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Abstract. In this paper, we consider a common solution of three problems in real Hilbert

spaces: the Ky Fan inequality problem, the variational inequality problem and the fixed

point problem for demicontractive single-valued and quasi-nonexpansive multi-valued map-

pings. To find the solution we present a new iterative algorithm and prove a strong con-

vergence theorem under mild conditions. Moreover, we provide a numerical example to

illustrate the convergence behavior of the proposed iterative method.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, and let
C be a nonempty closed convex subset of H. Let f : H ×H → R be a bifunction
such that f(x, x) = 0 for all x ∈ C. The classical Ky Fan inequality [7] consists of
finding a point x∗ in C such that

f(x∗, y) ≥ 0, ∀y ∈ C.(1.1)

The set of solutions of problem (1.1) is denoted by Sol(f, C). In fact, the Ky Fan
inequality can be formulated as an equilibrium problem. If f(x, y) = 〈Ax, y − x〉,
where A : C → H is a operator, then problem (1.1) become the following variational
inequality problem (shortly, V I(A,C)): find x∗ ∈ C such that

〈Ax∗, y − x∗〉 ≥ 0, ∀y ∈ C.(1.2)

The equilibrium problem which was considered as the Ky Fan inequality is very
general in the sense that it includes, as special cases, the optimization problem,
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the variational inequality problem, the complementarity problem, the saddle point
problem, the Nash equilibrium problem in noncooperative games and the Kakutani
fixed point problem, etc., see [1, 4, 5, 9, 10, 18] and the references therein. Recently,
algorithms for solving the Ky Fan inequality have been studied extensively.

In 2001, Yamada [27] proved that the sequence {xn} generated by the projected
gradient algorithm {

x1 ∈ C,
xn+1 = PC(xn − λAxn), ∀n ∈ N,

(1.3)

converges to the unique solution x∗ of V I(A,C) under the assumption that A is
strongly monotone and Lipschitz continuous, the mapping PC(I − λA) is strictly
contractive over C. If A is monotone and Lipschitz, the projected gradient algorithm
(1.3) may not be convergent. In order to deal with this situation, Korpelevich [15]
introduced an extragradient algorithm:

x1 ∈ C,
yn = PC(xn − λAxn),

xn+1 = PC(xn − λAyn), ∀n ∈ N.
(1.4)

He also proved that the sequences {xn} and {yn} converge to the same solution x∗

of V I(A,C) under the assumptions that A is L-Lipschitz and monotone, λ ∈ (0, 1
L ).

In 2008, the extragradient algorithm (1.4) has been extended to Ky Fan in-
equality problem by Muu et al. [17] as follows:

x1 ∈ C,

yn = argmin
w∈C

[
λf(xn, w) +

1

2
‖w − xn‖2

]
,

xn+1 = argmin
z∈C

[
λf(yn, z) +

1

2
‖z − xn‖2

]
, ∀n ∈ N.

(1.5)

Under assumptions that f is pseudomonotone and Lipschitz-type continuous, the
authors showed that the sequence {xn} converges to an element of Sol(f, C).

For obtaining a common element of set of solutions of Ky Fan inequality (1.1)
and the set of fixed points of a nonexpansive mapping T in a real Hilbert space H,
Anh [3] introduced an iterative algorithm by the modified viscosity approximation
method. The sequence {xn} is defined by

x1 ∈ C,

yn = argmin
w∈C

[
λnf(xn, w) +

1

2
‖w − xn‖2

]
,

zn = argmin
z∈C

[
λnf(yn, z) +

1

2
‖z − xn‖2

]
,

xn+1 = αnh(xn) + βnxn + γn(µTxn + (1− µ)zn), ∀n ∈ N,

(1.6)
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where C is a nonempty closed convex subset of H and h is a contractive mapping of
C into itself. The author showed that under certain conditions, the sequence {xn}
converges strongly to an element of Sol(f, C) ∩ F (T ).

Later in 2013, Vahidi et al. [24] introduced an iterative algorithm for finding a
common element of the sets of fixed points for nonexpansive multi-valued mappings,
strict pseudo-contractive single-valued mappings and the set of solutions of Ky Fan
inequality for pseudomonotone and Lipschitz-type continuous bifunctions in Hilbert
spaces.

In this paper, motivated by the research described above, we propose a new it-
erative algorithm for finding a common element of the sets of fixed points for demi-
contractive single-valued mappings, quasi-nonexpansive multi-valued mappings, the
set of solutions of Ky Fan inequality for pseudomonotone and Lipschitz-type con-
tinuous bifunctions, and the set of solutions of variational inequality for φ-inverse
strongly monotone mappings in real Hilbert spaces. We obtain strong convergence
theorems for the sequence generated by the proposed algorithm in a real Hilbert
space. Our results generalize and improve a number of known results including the
results of Anh [3] and Vahidi et al. [24].

2. Preliminaries and Useful Lemmas

In this section, we recall some definitions and results for further use. Let C be
a nonempty closed convex subset of a real Hilbert space H. We denote the strong
convergence and the weak convergence of the sequence {xn} to a point x ∈ H by
xn → x and xn ⇀ x, respectively. It is also known in [19] that a Hilbert space
H satisfies Opial’s condition, that is, for any sequence {xn} with xn ⇀ x, the
inequality

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖

holds for every y ∈ H with y 6= x. Let PC be the metric projection of H onto C
i.e., for x ∈ H, PCx satisfies the property

‖x− PCx‖ = min
y∈C
‖x− y‖.

Since C is nonempty closed and convex, PCx exists and is unique. It is also known
that PC has the following characteristic properties, see [11, 23] for more details.

