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Abstract. In this paper, by using the concept of the resolvent operator, we study the

behavior and sensitivity analysis of the solution set for a new class of parametric generalized

nonlinear implicit quasi-variational inclusion problem in Lp(p ≥ 2) spaces. The results

presented in this paper are new and generalize many known results in this field.

1. Introduction

In recent years, variational inequalities have been extended and generalized in
different directions using novel and innovative techniques both for its own sake and
for its applications. A useful and important generalization of variational inequalities
is called variational inclusions. In 1994, using the concept and technique of resolvent
operators, Hassouni and Moudafi[8] introduced and studied a class of mixed type
variational inequalities with single-valued mappings which was called variational
inclusions. Adly[1], Ding[6], Huang[9], Kazmi[10], Noor[16] and Noor, Noor and
Rassias[17] have obtained some important extensions and generalizations of the
results in [8] from various different directions.

Sensitivity analysis of solutions of variational inequalities with single-valued
mappings have been studied by many authors via quite different techniques. By
using the projection method, Dafermos[5], Yen[20], Mukherjee and Verma[13],
Noor[15], and Pan[18] studied the sensitivity analysis of solutions of some vari-
ational inequalities with single-valued mappings in finite-dimensional spaces and
Hilbert spaces.

In 1999, Ding and Luo[7] studied the behavior and sensitivity analysis of the
solution set for a class of parametric generalized quasi-variational inequalities with
set-valued mapping by using the projection method of Dafermos[5] in a Hilbert
space. The projection method cannot be used to study the behavior and sensitivity
analysis of the solution set for variational inequalities with the nonlinear term. By
using the concept of the resolvent operator, Park and Jeong[19] dealt with the
sensitivity analysis of the solution set for a class of parametric generalized mixed
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variational inequalities with set-valued mappings.
In this paper, we study the behavior and sensitivity analysis of the solution set

for a class of parametric generalized nonlinear implicit quasi-variational inclusion
problem in LP (p ≥ 2) spaces. The results presented in this paper generalize, im-
prove and unify the corresponding results of Dafermos[5], Yen[20], Mukherjee and
Verma[13], Noor[15], Ding and Luo[7] and Park and Jeong[19].

2. Preliminaries

Let E be a real Banach space, E∗ be the topological dual space of E, CB(E) be
a family of nonempty bounded closed subsets of E, H(·, ·) be the Hausdorff metric
on CB(E) defined by

H(A, B) = max{sup
x∈A

d(x,B), sup
y∈B

d(A, y)},

where d(x, B) = infy∈B ‖x − y‖, d(A, y) = infx∈A ‖x − y‖, 〈·, ·〉 be the dual pair
between E and E∗, D(T ) denotes the domain of T and J : E → 2E∗ be the
normalized duality mapping defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖‖f‖, ‖f‖ = ‖x‖}, ∀x ∈ E.

Let M : D(M) ⊂ E → 2E be a set-valued mapping. The mapping M is said
to be accretive([2]) if for any x, y ∈ D(M), u ∈ M(x), v ∈ M(y), there exists
j(x− y) ∈ J(x− y) such that

〈u− v, j(x− y)〉 ≥ 0.

The mapping M is said to be m-accretive if M is accretive and (I+ρM)(D(M)) = E
for every ρ > 0, where I is the identity mapping.

If M : D(M) ⊂ E → 2E is an m-accretive mapping, then for a constant ρ > 0,
the resolvent operator associated with M is defined by

RM
ρ (u) = (I + ρM)−1(u), ∀u ∈ D(M),

where I is the identity operator. It is well known that RM
ρ is a single-valued and

nonexpansive mapping([2]).
We consider now the parametric generalized nonlinear implicit quasi-variational

inclusion problem in Banach spaces. To this end, let Ω be a nonempty open subset
of E in which the parameter λ takes values, N : E×E×Ω → E, m : E×Ω → E be
single-valued mappings and A, B,C, D,G : E×Ω → CB(E) be set-valued mappings.
Let M : E×E×Ω → 2E be a set-valued mapping such that for each given (z, λ) ∈
E × Ω, M(·, z, λ) : E → 2E is an m-accretive mapping with (G(E, λ)−m(E, λ)) ∩
domM(·, z, λ) 6= φ. For each fixed λ ∈ Ω, the parametric generalized nonlinear
implicit quasi-variational inclusion problem in Banach spaces(PGNIQVIP) consists
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of finding x ∈ E, u ∈ A(x, λ), v ∈ B(x, λ), w ∈ C(x, λ), z ∈ D(x, λ), s ∈ G(x, λ)
such that

