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Abstract. The purpose of the paper is to define f -projection operator to develop the

f -projection method. The existence of a variational inequality problem is studied using

fixed point theorem which establishes the existence of f -projection method. The concept

of ρ-projective operator and σ-involutory operator are defined with suitable examples. The

relation in between ρ-projective operator and σ-involutory operator are shown. The concept

of σ-involutory variational inequality problem is defined and its existence theorem is also

established.

1. Introduction

In a Banach space X with dual X∗, we say that an operator A ∶X →X is ρ-
projective if its minimal polynomial is ρ−1x2−x for some ρ ∈ R and an operator
B ∶ X → X is σ-involutory if its minimal polynomial equation is σ−1x2 − 1 for
some σ ∈ R. Now for any two Banach spaces X and Y if f ∶ X → Y and
g ∶ Y → X, the g ○ f ∶ X → X and f ○ g ∶ Y → Y . If there exist maps
f̃ ∶ X → E ⊂ R and pX ∶ E → Y such that f = pX ○ f̃ is continuous, then f̃
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is called the lifting map of f and pX is called the covering map. Similarly,
if there exist maps g̃ ∶ Y → E ⊂ R and pY ∶ E → X such that g = pY ○ g̃ is
continuous, then g̃ is called the lifting map of g and pY is called the covering
map. Hence if R(f̃) ∩ R(g̃) ≠ ∅, D(f̃) ∩ R(p̃Y ) ≠ ∅ and D(g̃) ∩ R(p̃X) ≠ ∅
where D(f) represents the domain of f , then there exist at least one bijective

map h ∶ E →W where E = R(f̃)∩R(g̃) andW =D(f̃)∩R(p̃Y )∩D(g̃)∩R(p̃X)
are finite and have same dimension.

In the recent decades, theory of variational inequalities is used to solve
various types of inequality and equilibrium problems that arise in the branches
of engineering, physical sciences, applied mathematics, finance, medical and
so on. In fact these problems can be expressed in the form of variational
inequality problems (VIP) which is introduced by Stampacchia [13] in the
year 1964. Later the authors have defined the variational inequality problems
in vector spaces, Hausdorff topological spaces and H-spaces. For reference, we
refer Gianessi [9], Behera and Panda [3], Bardaro and Ceppitelli [1] and the
references therein.

Various authors have studied the theory of variational inequalities using the
projection methods. Solodov and Svaiter ([12], 1997) have developed the im-
proved projection method to solve the variational inequalities. Nagurney and
Zhang [10] have discussed the equilibrium solution of a projected dynamical
system using the projective operator.

Let F ∶K ⊂X →X∗ be a linear mapping and the pairing ⟨f, x⟩ denotes the
value of f ∈ X∗ at x ∈ K. The positive orthant K+ and normal cone N are
defined by

K+ = {f ∈X∗ ∶ ⟨f, x⟩ ≥ 0, x ∈K} and N = {g ∈X∗ ∶ ⟨g, x⟩ ≤ 0, x ∈K} .
The variational inequality problems (VIP) is to find x∗ ∈K such that

⟨F (x∗), x − x∗⟩ ≥ 0 for all x ∈K, (VIP)

where the directed feasible set K+(x) of the solution of VIP is defined by

K+(x) = {x∗ ∈K ∶ ⟨F (x∗), x − x∗⟩ ≥ 0 for all x ∈K} .
The dual variational inequality problems (DVIP) is to find x∗ ∈K such that

⟨F (x), x − x∗⟩ ≥ 0 for all x ∈K, (DVIP)

where directed feasible set K−(x) of the solution of DVIP is defined by

K−(x) = {x∗ ∈K ∶ ⟨F (x), x − x∗⟩ ≤ 0 for all x ∈K} .

In section 2, f -projection method is developed and a basic result is shown.
In section 3, σ-involutory and ρ-projective operators are defined with suitable
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example. The equivalence between the operators are also established. The σ-
involutory variational inequality problem is defined and its existence theorem
of the problem is shown under certain conditions.