Lemma 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H
and let PC : H → C be the metric projection. Then

(i) for all x ∈ C, y ∈ H,

‖x− PCy‖2 + ‖PCy − y‖2 ≤ ‖x− y‖2;

(ii) PCx = y if and only if there holds the inequality

〈x− y, y − z〉 ≥ 0, ∀z ∈ C.
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Lemma 2.2.([23]) Let C be a nonempty closed convex subset of a Hilbert space H
and let A be a mapping of C into H. Let u ∈ C. Then for η > 0,

u = PC(I − ηA)u⇔ u ∈ V I(A,C).

Definition 2.3.([13]) A mapping A : C → H is called δ-inverse strongly monotone
if there exists a positive real number δ such that

〈x− y,Ax−Ay〉 ≥ δ‖Ax−Ay‖2, ∀x, y ∈ C.

We now give some concepts of the monotonicity of a bifunction.

Definition 2.4. Let H be a real Hilbert space, C be a nonempty closed convex
subset of H, and let f : H ×H → R be a bifunction. A bifunction f is said to be:

(i) strongly monotone on C if there exists a constant α > 0 such that

f(x, y) + f(y, x) ≤ −α‖x− y‖2, ∀x, y ∈ C;

(ii) monotone on C if

f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ C;

(iii) pseudomonotone on C if

f(x, y) ≥ 0⇒ f(y, x) ≤ 0, ∀x, y ∈ C;

(iv) Lipschitz-type continuous on C if there exist two positive constants c1 and c2
such that

f(x, y) + f(y, z) ≥ f(x, z)− c1‖x− y‖2 − c2‖y − z‖2, ∀x, y, z ∈ C.

From the definition above we obviously have the following implications: (1)
It is clear that (i) ⇒ (ii) ⇒ (iii), (2) If f(x, y) = 〈Φ(x), y − x〉 for a mapping
Φ : H → H. Then the notions of monotonicity of bifunction f collapse to the
notions of monotonicity of mapping Φ, respectively. In addition, if mapping Φ is
L-Lipschitz on C, i.e., ‖Φ(x) − Φ(y)‖ ≤ L‖x − y‖ for all x, y ∈ C. Then, f is also
Lipschitz-type continuous on C, for example, with constants L1 = L

2ε , L2 = Lε
2 , for

any ε > 0.

Definition 2.5. Let H be a real Hilbert space, and let f : H × H → R be
a bifunction. For each z ∈ H, by ∂f(z, u) we denote the subdifferential of the
function f(z, ·) at u, i.e.,

∂f(z, u) = {ξ ∈ H : f(z, t)− f(z, u) ≥ 〈ξ, t− u〉, ∀t ∈ H}.
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Definition 2.6. Let H be a real Hilbert space and C be a nonempty closed convex
subset of H. The normal cone of C at v ∈ C is defined by

NC(v) = {z ∈ H : 〈z, y − v〉 ≤ 0, ∀y ∈ C}.

Lemma 2.7.([6]) Let H be a real Hilbert space, C be a nonempty closed convex
subset of H, and f : H × H → R be a bifunction. For each z ∈ H, suppose
that f(z, ·) is subdifferentiable on C. Then x∗ is a solution to the following convex
problem:

min{f(z, x) : x ∈ C}

if and only if 0 ∈ ∂f(z, x∗) + NC(x∗), where f(z, ·) denotes the subdifferential of
f(z, ·) and NC(x∗) is the normal cone of C at x∗ ∈ C.

Lemma 2.8.([2, 17]) Let H be a real Hilbert space, C be a nonempty closed convex
subset of H, and let f : H × H → R be a pseudomonotone and Lipschitz-type
continuous bifunction. For each x ∈ C, let f(x, ·) be convex and subdifferentiable
on C. Let {xn}, {zn}, and {wn} be the sequences generated by x1 ∈ C and by

wn = argmin
w∈C

[
λnf(xn, w) +

1

2
‖w − xn‖2

]
,

zn = argmin
z∈C

[
λnf(wn, z) +

1

2
‖z − xn‖2

]
.

Then for each x∗ ∈ Sol(f, C),

(2.1) ‖zn−x∗‖2 ≤ ‖xn−x∗‖2− (1−2λnc1)‖xn−wn‖2− (1−2λnc2)‖wn−zn‖2, ∀n ∈ N.

A mapping h : C → C is a contraction if there exists a constant η ∈ (0, 1) such
that ‖h(x) − h(y)‖ ≤ η‖x − y‖ for all x, y ∈ C. Let T : C → C be a single-valued
mapping. An element x ∈ C is said to be a fixed point of T if x = Tx. The fixed
point set of T is denoted by F (T ) = {x ∈ C : x = Tx}. A single-valued mapping T
is called strictly pseudononspreading [20] if there exists k ∈ [0, 1) such that, for all
x, y ∈ C,

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2 + 2〈x− Tx, y − Ty〉,

where I denotes the identity mapping. Note that if k = 0, a mapping T is called
nonspreading [14]. As a generalization of the class of strictly pseudononspread-
ing mappings, the class of demicontractive mappings was introduced by Hicks and
Kubicek [12] in 1977.

Recall that a single-valued mapping T is said to be demicontractive if F (T ) 6= ∅
and there exists κ ∈ [0, 1) such that, for all x ∈ C and for all z ∈ F (T ),

‖Tx− z‖2 ≤ ‖x− z‖2 + κ‖x− Tx‖2.
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We call κ the contraction coefficient. Clearly, strictly pseudononspreading mapping
with a nonempty fixed point set is demicontractive.

We now give two examples for the class of demicontractive mappings.

Example 2.9. Let H be the real line and C = [0, 1]. Define a mapping T : C → C
by

Tx =


4

7
x sin

(
1

x

)
, x 6= 0,

0, x = 0.

