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EXISTENCE AND MULTIPLICITY OF POSITIVE

SOLUTIONS FOR SINGULAR GENERALIZED LAPLACIAN

PROBLEMS WITH A PARAMETER

Chan-Gyun Kim

Abstract. In this paper, we consider singular φ-Laplacian problems with

nonlocal boundary conditions. Using a fixed point index theorem on a
suitable cone, the existence results for one or two positive solutions are

established under the assumption that the nonlinearity may not satisfy

the L1-Carathéodory condition.

1. Introduction

In this paper, we study the existence and multiplicity of positive solutions to
the following boundary value problem{

(q(t)φ(u′(t)))′ + λh(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) =
∫ 1

0
u(r)dα1(r), u(1) =

∫ 1

0
u(r)dα2(r),

(1)

where φ : R → R is an odd increasing homeomorphism, q ∈ C([0, 1], (0,∞)),
λ ∈ [0,∞) := R+ is a parameter, f ∈ C(R+,R+) with f(s) > 0 for s > 0,
h ∈ C((0, 1),R+), and the integrator functions αi (i = 1, 2) are nondecreasing
on [0, 1].

All integrals in (1) are meant in the sense of Riemann–Stieltjes. Throughout
this paper, we assume the following hypotheses, unless otherwise stated.

(H1) There exist increasing homeomorphisms ψ1, ψ2 : R+ → R+ such that

φ(x)ψ1(y) ≤ φ(yx) ≤ φ(x)ψ2(y) for all x, y ∈ R+.

(H2) For i = 1, 2, α̂i := αi(1)− αi(0) ∈ [0, 1).

Let ξ : R+ → R+ be an increasing homeomorphism. Then we denote by Hξ

the set {
g ∈ C((0, 1), (0,∞)) :

∫ 1

0

ξ−1

(∣∣∣∣∣
∫ 1

2

s

g(τ)dτ

∣∣∣∣∣
)
ds <∞

}
.
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It is well known that

φ−1(x)ψ−1
2 (y) ≤ φ−1(xy) ≤ φ−1(x)ψ−1

1 (y) for all x, y ∈ R+ (2)

and L1(0, 1) ∩ C(0, 1) ⊆ Hψ1
⊆ Hφ ⊆ Hψ2

(see, e.g., [9, Remark 1]).
The nonlocal boundary value problems play an important role in physics

and applied mathematics (see, e.g., [2, 7, 8]), and the existence of positive solu-
tions for nonlocal boundary value problems have been extensively studied. For
example, Liu [17] showed, under several assumptions on the nonlinearity, the
existence of one or two positive solutions to four-point boundary value problems
which is a special case of problem (1). Webb and Infante [19] studied the exis-
tence and multiplicity of positive solutions to semilinear elliptic problems with
several nonlocal boundary conditions involving a Stieltjes integral. Ko and Lee
[16] studied the existence, nonexistence and multiplicity of positive solutions to
semilinear elliptic systems subject to integral boundary conditions with posi-
tive parameter. Recently, under several assumptions on the nonlinearity, Son
and Wang [18] showed the existence and multiplicity of positive solutions to
p-Laplacian systems with nonlinear boundary conditions. For other interesting
results on problems with nonlocal boundary conditions, we refer the reader to
[4, 5, 10, 11, 13, 14] and the references therein.

When φ(s) = |s|p−2s for some p ∈ (1,∞), q ≡ 1, α̂1 = α̂2 = 0 and
h ∈ Hφ \ {0}, Agarwal, Lü and O’Regan [1] showed the existence and mul-
tiplicity of positive solutions to problem (1) under several assumptions on

f0 := lim
s→0

f(s)

φ(s)
and f∞ := lim

s→∞

f(s)

φ(s)
. Recently, Kim [12] extended the results

of [1] to singular generalized Laplacian problem (1) with the assumptions that
q may not be 1, α̂1 = α̂2 = 0 and h ∈ Hψ1 \ {0}.