2. Projection operator and its application

Throughout of this section X is considered as a Hilbert space. A map P ∶
X →X is a projection if it satisfies P 2 = P , that is, P (x) = 0 or (I −P )(x) = 0
for all x ∈X. The zero of P is defined by Z(P ) = {x ∈X ∶ P (x) = 0} , and the
range of P is defined by R(P ) = {x ∈X ∶ P (x) = x} . In fact, X = Z(P )⊕R(P ),
that is, X = Z(P ) ∪R(P ) and Z(P ) ∩R(P ) = ∅.

Let X be a Hilbert space and K be a nonempty bounded closed convex
subset of X. For our study we denote f ∶ X → X is a fixed point function if
f(x) = x for at least one x ∈X. Let F be the set of fixed point functions.

Definition 2.1. ([14]) A mapping Γ ∶K →K is said to be nonexpansive, if

∥Γ(x) − Γ(y)∥ ≤ ∥x − y∥
for all x, y ∈K.

It is well known that every nonexpansive mapping defined on a nonempty
bounded closed convex subset of X has a fixed point (see [14]).

The approximation problem (AP) is to minimize the function g ∶ X → R
defined by

g(x) = ∥x − z∥
for all z ∈K and for each x ∈K. If for each x ∈K, there exists a unique y ∈K
such that

∥x − y∥ = min
z∈X

∥x − z∥ , (2.1)

then the point y ∈K is called the projection of x on K and written as

y = PK(x).
The projection operator PK ∶K →K is nonexpansive, that is,

∥PK(x1) − PK(x2)∥ ≤ ∥x1 − x2∥
for all x1, x2 ∈ K. PK ∈ F , implying PK is continuous on K and has a fixed
point in K.

It is obvious that PK(x) = x for all x ∈K and holds the following result. If
K is a closed set in X, then for each x ∈ K, there exists a unique y ∈ K such
that y = PK(x), that is,

∥x − y∥ = min
z∈X

∥x − z∥ , (2.2)
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which can be written as a problem to find a unique y ∈K such that

⟨y, z − y⟩ ≥ ⟨x, z − y⟩
for all z ∈X. This is a particular case of the multilinear variational inequality
problem of finding y ∈K such that

⟨H(x, y), z − y⟩ ≥ 0

for all z ∈ X and for each x ∈ K where H(x, y) = y − x studied by Nayak and
Das [11].

2.1. f-Projection Method. Behera and Das [2] have studied the existence
of variational inequality problem using fixed point theorems of homology the-
ory. Later, Das and coauthors have extended the study of various variational
inequality problems using fixed point theorems and homotopy map. For ref-
erence see Das [4, 5], Das and Behera [7], Das and Mohanta [8].

Let f ∶K →K be a contraction map on K ⊂X. For our need, we define the
concept of f -approximation problem and f -projection operator. Let K ⊂ X
and f ∶ K → K be a map. The f -approximation problem is to find a unique
y ∈K such that

∥f(x) − y∥ = min
z∈X

∥f(x) − z∥ (f -AP )

for each x ∈ K. The point y ∈ K is called the f -projection of x on K and
written as

y = PK(f(x)) = PfK(x).
It is obvious that PfK(x) = f(x). Now PfK(x) = x if x ∈K is the fixed point

of f .

Note: If y ∈K is a f -projection of x on K, that is, y = PfK(x), then

∥f(x) − y∥ = min
z∈X

∥f(x) − z∥
for each x ∈K, that is,

∥f(x) − y∥ ≤ ∥f(x) − z∥
which can be written as

⟨y, z − y⟩ ≥ ⟨f(x), z − y⟩
for all z ∈ K and for each x ∈ K. It is the particular case of the multilinear
variational inequality problem of finding y ∈K ⊂X such that

⟨H(x, y), z − y⟩ ≥ 0

for all z ∈K and for each x ∈K, where H(x, y) = y − f(x) [11].
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Definition 2.2. The projection functional operator PfK ∶ ran(f)→ ran(f) is
said to be nonexpansive on f(K) if

∥PfK(x1) − PfK(x2)∥ ≤ ∥f(x1) − f(x2)∥
for all x1, x2 ∈K.