Obviously, F (T ) = {0}. Also, for all x ∈ C, we have |Tx − T0|2 = |Tx|2 =
| 47x sin

(
1
x

)
|2 ≤ |4x7 |

2 ≤ |x|2 ≤ |x− 0|2 + k|x− Tx|2 for all k ∈ [0, 1). Therefore, T
is demicontractive.

Example 2.10. Let H be the real line and C = [−1, 1]. Define a mapping T : C →
C by

Tx =


9− x

10
, x ∈ [−1, 0),

x+ 9

10
, x ∈ [0, 1].

Obviously, F (T ) = {1} and T is demicontractive.

The following lemma obtained by Suantai and Phuengrattana [22] is useful for
our results.

Lemma 2.11. Let H be a Hilbert space and C be a nonempty closed convex subset
of H. Let T : C → C be a demicontractive mapping with contraction coefficient κ.
Then, the following hold:

(i) F (T ) = F (PC(I − µ(I − T ))) for all µ > 0;

(ii) PC(I − µ(I − T )) is quasi-nonexpansive, for all µ ∈ (0, 1− κ].

The set C of H is called proximinal if for each x ∈ H there exists z ∈ C such
that

‖x− z‖ = inf{‖x− y‖ : y ∈ C} = dist(x,C).

It is clear that every nonempty closed convex subset of a real Hilbert space is
proximinal. We denote by CB(C) and KC(C) the families of all nonempty closed
bounded subsets, and nonempty compact convex subsets of C, respectively. The
Pompeiu-Hausdorff metric H on CB(C) is defined by

H(A,B) := max

{
sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)

}
, ∀A,B ∈ CB(C).

Let S : C → CB(C) be a multi-valued mapping. An element x ∈ C is said to be a
fixed point of S if x ∈ Sx. The fixed point set of S is denoted by F (S) = {x ∈ C :
x ∈ Sx}.
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Definition 2.12. A multi-valued mapping S : C → CB(C) is said to

(i) be nonexpansive if H(Sx, Sy) ≤ ‖x− y‖ for all x, y ∈ C;

(ii) be quasi-nonexpansive if F (S) 6= ∅ and H(Sx, Sz) ≤ ‖x − z‖ for all x ∈ C
and z ∈ F (S);

(iii) satisfy condition (Eµ) if there exists µ ≥ 1 such that for each x, y ∈ C,

dist(x, Sy) ≤ µdist(x, Sx) + ‖x− y‖.

We say that S satisfies condition (E) whenever S satisfies (Eµ) for some µ ≥ 1.

From the above definitions, it is clear that:

(i) if S is nonexpansive, then T satisfies the condition (E1);

(ii) if C is compact, then S is hemicompact.

We now give an example for the class of quasi-nonexpansiveness multi-valued
mapping satisfying the condition (E).

Example 2.13. Let C = [0,∞) and S : C → CB(C) be defined by

Sx =
[x

4
,
x

2

]
for all x ∈ C.

Then S is quasi-nonexpansive and satisfies condition (E).

Although the condition (E) implies the quasi-nonexpansiveness for single-valued
mappings, but it is not true for multi-valued mappings as the following example.

Example 2.14.([25]) Let C = [0,∞) and S : C → CB(C) be defined by

Sx = [x, 2x] for all x ∈ C.

Then S satisfies condition (E) and is not quasi-nonexpansive.

Notice also that the classes of (multi-valued) quasi-nonexpansive mappings and
mappings satisfying condition (E) are different (see Examples 2.15).

Example 2.15.([8]) Let C = [−1, 1] and S : C → CB(C) be defined by

Sx =

{{
x

1+|x| sin( 1
x )
}

if x 6= 0;

{0} if x = 0.

Then S is quasi-nonexpansive and does not satisfy condition (E).

Lemma 2.16.([16]) Let {tn} be a sequence of real numbers such that there exists
a subsequence {ni} of {n} such that tni

< tni+1 for all i ∈ N. Then there exists
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a nondecreasing sequence {τ(n)} ⊂ N such that τ(n) → ∞, and the following
properties are satisfied by all (sufficiently large) numbers n ∈ N:

tτ(n) ≤ tτ(n)+1, tn ≤ tτ(n)+1.

In fact,

τ(n) = max{k ≤ n : tk < tk+1}.

Lemma 2.17.([23]) In Hilbert space H, the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ H.

Lemma 2.18.([28]) Let H be a Hilbert space. Let x1, x2, . . . , xN ∈ H and

α1, α2, . . . , αN be real numbers in [0, 1] such that
∑N
i=1 αi = 1. Then,∥∥∥∥∥

N∑
i=1

αixi

∥∥∥∥∥
2

=

N∑
i=1

αi ‖xi‖2 −
∑

1≤i,j≤N

αiαj ‖xi − xj‖2 .

Lemma 2.19.([26]) Let {an} be a sequence of nonnegative real numbers, let {bn}
be a sequence in (0, 1) with

∑∞
n=1 bn = ∞, let {dn} be a sequence of nonnegative

real numbers with
∑∞
n=1 dn < ∞, and let {cn} be a sequence of real numbers with

lim supn→∞ cn ≤ 0. Suppose that the following inequality holds:

an+1 ≤ (1− bn)an + bncn + dn, ∀n ∈ N.

Then limn→∞ an = 0.

3. Main Results

In this section, we show strong convergence theorems for the sequence generated
by the hybrid algorithm (3.1) based on extragradient algorithm which solve the
problem of finding of four sets, i.e., F (T ), F (S), Sol(f, C), and V I(B,C).

