Nonlinear Functional Analysis and Applications
Vol. 26, No. 5 (2021), pp. 949-959
ISSN: 1229-1595(print), 2466-0973(online)
https://doi.org/10.22771/nfaa.2021.26.05.06
http://nfaa.kyungnam.ac.kr/journal-nfaa
Copyright © 2021 Kyungnam University Press

FIXED POINT THEOREMS FOR (ξ, β)-EXPANSIVE MAPPING IN \mathcal{G}-METRIC SPACE USING CONTROL FUNCTION

Jyoti Yadav ${ }^{1}$, Manoj Kumar ${ }^{2}$, Reena ${ }^{3}$, Mohammad Imdad ${ }^{4}$ and Sahil Arora ${ }^{5}$
${ }^{1}$ Department of Mathematics Lords University
Alwar Rajasthan, India
e-mail: jyotiy744@gmail.com
${ }^{2}$ Department of Mathematics
Baba Mastnath University, Asthal Bohar, Rohtak, Haryana, India
e-mail: manojantil18@gmail.com
${ }^{3}$ Department of Mathematics
Prarambh State Institute of Advanced Studies in Teacher Education, Haryana, India
e-mail: takshakreena@gmail.com
${ }^{4}$ Department of Mathematics
Aligarh Muslim University, Aligarh, India
e-mail: mhimdad@gmail.com
${ }^{5}$ Department of Mathematics
K.R.M. D.A.V. College Nakodar, 144040, Punjab, India
e-mail: sahil.sahil213@gmail.com

Abstract

In this paper, some fixed point theorems for new type of (ξ, β)-expansive mappings of type (S) and type (T) using control function and β-admissible function in \mathcal{G}-metric spaces are proved. Further, we prove certain fixed point results by relaxing the continuity condition.

1. Introduction

In 2011, Imdad et al. [6] generalized some common fixed point results for expansive mappings in symmetric spaces. Afterwards, some researchers established fixed point results for expansive mappings in complete metric spaces,

[^0]cone metric spaces and 2 -metric spaces (see [5], [12], [15]). In 2013, Shabani and Razani [14] investigated the solutions of minimization problem for noncyclic functions in the context of \mathcal{G}-metric spaces. In 2014, Karapinar [8] proved some interesting results for (ξ, α)-contractive mappings in generalized metric space. In 2010, Mustafa et al. [10] proved some fixed point results for expansive mappings in \mathcal{G}-metric spaces.

Afterwards, many researchers proved some fixed point results for another sort of contraction known as F-Suzuki contraction and α-type F-contraction in metric spaces and \mathcal{G}-metric spaces (see [2], [4], [9], [11]). In 2018, Jyoti et al. [7] introduced the notion of (β, ξ, ϕ)-expansive mappings in digital metric space. After then, some researchers established fixed point results in Hausdorff rectangular metric spaces and b-metric spaces with the help of C-functions (see [1], [3]).

Lemma 1.1. Let $\left\{x_{n}\right\}$ be a Cauchy sequence in $(\mathcal{H}, \mathcal{G})$ with $\lim _{n \rightarrow \infty} \mathcal{G}\left(x_{n}, u, u\right)$ $=0$. Then $\mathcal{G}\left(x_{n}, t, t\right)=\mathcal{G}(u, t, t)$ for every $t \in \mathcal{H}$.

Definition 1.2. ([13]) Let Ψ be the family of functions $\psi:[0,+\infty) \rightarrow[0,+\infty)$ satisfying the followings:
(i) ψ is upper semi-continuous and strictly increasing;
(ii) $\left\{\psi^{n}(\kappa)\right\}$ tend to 0 as $n \rightarrow \infty$ for all $\kappa>0$;
(iii) $\psi(\kappa)<\kappa$ for all $\kappa>0$.

These functions are known as comparison functions.
Definition 1.3. ([13]) Let $h: \mathcal{H} \rightarrow \mathcal{H}$ be a given self-map in a metric space (\mathcal{H}, ϖ). Then, h is said to be an (α, ψ)-contraction if there exist two maps $\psi \in \Psi$ and $\alpha: \mathcal{H} \times \mathcal{H} \rightarrow[0,+\infty)$ such that

$$
\alpha(x, z) \varpi(h x, h z) \leq \psi(\varpi(x, z)),
$$

for all $x, z \in \mathcal{H}$.
In 2012, Samet et al. introduced the notion of β-admissible functions as follows:

Definition 1.4. ([13]) Let $H: \mathcal{H} \rightarrow \mathcal{H}$ and $\beta: \mathcal{H} \times \mathcal{H} \times \mathcal{H} \rightarrow[0,+\infty)$. Then, H is said to be a β-admissible if $\beta(e, k, k) \geq 1$, then $\beta(H e, H k, H k) \geq 1$, for all $e, k \in \mathcal{H}$.

2. Main results

In this section, we introduce (ξ, β)-expansive mappings of type (S) and type (T) and prove some fixed point theorems in a \mathcal{G}-metric space with the help of a β-admissible function.