Motivated by the previous results mentioned above, we study the existence
of one or two positive solutions to the problem (1). The rest of this paper is
organized as follows. In Section 2, we give preliminary results which are essential
for proving the main result (Theorem 3.3) in this paper. In Section 3, the main
result is proved.

2. Preliminaries

For convenience, we use some notations used in [10] (or [15]) as follows.
The usual maximum norm in a Banach space C[0, 1] is denoted by ∥u∥∞ :=
max
t∈[0,1]

|u(t)| for u ∈ C[0, 1]. For h ∈ Hφ\{0}, let αh := inf{x ∈ (0, 1) : h(x) > 0},

βh := sup{x ∈ (0, 1) : h(x) > 0}, ᾱh := sup{x ∈ (0, 1) : h(y) > 0 for all y ∈
(αh, x)}, β̄h := inf{x ∈ (0, 1) : h(y) > 0 for all y ∈ (x, βh)}, γ1h :=

1

4
(3αh + ᾱh)

and γ2h :=
1

4
(β̄h + 3βh). From h ∈ C((0, 1),R+) \ {0}, it follows that

h(t) > 0 for t ∈ (αh, ᾱh) ∪ (β̄h, βh), and 0 ≤ αh < γ1h < γ2h < βh ≤ 1. (3)

Let ρh := ρ1 min{γ1h, 1− γ2h} ∈ (0, 1), where
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q0 := min
t∈[0,1]

q(t) > 0 and ρ1 := ψ−1
2

(
1

∥q∥∞

)[
ψ−1
1

(
1

q0

)]−1

∈ (0, 1].

Then K := {u ∈ C([0, 1],R+) : u(t) ≥ ρh∥u∥∞ for t ∈ [γ1h, γ
2
h]} is a cone in

C[0, 1]. For r > 0, let Kr := {u ∈ K : ∥u∥∞ < r}, ∂Kr := {u ∈ K : ∥u∥∞ = r}
and Kr := Kr ∪ ∂Kr.

For g ∈ Hφ, consider the following problem{
(q(t)φ(u′(t)))′ + g(t) = 0, t ∈ (0, 1),

u(0) =
∫ 1

0
u(r)dα1(r), u(1) =

∫ 1

0
u(r)dα2(r).

(4)

Define a function T : Hφ → C[0, 1] by T (0) = 0 and, for g ∈ Hφ \ {0},

T (g)(t) =

{
A1

∫ 1

0

∫ r
0
Ig(s, σ)dsdα1(r) +

∫ t
0
Ig(s, σ)ds, if 0 ≤ t ≤ σ,

A2

∫ 1

0

∫ 1

r
Ig(σ, s)dsdα2(r) +

∫ 1

t
Ig(σ, s)ds, if σ ≤ t ≤ 1,

whereAi := (1−α̂i)−1 ∈ [1,∞) for i ∈ {1, 2}, Ig(x, y) := φ−1

(
1

q(s)

∫ y

x

g(τ)dτ

)
for x, y ∈ (0, 1) and σ = σ(g) is a constant satisfying

A1

∫ 1

0

∫ r

0

Ig(s, σ)dsdα1(r) +

∫ σ

0

Ig(s, σ)ds

= A2

∫ 1

0

∫ 1

r

Ig(σ, s)dsdα2(r) +

∫ 1

σ

Ig(σ, s)ds. (5)

Then T is well defined, and although σ = σ(g) is not necessarily unique, T (g)
is independent of the choice of σ satisfying (5) (see [10, Lemma 1 and Remark
2]).

Lemma 2.1. ([10, Lemma 2]) Assume that (H1), (H2) and g ∈ Hφ hold. Then
T (g) is a unique solution to problem (4), and the following properties are satis-
fied:

(i) T (g)(t) ≥ min{T (g)(0), T (g)(1)} ≥ 0 for t ∈ [0, 1];
(ii) for any g ̸≡ 0, max{T (g)(0), T (g)(1)} < ∥T (g)∥∞;
(iii) σ is a constant satisfying (5) if and only if T (g)(σ) = ∥T (g)∥∞;
(iv) T (g)(t) ≥ ρ1 min{t, 1− t}∥T (g)∥∞ for t ∈ [0, 1] and T (g) ∈ K.