Now, let C be a nonempty, closed and convex subset of a real Hilbert space H
and f : H ×H → R be a bifunction such that f(x, x) = 0, for all x ∈ C. In order
to find a point in F (T ) ∩ F (S) ∩ Sol(f, C) ∩ V I(B,C) 6= ∅, we make use of the
following blanket assumptions:

Assumptions A

(A1) f is monotone on C;

(A2) F is Lipschitz-type continuous on C with constants c1 > 0 and c2 > 0;

(A3) f(x, ·) is convex and subdifferentiable on C, for all x ∈ C;
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(A4) f is jointly weakly continuous on C × C in the sense that, if x, y ∈ C and
{xn}, {yn} ⊂ C converge weakly to x and y, respectively, then f(xn, yn) →
f(x, y) as n→∞.

We are now in a position to prove our main results.

Theorem 3.1. Let H be a real Hilbert space and C be a nonempty closed convex
subset of H. Let f be a bifunction satisfying assumptions A on C, T : C → C
be a demicontractive single-valued mapping with contraction coefficient κ, S : C →
KC(C) be a quasi-nonexpansive multi-valued mapping satisfying the condition (E),
and B : C → H be a δ-inverse strongly monotone mapping. Assume that F =
F (T )∩F (S)∩Sol(f, C)∩V I(B,C) 6= ∅ and Sp = {p} for all p ∈ F. Let h : C → C
be a k-contraction. For x1 ∈ C, let {xn}, {yn}, {zn}, and {wn} be sequences
generated by

wn = argmin
w∈C

[
λnf(xn, w) +

1

2
‖w − xn‖2

]
,

zn = argmin
z∈C

[
λnf(wn, z) +

1

2
‖z − xn‖2

]
,

yn = αnzn + βnun + γnPC(I − µn(I − T ))zn + ζnPC(I − ηnB)zn,

xn+1 = σnh(xn) + (1− σn)yn, ∀n ∈ N,

(3.1)

where un ∈ Szn and {αn}, {βn}, {γn}, {ζn}, {σn}, {µn}, {ηn}, and {λn} satisfy
the following conditions:

(C1) {σn} ⊂ (0, 1), limn→∞ σn = 0,
∑∞
n=1 σn =∞;

(C2) {λn} ⊂ [a, b] ⊂ (0, 1
L ), where L = max{2c1, 2c2};

(C3) µn ∈ (0, 1− κ] with limn→∞ µn = 0;

(C4) ηn ∈ [d, e] for some d, e ∈ (0, 2δ) and for all n ∈ N;

(C5) 0 < a ≤ αn, βn, γn, ζn ≤ b < 1 and αn + βn + γn + ζn = 1 for all n ∈ N.

Then the sequence {xn} converges strongly to q ∈ F, which solves the variational
inequality

〈q − h(q), x− q〉 ≥ 0, ∀x ∈ F.

Proof. Let Q = PF and it easy to see that Qh is contraction. By the Banach
contraction principle, there exists q ∈ F such that q = (Qh)(q). Applying Lemma
2.8, we have

(3.2) ‖zn − q‖2 ≤ ‖xn − q‖2 − (1− 2λnc1)‖xn − wn‖2 − (1− 2λnc2)‖wn − zn‖2.

This implies that

(3.3) ‖zn − q‖ ≤ ‖xn − q‖.
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Since S is quasi-nonexpansive and Sq = {q}, by (3.3), we have

(3.4) ‖un − q‖ = dist(un, Sq) ≤ H(Szn, Sq) ≤ ‖zn − q‖ ≤ ‖xn − q‖.

By Lemma 2.11(ii), PC(I−µn(I−T )) is quasi-nonexpansive for all n ∈ N. It implies
by PC(I − µn(I − T ))q = q and (3.3) that

(3.5) ‖PC(I − µn(I − T ))zn − q‖ ≤ ‖zn − q‖ ≤ ‖xn − q‖.

Let x, y ∈ C. Since B is δ-inverse strongly monotone, by condition (C4), we have

‖PC(I − ηnB)x− PC(I − ηnB)y‖2 ≤ ‖(I − ηnB)x− (I − ηnB)y‖2

= ‖x− y‖2 − 2ηn〈x− y,Bx−By〉
+ η2n‖Bx−By‖2

≤ ‖x− y‖2 − 2ηnδ‖Bx−By‖2

+ η2n‖Bx−By‖2

= ‖x− y‖2 − ηn(2δ − ηn)‖Bx−By‖2

≤ ‖x− y‖2 − d(2δ − e)‖Bx−By‖2

≤ ‖x− y‖2.

This shows that PC(I−ηnB) is nonexpansive for all n ∈ N. Thus, by PC(I−ηnB)q =
q and (3.3), we have

(3.6) ‖PC(I − ηnB)zn − q‖ ≤ ‖zn − q‖ ≤ ‖xn − q‖.

From (3.3)-(3.6), we get that

‖yn − q‖ = ‖αnzn + βnun + γnPC(I − µn(I − T ))zn + ζnPC(I − ηnB)zn − q‖
≤ αn‖zn − q‖+ βn‖un − q‖+ γn‖PC(I − µn(I − T ))zn − q‖

+ ζn‖PC(I − ηnB)zn − q‖
≤ (αn + βn + γn + ζn)‖xn − q‖
= ‖xn − q‖.(3.7)

Consequently,

‖xn+1 − q‖ = ‖σnh(xn) + (1− σn)yn − q‖
≤ σn‖h(xn)− q‖+ (1− σn)‖yn − q‖
≤ σn

(
‖h(xn)− h(q)‖+ ‖h(q)− q‖

)
+ (1− σn)‖xn − q‖

≤ σn
(
‖h(xn)− h(q)‖+ ‖h(q)− q‖

)
+ (1− σn)‖xn − q‖

≤ σnk‖xn − q‖+ σn‖h(q)− q‖+ (1− σn)‖xn − q‖
= (1− σn(1− k))‖xn − q‖+ σn‖h(q)− q‖

≤ max

{
‖xn − q‖,

‖h(q)− q‖
1− k

}
.