(2.1) 0 ∈ M(s−m(w, λ), z, λ) + N(u, v, λ).

Special Cases

I. Let E = H be a Hilbert space, Ω be a nonempty open subset of H in which the
parameter λ takes values. Let φ : H×H×Ω → R∪{+∞} be a functional such
that for each (z, λ) ∈ H×Ω, ∂φ(·, z, λ) denotes the subdifferential of a proper
convex lower semicontinuous function φ with G(H, λ)∩ dom(∂φ(·, z, λ)) 6= φ.
Let M(·, z, λ) = ∂φ(·, z, λ) for all (z, λ) ∈ H × Ω and m(x, λ) = 0 for all
(x, λ) ∈ H × Ω. Then problem (2.1) is equivalent to finding x ∈ H, u ∈
A(x, λ), v ∈ B(x, λ), z ∈ D(x, λ), s ∈ G(x, λ) such that

(2.2) 〈N(u, v, λ), y − s〉 ≥ φ(s, z, λ)− φ(y, z, λ), y ∈ H.

II. If N(u, v, λ) = u − v, G = g : E × Ω → E is a single-valued mapping, and
φ(·, z, λ) = φ(·) for each (z, λ) ∈ H × Ω, then problem (2.2) reduces to the
problem of finding x ∈ H, u ∈ A(x, λ), v ∈ B(x, λ) such that

(2.3) 〈u− v, y − g(x, λ)〉 ≥ φ(g(x, λ))− φ(y), ∀y ∈ H.

Problem (2.3) is known as the parametric generalized mixed variational in-
equality problem and has been studied by Park and Jeong[19].

III. Let K : H × Ω → 2H be a set-valued mapping with nonempty closed convex
values and for each fixed λ ∈ Ω, φ(·) = IK(·,λ)(·) is the indicator function
of K(·, λ). Then problem (2.3) reduces to the problem of finding x ∈ H,
u ∈ A(x, λ), v ∈ B(x, λ) such that g(x, λ) ∈ K(x, λ) and

(2.4) 〈u− v, y − g(x, λ)〉 ≥ 0, ∀y ∈ K(x, λ).

Problem (2.4) is known as the parametric generalized quasi-variational inequal-
ity problem and has been studied by Ding and Luo[7].

Summing up the above arguments, it shows that for a suitable choice of the map-
pings A,B, C, D,G, N, m, M , we can obtain a number of known and new classes of
parametric variational inequalities, parametric variational inclusions and the corre-
sponding optimization problems from the parametric generalized nonlinear implicit
quasi-variational inclusion problem in Banach spaces (2.1).

Definition 2.1. A set-valued mapping G : E × Ω → 2E is said to be

(i) δ-strongly accretive, δ ∈ (0, 1), if for any x, y ∈ E, λ ∈ Ω, there exists
j(x− y) ∈ J(x− y) such that for any u ∈ G(x, λ), v ∈ G(y, λ),

〈u− v, j(x− y)〉 ≥ δ‖x− y‖2,
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(ii) λG-Lipschitz continuous if there exists a constant λG > 0 such that

H(G(x, λ), G(y, λ)) ≤ λG‖x− y‖, ∀(x, y, λ) ∈ E × E × Ω.

Definition 2.2. Let A : E × Ω → CB(E) be a set-valued mapping and N :
E × E × Ω → E be a single-valued mapping. Then

(i) N is said to be α-strongly monotone with respect to A in the first argument
if there exists a constant α > 0 such that

〈N(u1, v, λ)−N(u2, v, λ), x− y〉 ≥ α‖x− y‖2,
∀(x, y, v, λ) ∈ E × E × E × Ω, u1 ∈ A(x, λ), u2 ∈ A(y, λ).