Define a function F : R+ × K → C(0, 1) by F (λ, u)(t) := λh(t)f(u(t)) for
(λ, u) ∈ R+ ×K and t ∈ (0, 1). Clearly, F (λ, u) ∈ Hφ for any (λ, u) ∈ R+ ×K,
since h ∈ Hφ. Let us define an operator H : R+ × K → K by H(λ, u) :=
T (F (λ, u)) for (λ, u) ∈ R+ × K. By Lemma 2.1 (iv), H(R+ × K) ⊆ K, and
consequently H is well defined. Moreover, u is a solution to the problem (1) if
and only if H(λ, u) = u for some (λ, u) ∈ R+ ×K.

Lemma 2.2. ([13, Lemma 4] or [14, Lemma 4]) Assume that (H1), (H2) and
h ∈ Hφ\{0} hold. Then the operator H : R+×K → K is completely continuous.

Finally, we recall a well-known theorem of the fixed point index theory.
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Theorem 2.3. ([3, 6]) Assume that, for some m > 0, H : Km → K is com-
pletely continuous. Then the following assertions are true.

(i) i(H,Km,K) = 1 if ∥H(u)∥∞ < ∥u∥∞ for u ∈ ∂Km;

(ii) i(H,Km,K) = 0 if ∥H(u)∥∞ > ∥u∥∞ for u ∈ ∂Km.

3. Main results

Let C1 := ψ−1
2

(
1

∥q∥∞

)
min

{∫ γh

γ1
h

ψ−1
2

(∫ γh

s

h(τ)dτ

)
ds,

∫ γ2
h

γh

ψ−1
2

(∫ s

γh

h(τ)dτ

)
ds

}
and C2 := ψ−1

1

(
1

q0

)
max

{
A1

∫ γh

0

ψ−1
1

(∫ γh

s

h(τ)dτ

)
ds,A2

∫ 1

γh

ψ−1
1

(∫ s

γh

h(τ)dτ

)
ds

}
.

Here, γh :=
γ1h + γ2h

2
and Ai := (1− α̂i)

−1 ≥ 1 for i = 1, 2. Clearly, by (3),

C1 > 0 and C2 > 0.

Define continuous functions f∗, f
∗ : R+ → R+ by, for r ∈ R+,

f∗(r) := min{f(y) : ρhr ≤ y ≤ r} and f∗(r) := max{f(y) : 0 ≤ y ≤ r}.
Define S1, S2 : (0,∞) → (0,∞) by

S1(r) :=
1

f∗(r)
φ

(
r

C1

)
and S2(r) :=

1

f∗(r)
φ

(
r

C2

)
for r ∈ (0,∞).

By (2) and (H2), ψ
−1
2 (y) ≤ ψ−1

1 (y) for all y ∈ R+ and Ai = (1 − α̂i)
−1 ≥ 1

for i = 1, 2. Consequently, 0 < C1 < C2 and

0 < S2(r) < S1(r) for all r ∈ (0,∞). (6)

Remark 1. For any L ∈ C(R+,R+), let Lc := lim
r→c

L(r)

φ(r)
for c ∈ {0,∞}. Then it

is well known that (f∗)c = (f∗)c = 0 if fc = 0 , and (f∗)c = (f∗)c = ∞ if fc = ∞
(see, e.g., [12, Remark 2]). For i ∈ {1, 2}, it follows from (2) that

lim
r→0+

Si(r) = 0 if f0 = ∞, and lim
r→∞

Si(r) = 0 if f∞ = ∞; (7)

lim
r→0+

Si(r) = ∞ if f0 = 0, and lim
r→∞

Si(r) = ∞ if f∞ = 0. (8)

Lemma 3.1. Assume that (H1), (H2) and h ∈ Hψ1
\ {0} hold. Let r ∈ (0,∞)

be fixed. Then, for any λ ∈ (0, S2(r)), ∥H(λ, v)∥∞ < ∥v∥∞ for all v ∈ ∂Kr and
i(H(λ, ·),Kr,K) = 1.