Hybrid Algorithms for Ky Fan Inequalities and Common Fixed Points 713

By induction, we get

‖xn − q‖ ≤ max

{
‖x1 − q‖,

‖h(q)− q‖
1− k

}
, ∀n ∈ N.

This implies that {xn} is bounded, and we also obtain that {un}, {zn}, {yn} and
{h(xn)} are bounded.

By Lemma 2.18, (3.1), (3.2), and (3.3), we obtain that

‖yn − q‖2 ≤ αn‖zn − q‖2 + βn‖un − q‖2 + γn‖PC(I − µn(I − T ))zn − q‖2

+ ζn‖PC(I − ηnB)zn − q‖2 − αnβn‖zn − un‖2

− αnγn‖zn − PC(I − µn(I − T ))zn‖2

− αnζn‖zn − PC(I − ηnB)zn‖ − βnγn‖un − PC(I − µn(I − T ))zn‖2

− βnζn‖un − PC(I − ηnB)zn‖2

− γnζn‖PC(I − µn(I − T ))zn − PC(I − ηnB)zn‖2

≤ αn‖xn − q‖2 + βn‖xn − q‖2 + γn‖zn − q‖2

+ ζn‖zn − q‖2 − αnβn‖zn − un‖2

− αnγn‖zn − PC(I − µn(I − T ))zn‖2 − αnζn‖zn − PC(I − ηnB)zn‖2

− βnγn‖un − PC(I − µn(I − T ))zn‖2 − βnζn‖un − PC(I − ηnB)zn‖2

− γnζn‖PC(I − µn(I − T ))zn − PC(I − ηnB)zn‖2

− αn(1− 2λnc1)‖xn − wn‖2 − αn(1− 2λnc2)‖wn − zn‖2

≤ ‖xn − q‖2 − αnβn‖zn − un‖2 − αnγn‖zn − PC(I − µn(I − T ))zn‖2

− αnζn‖zn − PC(I − ηnB)zn‖2 − βnγn‖un − PC(I − µn(I − T ))zn‖2

− βnζn‖un − PC(I − ηnB)zn‖2

− γnζn‖PC(I − µn(I − T ))zn − PC(I − ηnB)zn‖2

− αn(1− 2λnc1)‖xn − wn‖2 − αn(1− 2λnc2)‖wn − zn‖2.(3.8)

Consequently, utilizing (3.8), we conclude that

‖xn+1 − q‖2 ≤ σn‖h(xn)− q‖2 + (1− σn)‖yn − q‖2

≤ σn‖h(xn)− q‖2 + (1− σn)‖xn − q‖2 − (1− σn)αnβn‖zn − un‖2

− (1− σn)αnγn‖zn − PC(I − µn(I − T ))zn‖2

− (1− σn)αnζn‖zn − PC(I − ηnB)zn‖2

− (1− σn)βnγn‖un − PC(I − µn(I − T ))zn‖2

− (1− σn)βnζn‖un − PC(I − ηnB)zn‖2

− (1− σn)γnζn‖PC(I − µn(I − T ))zn − PC(I − ηnB)zn‖2

− (1− σn)αn(1− 2λnc1)‖xn − wn‖2

− (1− σn)αn(1− 2λnc2)‖wn − zn‖2.(3.9)
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Therefore, we have

(1− σn)αnβn‖zn − un‖2 ≤ ‖xn − q‖2 − ‖xn+1 − q‖2 + σn‖h(xn)− q‖2.(3.10)

In order to prove that xn → q as n→∞, we have consider the following two cases.

Case 1. Suppose that there exists n0 such that {‖xn − q‖} is nonincreasing, for all
n ≥ n0. Boundedness of {‖xn − q‖} implies that {‖xn − q‖} is convergent. Since
{h(xn)} is bounded and σn → 0 as n → ∞, from (3.10) and condition (C5), we
obtain that

(3.11) lim
n→∞

‖zn − un‖ = 0.

By (3.9), we have

(1− σn)αnγn‖zn − PC(I − µn(I − T ))zn‖2 ≤ ‖xn − q‖2 − ‖xn+1 − q‖2

+ σn‖h(xn)− q‖2.

This implies by conditions (C1) and (C5) that

(3.12) lim
n→∞

‖zn − PC(I − µn(I − T ))zn‖ = 0.

By similar argument we can obtain that

lim
n→∞

‖zn − PC(I − ηnB)zn‖ = 0,(3.13)

lim
n→∞

‖xn − wn‖ = 0, lim
n→∞

‖wn − zn‖ = 0.(3.14)

Also, by (3.14), we have

‖xn − zn‖ ≤ ‖xn − wn‖+ ‖wn − zn‖ → 0, as n→∞.(3.15)

Next, we will show that

lim sup
n→∞

〈h(q)− q, xn − q〉 ≤ 0

where q = Qh(q). To show this inequality, take a subsequence {xni
} of {xn} such

that

lim sup
n→∞

〈h(q)− q, xn − q〉 = lim
i→∞
〈h(q)− q, xni − q〉.

Without loss of generality, we may assume that xni
⇀ x∗ as i→∞ where x∗ ∈ C.

Since ‖xni
− zni

‖ → 0 as i → ∞, we have zni
⇀ x∗. We will show that x∗ ∈ F.

Assume x∗ /∈ F (T ). From Lemma 2.11(i), we have that x∗ ∈ F (PC(I−µni
(I−T )))

for all i ∈ N. That is x∗ 6= PC(I − µni(I − T ))x∗. By Opial’s property, condition
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(C3), and (3.12), we have

lim inf
i→∞

‖zni
− x∗‖ < lim inf

i→∞
‖zni

− PC(I − µni
(I − T ))x∗‖

= lim inf
i→∞

(‖zni
− PC(I − µni

(I − T ))zni
‖

+‖PC(I − µni
(I − T ))zni

− PC(I − µni
(I − T ))x∗‖)

≤ lim inf
i→∞

(‖zni
− PC(I − µni

(I − T ))zni
‖

+‖zni
− x∗‖+ µni

‖(I − T )zni
− (I − T )x∗‖)

≤ lim inf
i→∞

‖zni
− x∗‖.