(ii) N is said to be β-Lipschitz continuous in the first argument if there exists a
cnstant β > 0 such that

‖N(u1, v, λ)−N(u2, v, λ)‖ ≤ β‖u1 − u2‖, ∀(u1, u2, v, λ) ∈ E × E × E × Ω.

In a similar way, we can define the ξ-Lipschitz continuity of N(u, v, λ) in the
second argument.

Lemma 2.1 (Chidume [3], [4]). Let E = Lp(or lp), 2 ≤ p < ∞. For any x, y ∈ E,
we have

‖x + y‖2 ≤ (p− 1)‖x‖2 + ‖y‖2 + 2〈x, j(y)〉, ∀j ∈ J(x + y).

For the rest of this paper, the single-valued duality map is denoted by j.

Lemma 2.2 (Lim [12]). Let (X, d) be a complete metric space and T1, T2 : X →
CB(X) be two set-valued contractive mapping with same contractive constant θ ∈
(0, 1), i.e.,

H(Ti(x), Ti(y)) ≤ θd(x, y), ∀x, y ∈ X, i = 1, 2.

Then

H(F (T1), F (T2)) ≤ 1
1− θ

sup
x∈X

H(T1(x), T2(x)),

where F (T1) and F (T2) are fixed point sets of T1, T2, respectively.

3. Sensitivity analysis of solution set

We first transfer the (PGNIQVIP)(2.1) into a parametric fixed point problem.

Theorem 3.1. Fixed λ ∈ Ω, x ∈ E, u ∈ A(x, λ), v ∈ B(x, λ), w ∈ C(x, λ),
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z ∈ D(x, λ), s ∈ G(x, λ) is a solution of (PGNIQVIP)(2.1) if and only if for some
given ρ > 0, the set-valued mapping F : E × Ω → 2E defined by
(3.1)
F (x, λ) =

⋃

u∈A(x,λ),v∈B(x,λ),w∈C(c,λ)
z∈D(x,λ),s∈G(x,λ)

[
x−s+m(w, λ)+RM(·,z,λ)(s−m(w, λ)−ρN(u, v, λ))

]

has a fixed point x.

Proof. For each fixed λ ∈ Ω, let (x, u, v, w, z, s) be a solution of (PGNIQVIP) (2.1).
Then x ∈ E, u ∈ A(x, λ), v ∈ B(x, λ), w ∈ C(x, λ), z ∈ D(x, λ), s ∈ G(x, λ) such
that

0 ∈ M(s−m(w, λ), z, λ) + N(u, v, λ).

The relation holds if and only if

s−m(w, λ)− ρN(u, v, λ) ∈ (I + ρM(·, z, λ))(s−m(w, λ)).

That is,
RM(·,z,λ)[s−m(w, λ)− ρN(u, v, λ)] = s−m(w, λ).

The equality holds if and only if

x = x− s + m(w, λ) + RM(·,z,λ)[s−m(w, λ)− ρN(u, v, λ)]

∈
⋃

u∈A(x,λ),v∈B(x,λ),w∈C(x,λ)
z∈D(x,λ),s∈G(x,λ)

[x− s + m(w, λ) + RM(·,z,λ)(s−m(w, λ)− ρN(u, v, λ))]

= F (x, λ). ¤

Theorem 3.2. Let E = Lp(or lp), 2 ≤ p < ∞. Let A,B, C,D, G : E×Ω → CB(E)
be set-valued mappings such that A,B, C, D and G are Lipschitz continuous with
constants λA, λB , λC , λD, λG, respectively, and G : E × Ω → CB(E) be δ-strongly
accretive. Let N : E × E × Ω → E be α-strongly monotone with respect to A
in the first argument, β-Lipschitz continuous in the first argument and ξ-Lipschitz
continuous in the second argument. Let m : E × Ω → E be η-Lipschitz continuous.
Let M : E×E×Ω → 2E be such that for each fixed (z, λ) ∈ E×Ω, M(·, z, λ) : E →
2E is an m-accretive mapping satisfying G(E, λ) − m(E, λ) ∩ domM(·, z, λ) 6= φ.
Suppose that for any (x, y, z, λ) ∈ E × E × E × Ω,

