References
- Agarwal, R.P.; Lu, H.; O'Regan, D. Eigenvalues and the one-dimensional p-Laplacian, J. Math. Anal. Appl., 266(2002), no. 2, 383-400. https://doi.org/10.1006/jmaa.2001.7742
- A. Cabada, G. Infante, and F. A. F. Tojo, Nonzero solutions of perturbed Hammerstein integral equations with deviated arguments and applications, Topol. Methods Nonlinear Anal., 47 (2016), no. 1, 265-287.
- K. Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985.
- H. Feng, W. Ge, and M. Jiang, Multiple positive solutions for m-point boundary-value problems with a one-dimensional p-laplacian, Nonlinear Anal., 68 (2008), no. 8, 2269-2279. https://doi.org/10.1016/j.na.2007.01.052
- M. Feng, X. Zhang, and W. Ge, Exact number of pseudo-symmetric positive solutions for a p-laplacian three-point boundary value problems and their applications, J. Appl. Math. Comput., 33 (2010), no. 1, 437-448. https://doi.org/10.1007/s12190-009-0295-9
- D. J. Guo and V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, Inc., Boston, MA, 1988.
- G. Infante and P. Pietramala, A cantilever equation with nonlinear boundary conditions, Electron. J. Qual. Theory Differ. Equ., (2009), no. 15, 1-14 https://doi.org/10.14232/ejqtde.2019.1.15
- G. Infante, P. Pietramala, and M. Tenuta, Existence and localization of positive solutions for a nonlocal bvp arising in chemical reactor theory, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), no. 7, 2245-2251. https://doi.org/10.1016/j.cnsns.2013.11.009
- J. Jeong and C.-G. Kim, Existence of positive solutions to singular boundary value problems involving φ-laplacian, Mathematics, 7 (2019), no. 654, 1-13.
- J. Jeong and C.-G. Kim, Existence of positive solutions to singular φ-laplacian nonlocal boundary value problems when φ is a sup-multiplicative-like function, Mathematics, 8 (2020), no. 420, 1-18.
- C.G. Kim, Existence of positive solutions for multi-point boundary value problem with strong singularity, Acta Appl. Math., 112 (2010), no. 1, 79-90. https://doi.org/10.1007/s10440-009-9554-x
- C.G. Kim, Existence, nonexistence and multiplicity of positive solutions for singular boundary value problems involving φ-laplacian, Mathematics, 7 (2019), no. 953, 1-12.
- C.G. Kim, Existence and Multiplicity Results for Nonlocal Boundary Value Problems with Strong Singularity, Mathematics, 8 (2020), no. 680, 1-25.
- C.G. Kim, Multiplicity of positive solutions to nonlocal boundary value problems with strong singularity, Axioms, 11 (2022), no. 7, 1-9. https://doi.org/10.30821/axiom.v11i1.10776
- C.G. Kim, Existence of positive solutions for generalized laplacian problems with a parameter, East Asian Math. J., 38 (2022), no. 1, 33-41.
- E. Ko and E. K. Lee, Existence of multiple positive solutions to integral boundary value systems with boundary multiparameters, Bound. Value Probl., (2018), no. 1, 1-16.
- B. Liu, Positive solutions of a nonlinear four-point boundary value problems, Appl. Math. Comput., 155 (2004), no. 1, 179-203. https://doi.org/10.1016/S0096-3003(03)00770-7
- B. Son and P. Wang, Analysis of positive radial solutions for singular superlinear plaplacian systems on the exterior of a ball, Nonlinear Anal., 192 (2020), 111657. https://doi.org/10.1016/j.na.2019.111657
- J. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: a unified approach, J. London Math. Soc., 74 (2006), no. 3, 673-693. https://doi.org/10.1112/S0024610706023179