Proof. Let λ ∈ (0, S2(r)) and v ∈ ∂Kr be fixed. Then

0 ≤ λf(v(t)) ≤ λf∗(r) =
λ

S2(r)
φ

(
r

C2

)
< φ

(
r

C2

)
for t ∈ [0, 1]. (9)

Let σ be an element of (0, 1) satisfying H(λ, v)(σ) = ∥H(λ, v)∥∞. We have two
cases: either (i) σ ∈ (0, γh) or (ii) σ ∈ [γh, 1). We only consider the case (i)
since the case (ii) can be proved similarly. First, we show that

∥H(λ, u)∥∞ ≤ A1

∫ σ

0

IF (λ,u)(s, σ)ds. (10)
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Since IF (λ,u)(s, x) ≥ 0 for x ≥ s and IF (λ,u)(s, x) ≤ 0 for x ≤ s,∫ 1

0

∫ r

σ

IF (λ,u)(s, σ)dsdα1(r)

= −
∫ σ

0

∫ σ

r

IF (λ,u)(s, σ)dsdα1(r) +

∫ 1

σ

∫ r

σ

IF (λ,u)(s, σ)dsdα1(r) ≤ 0.

Consequently,

H(λ, u)(σ) = A1

∫ 1

0

∫ r

0

IF (λ,u)(s, σ)dsdα1(r) +

∫ σ

0

IF (λ,u)(s, σ)ds

= A1

[∫ 1

0

∫ r

0

IF (λ,u)(s, σ)dsdα1(r) +

(
1−

∫ 1

0

dα1(r)

)∫ σ

0

IF (λ,u)(s, σ)ds

]
= A1

[∫ 1

0

∫ r

σ

IF (λ,u)(s, σ)dsdα1(r) +

∫ σ

0

IF (λ,u)(s, σ)ds

]
≤ A1

∫ σ

0

IF (λ,u)(s, σ)ds.

From (2),(9),(10) and the definition of C2, it follows that

∥H(λ, v)∥∞ ≤ A1

∫ σ

0

φ−1

(
1

q(s)

∫ σ

s

λh(τ)f(v(τ))dτ

)
ds

< A1

∫ γh

0

φ−1

(∫ γh

s

h(τ)dτ
1

q0
φ

(
r

C2

))
ds

≤ A1

∫ γh

0

ψ−1
1

(∫ γh

s

h(τ)dτ

)
dsφ−1

(
1

q0
φ

(
r

C2

))
≤ A1

∫ γh

0

ψ−1
1

(∫ γh

s

h(τ)dτ

)
dsψ−1

1

(
1

q0

)
r

C2
≤ r = ∥v∥∞.

By Theorem 2.3, for any λ ∈ (0, S2(r)), i(H(λ, ·),Kr,K) = 1. □

Lemma 3.2. Assume that (H1), (H2) and h ∈ Hψ2 \ {0} hold. Let r ∈ (0,∞)
be fixed. Then, for any λ ∈ (S1(r),∞), ∥H(λ, v)∥∞ > ∥v∥ for all v ∈ ∂Kr and
i(H(λ, ·),Kr,K) = 0.