PfK is continuous on ran(f) ⊂K and has a fixed point in K.

Theorem 2.3. Let f ∶ K → K be a contraction map on the closed convex set
K ⊂X. Let F ∶X →X be any continuous map. For each x ∈K, the set

{y ∈X ∶ f(x) = x + F (x) − y}
is convex and compactly closed on K. Then

(1) f and F have same fixed point,

(2) there exists a y ∈ K such that y = PfK(x), that is, to find a y ∈K such
that

⟨y, z − y⟩ ≥ ⟨f(x), z − y⟩ (f -VIP)

for all z ∈K, where x corresponds to a unique y.

Proof. (1) Since f ∶ K → K is a contraction map on K, ∥f(x) − f(y)∥ ≤
c ∥x − y∥ for some rank c ∈ (0,1), so it has a fixed point on K. Again K is
closed, for each x ∈K there exists a unique y ∈K such that f(x) = x+F (x)−y ∈
K, that is, (1K − f)(x) = x − f(x) = y − F (x) for each x ∈ K, where 1K is the
identity operator on K.

For x = y the unique element, (1K −f)(y) = y −F (y) = (1K −F )(y). A map
G ∶K × I →K is defined by

G(x, t) = { (1K − f)(2ty + (1 − 2t)x), if 0 ≤ t ≤ 1/2;
(1K − F )(2(1 − t)y + (2t − 1)x), if 1/2 ≤ t ≤ 1.

For t = 0, G(x,0) = (1K − f)(y), for t = 1, G(x,1) = (1K − F )(x) and for
t = 1/2, G(x,1/2) = (1K − f)(y) = (1K − F )(y). Hence G is continuous by
Pasting lemma, G is the homotopy in between (1K − f) and (1K − F ), that
is, the coincidence index set related to the maps (1K − f) and (1K − F ) is
nonempty. Since fixed point set of f is nonempty, fixed point set of F is
also nonempty and the fixed point sets of f and F are equal on K, that is,
f(x∗) = x∗ = F (x∗) on K. This proves (1).
(2) Again, since K is closed, for each x ∈ K, there exists an unique y ∈ K
closest to F (x), that is, ∥y − F (x)∥ ≤ ∥z − F (x)∥ for every z ∈ K. If x∗ ∈ {x ∈
K ∶ F (x) = x}, the fixed point set of F and y∗ corresponds to x∗, then at
x = x∗,

∥y∗ − F (x∗)∥ ≤ ∥z − F (x∗)∥
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for every z ∈K. It implies

∥y∗ − f(x∗)∥ ≤ ∥z − f(x∗)∥
for every z ∈K, that is,

⟨y∗, z − y∗⟩ ≥ ⟨f(x∗), z − y∗⟩
for all z ∈K. Hence y∗ = PfK(x∗). �

3. σ-involutory variational inequality problems

Let X be a Banach space. We consider a class of map A ∶X →X satisfying
the condition A3 = σA for some σ ∈ R. In this case, we have either A(x) = 0 or
(I − σ−1A2)(x) = 0, that is, (A−1 − σ−1A)(x) = 0 for all x ∈ X. Hence we have
(A−1 − ωσ−1A)(x) = 0 for some x ∈X and ω ∈ (0,1). For simplicity we denote
the operator Aσ,2 = A2( ; σ ) = σ−1A2 and Aσ,2 = I − A2( ;σ) = A−1 − σ−1A.
Thus for each x ∈X,

Aσ,2(x) = A2(x;σ) = (I −A2(x;σ))(x) = x −A2(x;σ) = (A−1 − σ−1A)(x).
For σ = 1, we have A1,2 = A2. Therefore Aσ,2 = σ−1A1,2 and Aσ,2 = I − Aσ,2.
The zero of A and the range of A are defined by Z(A) = {x ∈X ∶ A(x) = 0} ,
and R(A) = {y ∈X ∶ A2(x; 1) = σy} = {y ∈X ∶ A2(x;σ) = y} respectively. It is
obvious that R(A) = σy = Z(A1,2) but Z(A1,2) ⊂ Z(Aσ,2). Thus X has a
superclass partition as

(a) X = Z(A)⊕R(Aσ,2), i.e., X = Z(A)∪R(Aσ,2) and Z(A)∩R(Aσ,2) = ∅ or
(b) X = Z(A)⊕Z(Aσ,2), i.e., X = Z(A) ∪Z(Aσ,2) and Z(A) ∩Z(Aσ,2) = ∅.

