• Title/Summary/Keyword: expansive mapping

Search Result 25, Processing Time 0.021 seconds

GENERALIZATIONS OF ALESANDROV PROBLEM AND MAZUR-ULAM THEOREM FOR TWO-ISOMETRIES AND TWO-EXPANSIVE MAPPINGS

  • Khodaei, Hamid;Mohammadi, Abdulqader
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.771-782
    • /
    • 2019
  • We show that mappings preserving unit distance are close to two-isometries. We also prove that a mapping f is a linear isometry up to translation when f is a two-expansive surjective mapping preserving unit distance. Then we apply these results to consider two-isometries between normed spaces, strictly convex normed spaces and unital $C^*$-algebras. Finally, we propose some remarks and problems about generalized two-isometries on Banach spaces.

STRONG CONVERGENCE IN NOOR-TYPE ITERATIVE SCHEMES IN CONVEX CONE METRIC SPACES

  • LEE, BYUNG-SOO
    • The Pure and Applied Mathematics
    • /
    • v.22 no.2
    • /
    • pp.185-197
    • /
    • 2015
  • The author considers a Noor-type iterative scheme to approximate com- mon fixed points of an infinite family of uniformly quasi-sup(fn)-Lipschitzian map- pings and an infinite family of gn-expansive mappings in convex cone metric spaces. His results generalize, improve and unify some corresponding results in convex met- ric spaces [1, 3, 9, 16, 18, 19] and convex cone metric spaces [8].

FIXED POINT THEOREMS FOR (𝜉, 𝛽)-EXPANSIVE MAPPING IN 𝒢-METRIC SPACE USING CONTROL FUNCTION

  • Yadav, Jyoti;Kumar, Manoj;Reena, Reena;Imdad, Mohammad;Arora, Sahil
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.949-959
    • /
    • 2021
  • In this paper, some fixed point theorems for new type of (𝜉, 𝛽)-expansive mappings of type (S) and type (T) using control function and 𝛽-admissible function in 𝒢-metric spaces are proved. Further, we prove certain fixed point results by relaxing the continuity condition.

SOME FIXED POINTS FOR EXPANSIVE MAPPINGS AND FAMILIES OF MAPPINGS

  • Liu, Z.;Feng, C.;Kang, S.M.;Kim, Y.S.
    • East Asian mathematical journal
    • /
    • v.18 no.1
    • /
    • pp.127-136
    • /
    • 2002
  • In this paper we obtain some fixed points theorems of expansive mappings and several necessary and sufficient conditions for the existence of common fixed points of families of self-mappings in metric spaces. Our results generalize and improve the main results of Fisher [1]-[5], Furi-Vignoli [6], $Is\'{e}ki$ [7], Jungck [8], [9], Kashara-Rhoades [10], Liu [13], [14] and Sharma and Strivastava [16].

  • PDF

U-FLATNESS AND NON-EXPANSIVE MAPPINGS IN BANACH SPACES

  • Gao, Ji;Saejung, Satit
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.493-506
    • /
    • 2017
  • In this paper, we define the modulus of n-dimensional U-flatness as the determinant of an $(n+1){\times}(n+1)$ matrix. The properties of the modulus are investigated and the relationships between this modulus and other geometric parameters of Banach spaces are studied. Some results on fixed point theory for non-expansive mappings and normal structure in Banach spaces are obtained.

EXPANSIVE TYPE MAPPINGS IN DISLOCATED QUASI-METRIC SPACE WITH SOME FIXED POINT RESULTS AND APPLICATION

  • Haripada Das;Nilakshi Goswami
    • Korean Journal of Mathematics
    • /
    • v.32 no.2
    • /
    • pp.245-257
    • /
    • 2024
  • In this paper, we prove some new fixed point results for expansive type mappings in complete dislocated quasi-metric space. A common fixed point result is also established considering such mappings. Suitable examples are provided to demonstrate our results. The solution to a system of Fredholm integral equations is also established to show the applicability of our results.

COMMON FIXED POINT THEOREMS FOR TWO MAPPINGS WITH ψ-ϕ-CONTRACTIVE OR EXPANSIVE TYPE CONDITIONS ON COMPLEX-VALUED METRIC SPACES

  • JIN, HAI-LAN;PIAO, YONG-JIE
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.451-463
    • /
    • 2015
  • A continuous and non-decreasing function ${\psi}$ and another continuous function ${\phi}$ with ${\phi}(z)=0{\Leftrightarrow}z=0$ defined on $\mathbb{C}^+=\{x+yi:x,y{\geq}0\}$ are introduced, the ${\psi}-{\phi}$-contractive or expansive type conditions are considered, and the existence theorems of common fixed points for two mappings defined on a complex valued metric space are obtained. Also, Banach contraction principle and a fixed point theorem for a I-expansive type mapping are given on complex valued metric spaces.