Proof. Let λ ∈ (S1(r),∞) and v ∈ ∂Kr be fixed. Then ρhr ≤ v(t) ≤ r for
t ∈ [γ1h, γ

2
h] and

λf(v(t)) ≥ λf∗(r) =
λ

S1(r)
φ

(
r

C1

)
> φ

(
r

C1

)
for t ∈ [γ1h, γ

2
h]. (11)

Let σ be an element of (0, 1) satisfying H(λ, v)(σ) = ∥H(λ, v)∥∞. Then we have
two cases: either (i) σ ∈ [γh, 1) or (ii) σ ∈ (0, γh). We only consider the case (i)
since the case (ii) can be proved similarly. By Lemma 2.1 (i), H(λ, v)(0) ≥ 0,
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and it follows from (2), (11) and the definition of C1 that

∥H(λ, v)∥∞ = H(λ, v)(0) +

∫ σ

0

φ−1

(
1

q(s)

∫ σ

s

λh(τ)f(v(τ))dτ

)
ds

>

∫ γh

γ1
h

φ−1

(∫ γh

s

h(τ)dτ
1

∥q∥∞
φ

(
r

C1

))
ds

≥
∫ γh

γ1
h

ψ−1
2

(∫ γh

s

h(τ)dτ

)
dsφ−1

(
1

∥q∥∞
φ

(
r

C1

))
≥

∫ γh

γ1
h

ψ−1
2

(∫ γh

s

h(τ)dτ

)
dsψ−1

2

(
1

∥q∥∞

)
r

C1
≥ r = ∥v∥∞.

By Theorem 2.3, for any λ ∈ (S1(r),∞), i(H(λ, ·),Kr,K) = 0. □

Now we give the main result for the existence and multiplicity of positive
solutions to the problem (1).

Theorem 3.3. Assume that (H1), (H2) and h ∈ Hψ1
\ {0} hold.

(i) Assume that there exist r1 and r2 such that 0 < r1 < r2 (resp., 0 < r2 <
r1) and S1(r1) < S2(r2). Then the problem (1) has a positive solution
u = u(λ) satisfying r1 < ∥u∥∞ < r2 (resp., r2 < ∥u∥∞ < r1) for any
λ ∈ (S1(r1), S2(r2)).

(ii) Assume that there exist r1, r2 and R1 (resp., R2) such that 0 < r1 <
r2 < R1 (resp., 0 < r2 < r1 < R2) and S∗ < S2(r2) (resp., S1(r1) <
S∗). Then the problem (1) has two positive solutions u1 = u1(λ) and
u2 = u2(λ) satisfying r1 < ∥u1∥∞ < r2 < ∥u2∥∞ < R1 for any λ ∈
(S∗, S2(r2)) (resp., r2 < ∥u1∥∞ < r1 < ∥u2∥∞ < R2 for any λ ∈
(S1(r1), S

∗)).

Here, S∗ := max{S1(r1), S1(R1)} and S∗ := min{S2(r2), S2(R2)}.

Proof. Since the proofs are similar, we only give the proof of Theorem 3.3 (i)
with 0 < r1 < r2. Let λ ∈ (S1(r1), S2(r2)) be fixed. By Lemma 3.1 and
Lemma 3.2, i(H(λ, ·),Kr1 ,K) = 0, i(H(λ, ·),Kr2 ,K) = 1 and H(λ, v) ̸= v for all
v ∈ ∂Kr1 . Then, by the additivity property, i(H(λ, ·),Kr2 \ Kr1 ,K) = 1. Thus
there exists u ∈ Kr2 \ Kr1 such that H(λ, u) = u, and the problem (1) has a
positive solution u = u(λ) satisfying r1 < ∥u∥∞ < r2. □

Corollary 3.4. Assume that (H1), (H2) and h ∈ Hψ1
\ {0} hold.

(i) If f0 = ∞ and f∞ = 0, then the problem (1) has a positive solution u(λ)
for any λ ∈ (0,∞) satisfying ∥uλ∥∞ → 0 as λ→ 0 and ∥uλ∥∞ → ∞ as
λ→ ∞.