This is a contradiction. Then x∗ ∈ F (T ).
Since Sx∗ is compact and convex, for all i ∈ N, we can choose qni

∈ Sx∗

such that ‖zni
− qni

‖ = dist(zni
, Sx∗) and the sequence {qni

} has a convergent
subsequence {qnk

} with limk→∞ qnk
= q ∈ Sx∗. By condition (E), there exists

µ ≥ 1 such that

dist(zni , Sx
∗) ≤ µdist(zni , Szni) + ‖zni − x∗‖.

Suppose that q 6= x∗. Since zni
⇀ x∗, it follows by the Opial’s condition and (3.11)

that

lim sup
k→∞

‖znk
− x∗‖ < lim sup

k→∞
‖znk

− q‖

≤ lim sup
k→∞

(‖znk
− qnk

‖+ ‖qnk
− q‖)

= lim sup
k→∞

(dist(znk
, Sx∗) + ‖qnk

− q‖)

≤ lim sup
k→∞

(µdist(znk
, Sznk

) + ‖znk
− x∗‖+ ‖qnk

− q‖)

≤ lim sup
k→∞

(µ‖znk
− unk

‖+ ‖znk
− x∗‖+ ‖qnk

− q‖)

= lim sup
k→∞

‖znk
− x∗‖.

This is a contradiction. Then x∗ ∈ F (S).
Assume x∗ /∈ V I(B,C). From Lemma 2.2, we have that x∗ 6∈ F (PC(I − ηnB))

for all n ∈ N. That is x∗ 6= PC(I − ηnB)x∗. Now, since zni
⇀ x∗, it follows by

(3.13) and Opial’s property that

lim inf
i→∞

‖zni − x∗‖ < lim inf
i→∞

‖zni − PC(I − ηniB)x∗‖

= lim inf
i→∞

(‖zni − PC(I − ηniB)zni‖

+‖PC(I − ηniB)zni − PC(I − ηniB)x∗‖)
≤ lim inf

i→∞
(‖zni − PC(I − ηniB)zni‖+ ‖zni − x∗‖)

= lim inf
i→∞

‖zni − x∗‖.
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This is a contradiction. Then x∗ ∈ V I(B,C).
It follows from Lemma 2.7 and f(x, ·) is convex on C for each x ∈ C, we see

that

wn = argmin
y∈C

[
λnf(xn, y) +

1

2
‖y − xn‖2

]
if and only if

0 ∈ ∂
(
λnf(xn, wn) +

1

2
‖wn − xn‖2

)
+NC(wn),

where NC(wn) is the normal cone of C at wn ∈ C. Then there exists v ∈ ∂f(xn, wn)
and un ∈ NC(wn) such that

0 = λnv + wn − xn + un.

Using successively the definition of the normal cone to C at wn and the subdifferen-
tial of the convex function f(xn, ·) at wn, we can write the following two inequalities

〈wn − xn, y − wn〉 ≥ λn〈v, wn − y〉, y ∈ C,

and
f(xn, y)− f(xn, wn) ≥ 〈v, y − wn〉, y ∈ C

Thus, we have

λn(f(xn, y)− f(xn, wn)) ≥ 〈wn − xn, wn − y〉, y ∈ C.

Hence

(3.16) f(xni
, y)− f(xni

, wni
) ≥ 1

λni

〈wni
− xni

, wni
− y〉, y ∈ C.

Since limi→∞ ‖xni
− wni

‖ = 0, we have wni
⇀ x∗. Passing to the limit in the

inequality (3.16) as i → ∞ and using the hypothesis (A4) and (C2), we obtain
f(x∗, y) ≥ 0 for all y ∈ C. This implies that x∗ ∈ Sol(f, C) and hence x∗ ∈ F. Since
q = (Qh)(q) and x∗ ∈ F, it follows that

lim sup
n→∞

〈h(q)− q, xn − q〉 = lim
i→∞
〈h(q)− q, xni − q〉 = 〈h(q)− q, x∗ − q〉 ≤ 0.
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By using Lemma 2.17 and (3.7), we have

‖xn+1 − q‖2 = ‖σnh(xn) + (1− σn)yn − q‖2

≤ ‖(1− σn)(yn − q)‖2 + 2σn〈h(xn)− q, xn+1 − q〉
≤ (1− σn)2‖yn − q‖2 + 2σn〈h(xn)− h(q), xn+1 − q〉

+ 2σn〈h(q)− q, xn+1 − q〉
≤ (1− σn)2‖xn − q‖2 + 2σnk‖xn − q‖‖xn+1 − q‖

+ 2σn〈h(q)− q, xn+1 − q〉
≤ (1− σn)2‖xn − q‖2 + σnk(‖xn − q‖2 + ‖xn+1 − q‖2)

+ 2σn〈h(q)− q, xn+1 − q〉
= ((1− σn)2 + σnk)‖xn − q‖2 + σnk‖xn+1 − q‖2

+ 2σn〈h(q)− q, xn+1 − q〉
= (1− σnk − 2σn(1− k) + σ2

n)‖xn − q‖2 + σnk‖xn+1 − q‖2

+ 2σn〈h(q)− q, xn+1 − q〉.

This implies that

‖xn+1 − q‖2 ≤
(

1− 2(1− k)σn − σ2
n

1− σnk

)
‖xn − q‖2 +

2σn
1− σnk

〈h(q)− q, xn+1 − q〉.