(3.2) ‖RM(·,x,λ)(z)−RM(·,y,λ)(z)‖ ≤ µ‖x− y‖
and there exists a constant ρ > 0 such that

k = 2
√

1− 2δ + (p− 1)λ2
G + (µλD + 2ηλC)(1 + ε),

√
p− 1λAβ > ξλB , k + ρξ(1 + ε)λB < 1,

α > (1− k)ξλB +
√

[(p− 1)λ2
Aβ2 − ξ2λ2

B ](2k − k2),
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∣∣∣ρ− α− (1− k)ξλB(1 + ε)
[(p− 1)β2λ2

A − ξ2λ2
B ](1 + ε)2

∣∣∣(3.3)

<

√
[α− (1− k)ξλB ]2 − [(p− 1)λ2

Aβ2 − ξ2λ2
B ](2k − k2)

(p− 1)β2λ2
A − ξ2λ2

B

.

Then

(1) the set-valued mapping F : E × Ω → 2E defined by (3.1) is a uniform θ-H-
set-valued contractive mapping with respect to λ ∈ Ω, where θ = k + t(ρ) < 1,
t(ρ) =

√
1− 2ρα + (p− 1)ρ2β2(1 + ε)2λ2

A + ρξ(1 + ε)λB.

(2) for each λ ∈ Ω, the (PGNIQVIP)(2.1) has nonempty solution set S(λ) and
S(λ) is a closed subset in E.

Proof. (1). By the definition of F , for any (x, λ), (y, λ) ∈ E ×Ω, a ∈ F (x, λ), there
exist u1 ∈ A(x, λ), v1 ∈ B(x, λ), w1 ∈ C(x, λ), z1 ∈ D(x, λ), s1 ∈ G(x, λ) such that

a = x− s1 + m(w1, λ) + RM(·,z1,λ)(s1 −m(w1, λ)− ρN(u1, v1, λ)).

Note that A(y, λ), B(y, λ), C(y, λ), D(y, λ), G(y, λ) ∈ CB(E), there exist u2 ∈
A(y, λ), v2 ∈ B(y, λ), w2 ∈ C(y, λ), z2 ∈ D(y, λ) and s2 ∈ G(y, λ) such that

‖u1 − u2‖ ≤ (1 + ε)H(A(x, λ), A(y, λ)),
‖v1 − v2‖ ≤ (1 + ε)H(B(x, λ), B(y, λ)),
‖w1 − w2‖ ≤ (1 + ε)H(C(x, λ), C(y, λ)),
‖z1 − z2‖ ≤ (1 + ε)H(D(x, λ), D(y, λ)),
‖s1 − s2‖ ≤ (1 + ε)H(G(x, λ), G(y, λ)).

Let
b = y − s2 + m(w2, λ) + RM(·,z2,λ)(s2 −m(w2, λ)− ρN(u2, v2, λ)).

Then we have b ∈ F (y, λ). It follows that

‖a− b‖ ≤ ‖x− y − (s1 − s2)‖+ ‖m(w1, λ)−m(w2, λ)‖(3.4)
+ ‖RM(·,z,λ)(s1 −m(w1, λ)− ρN(u1, v1, λ))
−RM(·,z2,λ)(s2 −m(w2, λ)− ρN(u2, v2, λ))‖.

Since G is δ-strongly accretive and λG-Lipschitz continuous, we have

‖x− y − (s1 − s2)‖2(3.5)
≤ (p− 1)‖s1 − s2‖2 + ‖x− y‖2 − 2〈s1 − s2, j(x− y)〉
≤ [(p− 1)λ2

G + 1− 2δ]‖x− y‖2.