(ii) If f0 = 0 and f∞ = ∞ , then the problem (1) has a positive solution u(λ)
for any λ ∈ (0,∞) satisfying ∥uλ∥∞ → ∞ as λ→ 0 and ∥uλ∥∞ → 0 as
λ→ ∞.
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Proof. We only give the proof of (i) since the proof of (ii) is similar. Since
f0 = ∞ and f∞ = 0, it follows from (7) and (8) that

Si(r) → 0 as r → 0 and Si(r) → ∞ as r → ∞ for i = 1, 2. (12)

Let λ ∈ (0,∞) be fixed. By (6) and (12), there exist r1(λ) and r2(λ) such that
0 < r1(λ) < r2(λ) and S1(r1(λ)) < λ < S2(r2(λ)). By Theorem 3.3 (i), there
exists a positive solution uλ to the problem (1) satisfying r1(λ) < ∥uλ∥∞ <
r2(λ). Since Si(r) → 0 as r → 0 for i = 1, 2, we may choose r1(λ) and r2(λ)
so that 0 < r1(λ) < r2(λ) and r2(λ) → 0 as λ → 0. Thus, there exists positive
solutions uλ to the problem (1) for all small λ > 0 satisfying ∥uλ∥∞ → 0 as
λ → 0. Similarly, since Si(r) → ∞ as r → ∞ for i = 1, 2, there exists positive
solutions uλ to the problem (1) for all large λ > 0 satisfying ∥uλ∥∞ → ∞ as
λ→ ∞. □

Corollary 3.5. Assume that (H1), (H2) and h ∈ Hψ1 \ {0} hold.

(i) If f0 = f∞ = ∞, then there exist positive constants λ∗ and λ such
that the problem (1) has two positive solutions u1(λ) and u2(λ) for any
λ ∈ (0, λ∗), it has a positive solution u(λ∗) for λ = λ∗, and it has no
positive solutions for λ ∈ (λ,∞).

(ii) If f0 = f∞ = 0, then there exist positive constants λ∗ and λ such
that the problem (1) has two positive solutions u1(λ) and u2(λ) for any
λ ∈ (λ∗,∞), it has a positive solution u(λ∗) for λ = λ∗, and it has no
positive solutions for λ ∈ (0, λ).

Proof. (i) Since f0 = f∞ = ∞, it follows from (7) that, for i = 1, 2, lim
r→0

Si(r) =

lim
r→∞

Si(r) = 0. Let λ∗ = max{S2(r) : r ∈ R+} ∈ (0,∞) and r∗ ∈ (0,∞)

satisfying S2(r
∗) = λ∗. For any λ ∈ (0, λ∗), there exist r1(λ), r2(λ) and R1(λ)

such that 0 < r1(λ) < r2(λ) < r∗ < R1(λ) and S∗ = S1(r1(λ)) = S1(R1(λ)) <
λ < S2(r2(λ)). Then, by Theorem 3.4 (ii), there exist two positive solutions
u1(λ) and u2(λ) for any λ ∈ (0, λ∗).

For each n ∈ N, let λn := λ∗ − 1
n . Then we may choose r1(n) and r2(n) such

that S1(r1(n)) < λn < S2(r2(n)) and 0 < δ < r1(n) < r2(n) < r∗ for all n.
For each n, by Theorem 3.3 (i), there exists un ∈ K such that H(λn, un) = un
and δ < ∥un∥∞ < r∗. Since H : R+ × K → K is compact and {(λn, un)} is
bounded in R+ × K, there exist a subsequence {(λnk

, unk
)} of {(λn, un)} and

u∗ ∈ K such that H(λnk
, unk

) = unk
→ u∗ in K as nk → ∞. Since λnk

→ λ∗

as nk → ∞ and H is continuous, H(λ∗, u∗) = u∗ and ∥u∗∥∞ ≥ δ > 0. Thus the
problem (1) has a positive solution u∗ for λ = λ∗.