Putting bn =
2(1−k)σn−σ2

n

1−σnk
and cn = 2

2(1−k)−σn
〈h(q) − q, xn+1 − q〉, we have∑∞

n=1 bn =∞ and lim supn→∞ cn ≤ 0. Hence, by Lemma 2.19, we conclude the the
sequence {xn} converge strongly to q.

Case 2. Assume that there exists a subsequence {xni} of {xn} such that

‖xni
− q‖ < ‖xni+1

− q‖,

for all i ∈ N. In this case from Lemma 2.16, there exists a nondecreasing sequence
{τ(n)} of N for all n ≥ n0, for some n0 large enough, such that τ(n) → ∞ as
n→∞, and the following inequalities hold for all n ≥ n0,

‖xτ(n) − q‖ < ‖xτ(n)+1 − q‖, ‖xn − q‖ < ‖xτ(n)+1 − q‖.

From (3.10), we have limn→∞ ‖zτ(n) − uτ(n)‖ = 0, and similarly we obtain

lim
n→∞

‖zτ(n) − PC(I − µτ(n)(I − T ))zτ(n)‖ = 0,

lim
n→∞

‖zτ(n) − PC(I − ητ(n)B)zτ(n)‖ = 0,

lim
n→∞

‖xτ(n) − wτ(n)‖ = 0, lim
n→∞

‖wτ(n) − zτ(n)‖ = 0.

Following an argument similar to that in Case 1, we have

lim
n→∞

‖xτ(n) − q‖ = 0, lim
n→∞

‖xτ(n)+1 − q‖ = 0.
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Thus, by Lemma 2.16, we have

0 ≤ ‖xn − q‖ ≤ max
{
‖xτ(n) − q‖, ‖xn − q‖

}
≤ ‖xτ(n)+1 − q‖.

Therefore, the sequence {xn} converges strongly to q ∈ F. 2

Recall that a multi-valued mapping S : C ⊆ H → CB(C) is said to satisfy
Condition (A) if ‖x− p‖ = dist(x, Sp) for all x ∈ H and p ∈ F (S); see [21]. We see
that S satisfies Condition (A) if and only if Sp = {p} for all p ∈ F (S). Then the
following result can be obtained from Theorem 3.1 immediately.

Theorem 3.2. Let H be a real Hilbert space and C be a nonempty closed convex
subset of H. Let f be a bifunction satisfying assumptions A on C, T : C →
C be a demicontractive single-valued mapping with contraction coefficient κ, S :
C → KC(C) be a quasi-nonexpansive multi-valued mapping satisfying the condition
(E), and B : C → H be a δ-inverse strongly monotone mapping. Assume that
F = F (T ) ∩ F (S) ∩ Sol(f, C) ∩ V I(B,C) 6= ∅ and S satisfies Condition (A). Let
h : C → C be a k-contraction. For x1 ∈ C, let {xn}, {yn}, {zn}, and {wn} be
generated by (3.1), where {αn}, {βn}, {γn}, {ζn}, {σn}, {µn}, {ηn}, and {λn}
satisfy the following conditions:

(C1) {σn} ⊂ (0, 1), limn→∞ σn = 0,
∑∞
n=1 σn =∞;

(C2) {λn} ⊂ [a, b] ⊂ (0, 1
L ), where L = max{2c1, 2c2};

(C3) µn ∈ (0, 1− κ] with limn→∞ µn = 0;

(C4) ηn ∈ [d, e] for some d, e ∈ (0, 2δ) and for all n ∈ N;

(C5) 0 < a ≤ αn, βn, γn, ζn ≤ b < 1 and αn + βn + γn + ζn = 1 for all n ∈ N.

Then the sequence {xn} converges strongly to q ∈ F, which solves the variational
inequality

〈q − h(q), x− q〉 ≥ 0, ∀x ∈ F.

Remark 3.3.

(1) Theorems 3.1 and 3.2 extends based on the work of Anh [3] and Vahidi et
al. [24], that is, we present a hybrid algorithm for finding a common ele-
ment of the sets of fixed points for demicontractive single-valued mappings,
quasi-nonexpansive multi-valued mappings, the set of solutions of an equilib-
rium problem for a pseudomonotone, Lipschitz-type continuous bifunctions
and variational inequality for φ-inverse strongly monotone mappings in real
Hilbert spaces.

(2) It is know that the class of demicontractive single-valued mappings contains
the classes of nonexpansive single-valued mappings, nonspreading single-
valued mappings, quasi-nonexpansive single-valued mappings, and strictly
pseudononspreading single-valued mappings. Thus, Theorems 3.1 and 3.2
can be applied to these classes of mappings.



Hybrid Algorithms for Ky Fan Inequalities and Common Fixed Points 719

4. Application to Variational Inequalities

In this section, we discuss about an application of Theorem 3.1 to finding a com-
mon element of the set of fixed points for demicontractive single-valued mappings
and quasi-nonexpansive multi-valued mappings and the set of solutions of varia-
tional inequalities for φ-inverse strongly monotone and monotone Lipschitz-type
continuous mappings.

We consider the particular Ky Fan inequality, corresponding to the bifunction
f , defined by f(x, y) = 〈Ax, y − x〉 for all x, y ∈ C with A : C → H. Then, the
solution wn in algorithm (3.1) can be expressed as

wn = argmin
w∈C

[
λnf(xn, w) +

1

2
‖w − xn‖2

]
= argmin

w∈C

[
λn〈Axn, w − xn〉+

1

2
‖w − xn‖2

]
= argmin

w∈C

[
1

2
‖w − (xn − λnAxn)‖2 − λ2n

2
‖Axn‖2

]
= argmin

w∈C

[
1

2
‖w − (xn − λnAxn)‖2

]
= PC(xn − λnAxn).