Generalized Nonlinear Implicit Quasi-variational Inclusions 351

By the Lipschitz continuity of RM(·,z1,λ) and condition (3.2), we have

‖RM(·,z1,λ)(s1 −m(w1, λ)− ρN(u1, v1, λ))(3.6)
−RM(·,z2,λ)(s2 −m(w2, λ)− ρN(u2, v2, λ))‖

≤ ‖RM(·,z1,λ)(s1 −m(w1, λ)− ρN(u1, v1, λ))
−RM(·,z1,λ)(s2 −m(w2, λ)− ρN(u2, v2, λ))‖
+ ‖RM(·,z1,λ)(s2 −m(w2, λ)− ρN(u2, v2, λ))
−RM(·,z2,λ)(s2 −m(w2, λ)− ρN(u2, v2, λ))‖

≤ ‖s1 −m(w1, λ)− ρN(u1, v1, λ)− (s2 −m(w2, λ)− ρN(u2, v2, λ))‖
+ µ‖z1 − z2‖

≤ ‖x− y − (s1 − s2)‖+ ‖x− y − ρ(N(u1, v1, λ)−N(u2, v1, λ))‖
+ ρ‖N(u2, v1, λ)−N(u2, v2, λ)‖+ ‖m(w1, λ)−m(w2, λ)‖+ µ‖z1 − z2‖.

Since N(u, v, λ) is α-strongly accretive with respect to A and β-Lipschitz con-
tinuous in the first argument and A is λA-Lipschitz continuous, we have

‖x− y − ρ(N(u1, v1, λ)−N(u2, v1, λ)‖2(3.7)
≤ (p− 1)ρ2‖N(u1, v1, λ)−N(u2, v1, λ)‖2 + ‖x− y‖2

− 2ρ〈N(u1, v1, λ)−N(u2, v1, λ), j(x− y)〉
≤ (p− 1)ρ2β2(1 + ε)2[H(A(x, λ), A(y, λ))]2 + ‖x− y‖2 − 2ρα‖x− y‖2
= [(p− 1)ρ2β2(1 + ε)2λ2

A + 1− 2ρα]‖x− y‖2.

Using ξ-Lipschitz continuity of N(u, v, λ) in the second argument, λB-Lipschitz
continuity of B, λD-Lipschitz continuity of D, η-Lipschitz continuity of m and λG-
Lipschitz continuity of C, we have

‖N(u2, v1, λ)−N(u2, v2, λ)‖ ≤ ξ‖v1 − v2‖(3.8)
≤ ξ(1 + ε)H(B(x, λ), B(y, λ))
≤ ξ(1 + ε)λB‖x− y‖,

‖z1 − z2‖ ≤ (1 + ε)H(D(x, λ), D(y, λ))(3.9)
≤ (1 + ε)λD‖x− y‖,

‖m(w1, λ)−m(w2, λ)‖ ≤ η‖w1 − w2‖(3.10)
≤ η(1 + ε)H(C(x, λ), C(y, λ))
≤ η(1 + ε)λC‖x− y‖.
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By (3.4)-(3.10), we obtain

‖a− b‖ ≤ [2
√

1− 2δ + (p− 1)λ2
G +

√
1− 2ρα + (p− 1)ρ2β2(1 + ε)2λ2

A

+ ρξ(1 + ε)λB + µ(1 + ε)λD + 2η(1 + ε)λC ]‖x− y‖
= (k + t(ρ))‖x− y‖
= θ‖x− y‖,

where

k = 2
√

1− 2δ + (p− 1)λ2
G + µ(1 + ε)λD + 2η(1 + ε)λC ,

t(ρ) =
√

1− 2ρα + (p− 1)ρ2β2(1 + ε)2λ2
A + ρξ(1 + ε)λB ,

and θ = k + t(ρ). It follows from condition (3.3) that θ < 1. Hence, we have

d(a, F (y, λ) = inf
b∈F (y,λ)

‖a− b‖
≤ θ‖x− y‖.

Since a ∈ F (x, λ) is arbitrary, we obtain

sup
a∈F (x,λ)

d(a, F (y, λ)) ≤ θ‖x− y‖.

By using same argument, we can prove

sup
b∈F (y,λ)

d(F (x, λ), b) ≤ θ‖x− y‖.

