A GENERAL ITERATIVE ALGORITHM FOR A FINITE FAMILY OF NONEXPANSIVE MAPPINGS IN A HILBERT SPACE

  • Published : 2010.01.30

Abstract

Let C be a nonempty closed convex subset of a real Hilbert space H. Consider the following iterative algorithm given by $x_0\;{\in}\;C$ arbitrarily chosen, $x_{n+1}\;=\;{\alpha}_n{\gamma}f(W_nx_n)+{\beta}_nx_n+((1-{\beta}_n)I-{\alpha}_nA)W_nP_C(I-s_nB)x_n$, ${\forall}_n\;{\geq}\;0$, where $\gamma$ > 0, B : C $\rightarrow$ H is a $\beta$-inverse-strongly monotone mapping, f is a contraction of H into itself with a coefficient $\alpha$ (0 < $\alpha$ < 1), $P_C$ is a projection of H onto C, A is a strongly positive linear bounded operator on H and $W_n$ is the W-mapping generated by a finite family of nonexpansive mappings $T_1$, $T_2$, ${\ldots}$, $T_N$ and {$\lambda_{n,1}$}, {$\lambda_{n,2}$}, ${\ldots}$, {$\lambda_{n,N}$}. Nonexpansivity of each $T_i$ ensures the nonexpansivity of $W_n$. We prove that the sequence {$x_n$} generated by the above iterative algorithm converges strongly to a common fixed point $q\;{\in}\;F$ := $\bigcap^N_{i=1}F(T_i)\;\bigcap\;VI(C,\;B)$ which solves the variational inequality $\langle({\gamma}f\;-\;A)q,\;p\;-\;q{\rangle}\;{\leq}\;0$ for all $p\;{\in}\;F$. Using this result, we consider the problem of finding a common fixed point of a finite family of nonexpansive mappings and a strictly pseudocontractive mapping and the problem of finding a common element of the set of common fixed points of a finite family of nonexpansive mappings and the set of zeros of an inverse-strongly monotone mapping. The results obtained in this paper extend and improve the several recent results in this area.

Keywords

References

  1. S. A. Atsushiba and W. Takahashi, Strong convergence theorems for a finite family of nonexpansive mappings and applications, Indian J. Math., 41 (1999), 435-53.
  2. J.M. Chen, L.J. Zhang, and T.G. Fan, Viscosity approximation methods for nonexpansive mappings and monotone mappings, J. Math. Anal. Appl., 334(2) (2007), 1450-1461. https://doi.org/10.1016/j.jmaa.2006.12.088
  3. V. Colao, G. Marino, and H.K. Xu, An iterative method for finding common solutions of equilibrium and fixed point problems, J. Math. Anal. Appl., 344(1) (2008) , 340- 352. https://doi.org/10.1016/j.jmaa.2008.02.041
  4. F. Deutsch and I. Yamada, Minimizing certain convex functions over the intersection of the fixed point set of nonexpansive mappings, Numer. Funct. Anal. Optim., 19 (1998), 33-56. https://doi.org/10.1080/01630569808816813
  5. H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal., 61(3) (2005), 341-350. https://doi.org/10.1016/j.na.2003.07.023
  6. A.N. Iusem and A.R. De Pierro, On the convergence of Hans method for convex program ming with quadratic objective, Math. Program, Ser. B, 52 (1991), 265-284. https://doi.org/10.1007/BF01582891
  7. G. Marino and H.K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 318(1) (2006), 43-52. https://doi.org/10.1016/j.jmaa.2005.05.028
  8. A. Moudafi, Viscosity approximation methods for fixed points problems, J. Math. Anal Appl., 241(1) (2000), 46-55. https://doi.org/10.1006/jmaa.1999.6615
  9. Z.Opial, Weak convergence of successive approximations for nonexpansive mappins, Bull. Amer. Math. Soc., 73 (1967), 591-97. https://doi.org/10.1090/S0002-9904-1967-11761-0
  10. R.T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., 149 (1970), 75-88. https://doi.org/10.1090/S0002-9947-1970-0282272-5
  11. T. Suzuki, Strong convergence of Krasnoselskii and Manns type sequences for oneparameter nonexpanswe semigroups without Bochner integrals, J. Math. Anal. Appl., 305(1) (2005), 227-239. https://doi.org/10.1016/j.jmaa.2004.11.017
  12. W. Takahashi, Weak and strong convergence theorems for families of nonexpansive mappings and their applications, Ann. Univ. Mariae Curie-Sklodowska, 51 (1997), 277-292.
  13. W. Takahashi and K. 8himoji, Convergence theorems for nonexpansive mappings andfeasibility problems, Math. Comput. Modelling, 32(11-13) (2000), 1463-1471. https://doi.org/10.1016/S0895-7177(00)00218-1
  14. H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (2002), 240-256. https://doi.org/10.1112/S0024610702003332
  15. H.K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl., 116(3) (2003), 659- 678. https://doi.org/10.1023/A:1023073621589
  16. I. Yamada, The hybrid steepest descent method for the variational inequality problem of the intersection of fixed point sets of nonexpansive mapings, in:D. Butnariu, Y. Censor and S. Reich (Eds.), Inherently Parallel Algorithm for Feasibility and Optimization, Elsevier, 2001, 473-504.
  17. Y. Yao, A general iterative method for a finite family of nonexpansive mappings, Nonlinear Anal. 66(12) (2007), 2676-2687. https://doi.org/10.1016/j.na.2006.03.047
  18. D. C. Youla, Mathematical theory of image restoration by the method of convex projections, in: H. Stark (Ed.), Image Recovery: Theory and Applications, Academic Press, Florida, 1987, 29-77.