Also, the solution zn can be expressed as

zn = argmin
z∈C

[
λnf(wn, z) +

1

2
‖z − xn‖2

]
= argmin

z∈C

[
λn〈Awn, z − wn〉+

1

2
‖z − xn‖2

]
= argmin

z∈C

[
1

2
‖z − (xn − λnAwn)‖2 − λ2n

2
‖Awn‖2 − λn〈Awn, wn − xn〉

]
= argmin

z∈C

[
1

2
‖z − (xn − λnAwn)‖2

]
= PC(xn − λnAwn).

Let A be L-Lipschitz-type continuous on C, that is ‖Ax − Ay‖ ≤ L‖x − y‖ for all
x, y ∈ C. Then, for x, y, z ∈ C, we have

f(x, y) + f(y, z)− f(x, z) = −〈Ay −Ax, y − z〉
≥ −‖Ax−Ay‖‖y − z‖
≥ −L‖x− y‖‖y − z‖

≥ −L
2
‖x− y‖2 − L

2
‖y − z‖2.

Therefore, f is Lipschitz-type continuous on C with c1 = c2 = L
2 .
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Now, using Theorem 3.1, we obtain the following strong convergence theorem for
finding a common element of the set of common fixed points of a quasi-nonexpansive
multi-valued mapping and a demicontractive single-valued mapping and the solution
set of two variational inequalities.

Theorem 4.1. Let H be a real Hilbert space and C be a nonempty closed con-
vex subset of H. Let A : C → H be a monotone and L-Lipschitz-type continuous
function, T : C → C be a demicontractive single-valued mapping with contraction
coefficient κ, S : C → KC(C) be a quasi-nonexpansive multi-valued mapping satis-
fying the condition (E), and B : C → H be a δ-inverse strongly monotone mapping.
Assume that F = F (T ) ∩ F (S) ∩ V I(A,C) ∩ V I(B,C) 6= ∅ and Sp = {p} for all
p ∈ F. Let h : C → C be a k-contraction. For x1 ∈ C, let {xn}, {yn}, {zn}, and
{wn} be sequences generated by

wn = PC(xn − λnAxn),

zn = PC(xn − λnAwn),

yn = αnzn + βnun + γnPC(I − µn(I − T ))zn + ζnPC(I − ηnB)zn,

xn+1 = σnh(xn) + (1− σn)yn, ∀n ∈ N,

where un ∈ Szn and {αn}, {βn}, {γn}, {ζn}, {σn}, {µn}, {ηn}, and {λn} satisfy
the following conditions:

(C1) {σn} ⊂ (0, 1), limn→∞ σn = 0,
∑∞
n=1 σn =∞;

(C2) {λn} ⊂ [a, b] ⊂ (0, 1
L ), where L = max{2c1, 2c2};

(C3) µn ∈ (0, 1− κ] with limn→∞ µn = 0;

(C4) ηn ∈ [d, e] for some d, e ∈ (0, 2δ) and for all n ∈ N;

(C5) 0 < a ≤ αn, βn, γn, ζn ≤ b < 1 and αn + βn + γn + ζn = 1 for all n ∈ N.

Then the sequence {xn} converges strongly to q ∈ F, which solves the variational
inequality

〈q − h(q), x− q〉 ≥ 0, ∀x ∈ F.

5. Numerical Example

In this section, we give an example which shows numerical experiment for sup-
porting our main results.

Example 5.1. Let H be a real line with the Euclidean norm and C = [0, 10]. For
all x ∈ C, we define mappings T, S,B, h on C as follows:

Tx =

{
4
7x sin

(
1
x

)
, x 6= 0,

0, x = 0,
, Sx =

[x
4
,
x

2

]
, Bx =

x

15
, hx =

x

2
.

For each x, y ∈ C, define the bifunction f by f(x, y) = 〈Ax, y − x〉, where Ax = x
5 .

Let {xn}, {yn}, {zn}, and {wn} be generated by (3.1), where un = xn

4 , αn = 2n
5n+1 ,
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βn = n
10n+3 , γn = 3n

50n+1 , ζn = 1 − 2n
5n+1 −

n
10n+3 −

3n
50n+1 , σn = 1

n+2 , µn = 1
n+3 ,

ηn = 4, and λn = 2. It can be observed that all the assumptions of Theorem 3.1
are satisfied and F (T ) ∩ F (S) ∩ Sol(f, C) ∩ V I(B,C) = {0}. By using SciLab, we
compute the iterates of (3.1) for the initial point x1 = 9. The numerical experiment’s
results of our iteration for approximating the point 0 are given in Table 1.

Table 1: Numerical results of Example 5.1 for the algorithm (3.1)

n xn wn zn yn |xn − xn−1|
1 9.0000000 5.4000000 6.8400000 5.4263101 -

2 5.1175401 3.0705240 3.8893305 3.1146764 3.8825e+00

3 2.9756998 1.7854199 2.2615319 1.8204432 2.1418e+00

4 1.7539246 1.0523547 1.3329827 1.0770736 1.2218e+00

5 1.0437217 0.6262330 0.7932285 0.6427364 7.1020e-01
...

...
...

...
...

...

20 0.0005792 0.0003475 0.0004402 0.0003575 3.6920e-04
...

...
...

...
...

...

31 0.0000027 0.0000016 0.0000020 0.0000017 1.6776e-06

32 0.0000016 0.0000010 0.0000012 0.0000010 1.0298e-06

33 0.0000010 0.0000006 0.0000008 0.0000006 6.3427e-07

34 0.0000006 0.0000004 0.0000005 0.0000004 3.8953e-07

35 0.0000004 0.0000002 0.0000003 0.0000002 2.3928e-07

Remark 5.2. Table 1 shows that the sequences {xn}, {yn}, {zn}, and {wn}
converge to a unique point 0, where {0} = F (T ) ∩ F (S) ∩ Sol(f, C) ∩ V I(B,C).
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