By the definition of the Hausdorff metric H on CB(E), we obtain that for all
(x, y, λ) ∈ E × E × Ω,

H(F (x, λ), F (y, λ)) ≤ θ‖x− y‖,
i.e., F (x, λ) is a set-valued contractive mapping which is uniform with respect to
λ ∈ Ω.

(2). Since F (x, λ) is a uniform θ-H-contractive mapping with respect to λ ∈ Ω,
by the Nadler fixed point theorem[14], F (x, λ) has a fixed point x for each λ ∈ Ω.
By Theorem 3.1, S(λ) 6= φ.

For each λ ∈ Ω, let {xn} ⊂ S(λ) and xn → x0 as n → ∞. Then we have
xn ∈ F (xn, λ), n = 1, 2, · · · . By (1), we have

H(F (xn, λ), F (x0, λ)) ≤ θ‖xn − x0‖.
It follows that

d(x0, F (x0, λ)) ≤ ‖x0 − xn‖+ d(xn, F (xn, λ)) + H(F (xn, λ), F (x0, λ))
≤ (1 + θ)‖xn − x0‖ → 0 as n →∞.
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Hence, we have x0 ∈ F (x0, λ) and x0 ∈ S(λ). Therefore, S(λ) is a nonempty closed
subset of E.

Theorem 3.3. Under the hypotheses of Theorem 3.2, further assume

(i) for any x ∈ E, the mappings λ 7→ A(x, λ), λ 7→ B(x, λ), λ 7→ C(x, λ),
λ 7→ D(x, λ), λ 7→ G(x, λ) and λ 7→ m(x, λ) are Lipschitz continuous with
Lipschitz constants lA, lB , lC , lD, lG and lm, respectively.

(ii) for any u, v, z, w ∈ E, λ 7→ N(u, v, λ) and λ 7→ RM(·,z,λ)(w) are Lipschitz
continuous with Lipschitz constants lN and lR, respectively.

Then the solution set S(λ) of the (PGNIQVIP)(2.1) is a Lipschitz continuous map-
ping from Ω to E.

Proof. For each λ, λ̄ ∈ Ω, by Theorem 3.2, S(λ) and S(λ̄) are both nonempty closed
subsets. Also, F (x, λ) and F (x, λ̄) are both set-valued contractive mappings with
same constant θ ∈ (0, 1). By Lemma 2.2, we obtain

H(S(λ), S(λ̄)) ≤ 1
1− θ

sup
x∈E

H(F (x, λ), F (x, λ̄)).

Taking any a ∈ F (x, λ), there exist u ∈ A(x, λ), v ∈ B(x, λ), w ∈ C(x, λ), z ∈
D(x, λ) and s ∈ G(x, λ) such that

a = x− s + m(w, λ) + RM(·,z,λ)(s−m(w, λ)− ρN(u, v, λ)).

Since A(x, λ) ∈ CB(E) and A(x, λ̄) ∈ CB(E), there exists ū ∈ A(x, λ̄) such that

‖u− ū‖ ≤ (1 + ε)H(A(x, λ), A(x, λ̄)).

Similarly, there exist v̄ ∈ B(x, λ̄), w̄ ∈ C(x, λ̄), z̄ ∈ D(x, λ̄) and s̄ ∈ G(x, λ̄) such
that

‖v − v̄‖ ≤ (1 + ε)H(B(x, λ), B(x, λ̄)),
‖w − w̄‖ ≤ (1 + ε)H(C(x, λ), C(x, λ̄)),
‖z − z̄‖ ≤ (1 + ε)H(D(x, λ), D(x, λ̄)),
‖s− s̄‖ ≤ (1 + ε)H(G(x, λ), G(x, λ̄)).