3.1. σ-involutory operator and ρ-projective operator. Let Mmn be the
set of all rectangular matrices of order m × n, Mn be the set of all square
matrices of order n, Nn be the set of all nonsingular matrices of order n,
Inv(Nn) be the set of all involutory matrices of order n, Sn be the set of all
singular matrices of order n and In be the set of all identity matrices of order
n. For σ, ρ > 0, consider the class of sets:

Inv(Nn) = {A ∈ Nn ∶ A2 = I} and Inv(Nn;σ) = {A ∈ Nn ∶ A2 = σI} ,
Pr(Sn) = {B ∈ Sn ∶ B2 = B} and Pr(Mn;ρ) = {B ∈ Sn ∶ B2 = ρB} .

For σ < 0, we say A is skew σ-involutory (or skew σ-idempotent) and for ρ < 0,
we say B is skew ρ-projective.

Example 3.1. Let X ⊂ R and the function f ∶ X → X be any arbitrary
function.

(i) The matrix A(x) = ( x 0
f(x) −x ) ∈ Inv(N2;x

2) and the transpose of

A(x) is also x2-involutory for all x ∈X.
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(ii) The matrix B(x, y) = ( x x
y − x x

) ∈ Inv(N2;xy) and the transpose of

B(x, y) is also xy-involutory for all x ∈X.

(iii) The matrix C(x, y) =
⎛
⎜
⎝

x 0 0
x −x 0
x −2x x

⎞
⎟
⎠
∈ Inv(N3;x

2) and the transpose

of C(x, y) is also x2-involutory for all x ∈X.
(iv) In general, the matrix D(x, y) = (dij) where

dij = { 0, if i < j;
(−1)i+j(ij)x, if i ≥ j. ∈ Inv(N3;x

n)

for 1 ≤ i, j ≤ n and the transpose of D(x, y) is also xn-involutory for all
x ∈X.

To prove the Theorem 3.7, we recall the result of Das and Baliarsingh [6]
where the equivalence in between the ρ-projective and involutory difference
operator is established.

Proposition 3.2. ([6], Proposition-2.8, p. 57) Let D be any difference oper-
ator and A be any operator on [X]. Then

(a) A = ρ
2
(I +D) and

ρ

2
(I −D) are ρ-projective on [X], if D is involutory

on [X],
(b) D = −1

ρ(ρI − 2A) and D = 1

ρ
(ρI − 2A) are involutory on [X], if A is

ρ-projective on [X].

Theorem 3.3. Let A ∶X →X and B ∶X →X be any two operators.

(a) If B is σ-involutory, then for any real ρ > 0, A = ρ

2
(1 ± σ−1/2B) are

ρ-projective.

(b) If the A is ρ-projective, then for any real σ > 0, B = ±
√
σ

ρ
(ρI −2A) are

σ-involutory.

Proof. (a) Since B is σ-involutory, B2 = σI, that is, D2 = I where D = σ−1/2B,

implying D is involutory. Therefore by Proposition 3.2(a), A = ρ

2
(I ±D) =

ρ

2
(I ± σ−1/2B) are ρ-projective.

(b) Since A is ρ-projective, A2 = ρA. By Proposition 3.2(b), M = ±1
ρ(ρI − 2A)

are involutory, that is, M2 = I. Therefore B2 = σ

ρ2
(ρI − 2A)2 = σM2 = σI, and

hence B is σ-involutory. �
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Example 3.4. For X ⊂ R, A ∶ R2 → R2 defined by A(x) = ( x 0
f(x) −x ) ∈

Inv(N2;x
2), then A(x) is x2-involutory for all x ∈ X, that is, A2(x) = x2I

for all x. By Theorem 3.3, the mapping B ∶ R2 → R2 defined by B(x) =
ρ

2
(I ± x−1A(x)) are ρ-projective.

