the wireless sensor network and provides the clue for solving the problem. In order to estimate the location of a node based on the range information calculated using the signal propagation time, LS (Least Squares) method is usually used. The LS method estimates the solution that makes the squared estimation error minimal. When a nonlinear function is used for the wireless localization, ILS (Iterative Least Squares) method is used. The ILS method process the LS method iteratively after linearizing the nonlinear function at the initial nominal point. This method, however, has a problem that the final solution may converge into a LM (Local Minimum) instead of a GM (Global Minimum) according to the deployment of the fixed nodes and the initial nominal point. The conditions that cause the problem are explained and an adaptive method is presented to solve it, in this paper. It can be expected that the stable location solution can be provided in implementation of the wireless localization methods based on the results of this paper.