Let

b = x− s̄ + m(w̄, λ̄) + RM(·,z̄,λ̄)(s̄−m(w̄, λ̄)− ρN(ū, v̄, λ̄)).
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Then b ∈ F (x, λ̄). It follows that

‖a− b‖ = ‖s− s̄‖+ ‖m(w, λ)−m(w̄, λ̄)‖(3.11)
+ ‖RM(·,z,λ)(s−m(w, λ)− ρN(u, v, λ)
−RM(·,z̄,λ̄)(s̄−m(w̄, λ̄)− ρN(ū, v̄, λ̄))‖

≤ ‖s− s̄‖+ ‖m(w, λ)−m(w̄, λ̄)‖
+‖RM(·,z,λ)(s−m(w, λ)
− ρN(u, v, λ))−RM(·,z,λ)(s̄−m(w̄, λ̄)− ρN(ū, v̄, λ̄))‖
+ ‖RM(·,z,λ)(s̄−m(w̄, λ̄)− ρN(ū, v̄, λ̄))
−RM(·,z̄,λ)(s̄−m(w̄, λ̄)− ρN(ū, v̄, λ̄))‖
+ ‖RM(·,z̄,λ)(s̄−m(w̄, λ̄)− ρN(ū, v̄, λ̄))
−RM(·,z̄,λ̄)(s̄−m(w̄, λ̄)− ρN(ū, v̄, λ̄))‖

≤ 2‖s− s̄‖+ 2‖m(w, λ)−m(w̄, λ)‖
+ ρ‖N(u, v, λ)−N(ū, v̄, λ̄)‖+ µ‖z − z̄‖+ lR‖λ− λ̄‖.

By Lipschitz continuity of G, m, C in λ ∈ Ω, N and D, we have

‖s− s̄‖ ≤ (1 + ε)H(G(x, λ), G(x, λ̄)(3.12)
≤ (1 + ε)lG‖λ− λ̄‖,

‖m(w, λ)−m(w̄, λ̄)‖ ≤ ‖m(w, λ)−m(w̄, λ)‖+ ‖m(w̄, λ)−m(w̄, λ̄)‖(3.13)
≤ η‖w − w̄‖+ lm‖λ− λ̄‖
≤ ηH(C(x, λ), C(x, λ̄)) + lm‖λ− λ̄‖
≤ [η(1 + ε)lC + lm]‖λ− λ̄‖,

‖N(u, v, λ)−N(ū, v̄, λ̄)‖(3.14)
≤ ‖N(u, v, λ)−N(ū, v, λ)‖

+ ‖N(ū, v, λ)−N(ū, v̄, λ)‖+ ‖N(ū, v̄, λ)−N(ū, v̄, λ̄)‖
≤ β‖u− ū‖+ ξ‖v − v̄‖+ lN‖λ− λ̄‖
≤ β(1 + ε)H(A(x, λ), A(x, λ̄)) + ξ(1 + ε)H(B(x, λ), B(x, λ̄))

+ lN‖λ− λ̄‖
≤ [β(1 + ε)lA + ξ(1 + ε)lB + lN ]‖λ− λ̄‖,

‖z − z̄‖ ≤ (1 + ε)H(D(x, λ), D(x, λ̄))(3.15)
≤ (1 + ε)lD‖λ− λ̄‖.

It follows from (3.11)-(3.15) that

‖a− b‖ ≤ [2{(1 + ε)lG + η(1 + ε)lC + lm}+ ρ{(1 + ε)βlA + (1 + ε)ξlB + lN}
+ µ(1 + ε)lD + lJ ]‖λ− λ̄‖

= M‖λ− λ̄‖,
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where

M = 2{(1 + ε)lG + η(1 + ε)lC + lm}+ ρ{(1 + ε)βlA + (1 + ε)ξlB + lN}
+ µ(1 + ε)lD + lJ .

Hence, we obtain

sup
a∈F (x,λ)

d(a, F (x, λ̄)) ≤ M‖λ− λ̄‖,

sup
b∈F (x,λ̄)

d(F (x, λ), b) ≤ M‖λ− λ̄‖.

It follows that
H(F (x, λ), F (x, λ̄)) ≤ M‖λ− λ̄‖.

By Lemma 2.2, we obtain

H(S(λ), S(λ̄)) ≤ M

1− θ
‖λ− λ̄‖.

This proves that S(λ) is Lipschitz continuous in λ ∈ Ω. ¤
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