Let λ > 0 be a constant such that there exists a positive solution uλ to
the problem (1), and let σ be a constant satisfying uλ(σ) = ∥uλ∥∞. Since
f0 = f∞ = ∞, there exists C1 > 0 such that f(s) > C1φ(s) for s ∈ R+. We
only consider the case σ ≥ γh, since the case σ < γh can be proved similarly.
Since uλ(t) ≥ uλ(γ

1
h) for t ∈ [γ1h, σ], f(uλ(t)) > C1φ(uλ(γ

1
h)) for t ∈ [γ1h, γ].
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Then

uλ(γ
1
h) ≥

∫ γ1
h

0

φ−1

(
1

q(s)

∫ σ

s

λh(τ)f(uλ(τ))dτ

)
ds

≥
∫ γ1

h

0

φ−1

(∫ γh

γ1
h

h(τ)dτ∥q∥−1
∞ λC1φ(uλ(γ

1
h))

)
ds

≥ γ0φ
−1(h∗∥q∥−1

∞ λC1φ(uλ(γ
1
h))) ≥ γ0ψ

−1
2 (h∗∥q∥−1

∞ λC1)uλ(γ
1
h).

Here γ0 = min{γ1h, 1 − γ2h} > 0 and h∗ = min{
∫ γh

γ1
h

h(τ)dτ,

∫ γ2
h

γh

h(τ)dτ} > 0.

Consequently, λ ≤ ∥q∥∞(h∗C1)
−1ψ2(γ

−1
0 ) =: λ, and the problem (1) has no

positive solutions for λ ∈ (λ,∞).
(ii) Since f0 = f∞ = 0, it follows from (8) that, for i = 1, 2, lim

r→0
Si(r) =

lim
r→∞

Si(r) = ∞. Then there exists r∗ ∈ (0,∞) satisfying S1(r∗) = min{S1(r) :

r ∈ R+} ∈ (0,∞). Let λ∗ = S1(r∗). For any λ ∈ (λ∗,∞), there exist r1(λ), r2(λ)
and S2(λ) such that 0 < r2(λ) < r1(λ) < r∗ < S2(λ) and S1(r1(λ)) < λ <
S2(r2(λ)) = S2(M2(λ)) = S∗. Then, by Theorem 3.4 (ii), there exist two posi-
tive solutions u1(λ) and u2(λ) such that 0 < ∥u1(λ)∥∞ < r∗ < ∥u2(λ)∥∞. By
the argument similar to those in the proof of Corollary 3.5 (i), one can show
that the problem (1) has a positive solution u(λ∗) for λ = λ∗.

Let λ > 0 be a constant such that there exists a positive solution uλ to
the problem (1), and let σ be a constant satisfying uλ(σ) = ∥uλ∥∞. Since
f0 = f∞ = 0, there exists C2 > 0 such that f(s) ≤ C2φ(s) for s ∈ R+, and
f(uλ(t)) ≤ C2φ(uλ(t)) ≤ C2φ(uλ(σ)) for all t ∈ [0, 1]. We only consider the
case σ ≤ γh, since the case σ > γh can be proved similarly. By (10),

uλ(σ) ≤ A1

∫ σ

0

φ−1

(
1

q(s)

∫ σ

s

λh(τ)f(uλ(τ))dτ

)
ds

≤ A1

∫ γh

0

φ−1

(∫ γ

s

h(τ)dτq−1
0 λC2φ(uλ(σ))

)
ds

≤ A∗h∗∗φ
−1(q−1

0 λC2φ(uλ(σ))) ≤ A∗h∗∗ψ
−1
1 (q−1

0 λC2)uλ(σ).

Here h∗∗ = max
{∫ γh

0
ψ−1
1

(∫ γh
s
h(τ)dτ

)
ds,
∫ 1

γh
ψ−1
1

(∫ s
γh
h(τ)dτ

)
ds
}
> 0 and

A∗ = max{A1, A2}. Consequently, λ ≥ q0C
−1
2 ψ1(A

−1
∗ h−1

∗∗ ) =: λ, and the prob-
lem (1) has no positive solutions for λ ∈ (0, λ).

□
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