3.2. σ-involutory problems. Let X be a Hilbert space with dual space X∗
and K ⊂ X such that K∗ =K. Let A ∶K →K∗ be a continuous, σ-involutory
map on K.

The variational inequality problem is to find y ∈K such that

⟨A(y), x − y⟩ ≥ 0 for all x ∈K. (VIP)

Replacing y by Ay in the problem (VIP) we get

σ ⟨y, x −Ay⟩ ≥ 0 for all x ∈K.
For σ > 0, we have

⟨y, x −Ay⟩ ≥ 0 for all x ∈K.
The σ-involutory variational inequality problem (σ-IVIP) is to find y ∈K such
that

⟨FA(y), x − y⟩ ≥ 0 for all x ∈K. (σ-IVIP)

where FA = A−1 −A for 0 < σ < 1. Replacing y by Ay in the problem (σ-IVIP)
we get

⟨FA(Ay), x −Ay⟩ = ⟨(A−1 −A)(Ay), x −Ay⟩
= ⟨y −A2y, x −Ay⟩ = (1 − σ) ⟨y, x −Ay⟩ ≥ 0 for all x ∈K.

The following theorem establish the existence of the solution of the problem
(σ-IVIP).

Theorem 3.5. Let K be a compact and convex set in a Hilbert space X with
dual space X∗ =X. If the map A ∶K →K∗ is continuous, σ-involutory where
0 < σ < 1 and satisfied ⟨A(x), v⟩ ≥ 0 for all x ∈ K and v ∈ X, then there exists
a y ∈K such that y solves (σ-IVIP).

Proof. Since ⟨A(x), v⟩ ≥ 0 for all x ∈ K and v ∈ X, we have ⟨A(y), x − y⟩ ≥ 0
for all x, y ∈K, it implies

⟨A−1(y), x − y⟩ = σ−1⟨A(y), x − y⟩ ≥ ⟨A−1(y), x − y⟩,
that is,

⟨A−1(y), x − y⟩ ≥ ⟨A(y), x − y⟩
for all x, y ∈ X and σ ∈ (0,1). Hence there exists a y ∈ K such that y solves
(σ-IVIP). This proves the theorem. �
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From the above theorem, we can easily prove the following theorem.

Theorem 3.6. Let K be a compact and convex set in a Hilbert space X with
dual space X∗ =X. If the map A ∶K →K∗ is continuous, σ-involutory where
0 < σ < 1 and I − πA is nonexpansive, then there exists a y ∈ K such that y
solves (VIP).

Theorem 3.7. Let K be a compact and convex set in a Hilbert space X with
dual space X∗ = X. If the map A ∶ K → X∗ is continuous invertible map and
A−1−A is nonexpansive, then there exists a y ∈K such that y solves (σ-IVIP).

Proof. Since K is a compact and convex set in X with dual space X∗ =X, for
every continuous invertible map A ∶K →X∗ and F = A−1 −A, the map I −πF
is continuous and nonexpansive maps, so it has a fixed point y in K, that is,
y = PK(I − πF )(y) which follows that y solves the VIP

⟨y, x − y⟩ ≥ ⟨(I − πF )(y), x − y⟩
for all x ∈K, that is,

⟨A−1(y), x − y⟩ ≥ ⟨A(y), x − y⟩
for all x ∈K. This completes the proof. �

Conclusion: The concept of f -projection operator is defined. The existence of
the solution of f -variational inequality problem equivalent to f -approximation
problem is studied using fixed point theorem. A pair of operators such as σ-
involutory and ρ-projective operators are defined with suitable example. The
equivalence between the operators are also established. A class of new problem
σ-involutory variational inequality problem is defined using the σ-involutory
operator and studied its existence theorem.
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