Definition 2.1. Let $\mathcal{Q}: \mathcal{H} \rightarrow \mathcal{H}$ be a function in $(\mathcal{H}, \mathcal{G})$. Then, \mathcal{Q} is said to be a (ξ, β)-expansive mapping of type (S) if there are two mappings $\xi \in \Phi$ and $\beta: \mathcal{H} \times \mathcal{H} \times \mathcal{H} \rightarrow[0, \infty]$ such that

$$
\begin{align*}
\xi(\mathcal{G}(\mathcal{Q} x, \mathcal{Q} y, \mathcal{Q} z)) \geq & \beta(x, y, z) \min \{\mathcal{G}(x, y, z), \mathcal{G}(x, \mathcal{Q} x, \mathcal{Q} x), \mathcal{G}(y, \mathcal{Q} y, \mathcal{Q} y), \\
& \mathcal{G}(z, \mathcal{Q} z, \mathcal{Q} z), \mathcal{G}(x, \mathcal{Q} y, \mathcal{Q} y), \mathcal{G}(y, \mathcal{Q} z, \mathcal{Q} z)\}, \tag{2.1}
\end{align*}
$$

where Φ denote the class of all the mappings $\xi:[0, \infty) \rightarrow[0, \infty)$ satisfying the followings:
(i) ξ is upper semi-continuous;
(ii) $\xi(\kappa)<\kappa$ for any $\kappa>0$;
(iii) $\left\{\xi^{n}(\kappa)\right\}$ converges to zero when $n \rightarrow \infty$ for every $\kappa>0$.

Definition 2.2. Let $\mathcal{Q}: \mathcal{H} \rightarrow \mathcal{H}$ be a function in $(\mathcal{H}, \mathcal{G})$. Then, \mathcal{Q} is known as (ξ, β)-expansive function of type (T) if there exist two mappings $\xi \in \Phi$ and $\beta: \mathcal{H} \times \mathcal{H} \times \mathcal{H} \rightarrow[0, \infty]$ such that

$$
\begin{equation*}
\xi(\mathcal{G}(\mathcal{Q} x, \mathcal{Q} y, \mathcal{Q} z)) \geq \beta(x, y, z) \min \left\{\mathcal{G}(x, y, z), \frac{\mathcal{G}(x, \mathcal{Q} z, \mathcal{Q} z)+\mathcal{G}(z, \mathcal{Q} y, \mathcal{Q} y)}{2}\right\} \tag{2.2}
\end{equation*}
$$

Theorem 2.3. Let $\mathcal{Q}: \mathcal{H} \rightarrow \mathcal{H}$ be (ξ, β)-expansive mapping of type (S) in $(\mathcal{H}, \mathcal{G})$ which is complete, symmetrical, one to one and onto. Also, \mathcal{Q} satisfies the following conditions:
(i) \mathcal{Q} is continuous;
(ii) \mathcal{Q}^{-1} is β-admissible and there exist $x_{0} \in \mathcal{H}$ such that $\beta\left(x_{0}, \mathcal{Q}^{-1} x_{0}, \mathcal{Q}^{-1} x_{0}\right) \geq 1, \beta\left(x_{0}, \mathcal{Q}^{-2} x_{0}, \mathcal{Q}^{-2} x_{0}\right) \geq 1$.
Then, \mathcal{Q} has a fixed point in \mathcal{H}.
Proof. Let $\left\{x_{n}\right\}$ be the sequence such that $\mathcal{Q} x_{n+1}=x_{n}$, for every $n \in \mathbf{Z}_{+}$. If there exists a positive integer n such that $x_{n}=x_{n+1}$, then $\mathcal{Q} x_{n}=x_{n}$. So, x_{n} is a fixed point of \mathcal{Q}.

Let us assume that $x_{n+1} \neq x_{n}$, for every $n \in \mathbf{Z}_{+}$. Then,

$$
\mathcal{G}\left(x_{n+1}, x_{n}, x_{n}\right)>0, \forall n \in \mathbf{Z}_{+} .
$$

From the assumption of the theorem, we have

$$
\beta\left(x_{0}, \mathcal{Q}^{-1} x_{0}, \mathcal{Q}^{-1} x_{0}\right)=\beta\left(x_{0}, x_{1}, x_{1}\right) \geq 1 .
$$

Since \mathcal{Q}^{-1} is β-admissible, we have

$$
\beta\left(\mathcal{Q}^{-1} x_{0}, \mathcal{Q}^{-1} x_{1}, \mathcal{Q}^{-1} x_{1}\right)=\beta\left(x_{1}, x_{2}, x_{2}\right) \geq 1 .
$$

By induction on n, we have

$$
\begin{equation*}
\beta\left(x_{n}, x_{n+1}, x_{n+1}\right) \geq 1 . \tag{2.3}
\end{equation*}
$$

Proceeding in the same way, we obtain

$$
\beta\left(x_{0}, \mathcal{Q}^{-2} x_{0}, \mathcal{Q}^{-2} x_{0}\right)=\beta\left(x_{0}, x_{2}, x_{2}\right) \geq 1
$$

and

$$
\beta\left(\mathcal{Q}^{-1} x_{0}, \mathcal{Q}^{-2} x_{2}, \mathcal{Q}^{-2} x_{2}\right)=\beta\left(x_{1}, x_{3}, x_{3}\right) \geq 1
$$

By repeating the same process, we obtain

$$
\beta\left(x_{n}, x_{n+2}, x_{n+2}\right) \geq 1 .
$$

Now, we claim that $\lim _{n \rightarrow \infty} \mathcal{G}\left(x_{n}, x_{n+1}, x_{n+1}\right)=0$.
Putting $x=x_{n}$ and $y=z=x_{n+1}$ in (2.1), we get

$$
\begin{aligned}
& \xi\left(\mathcal{G}\left(\mathcal{Q} x_{n}, \mathcal{Q} x_{n+1}, \mathcal{Q} x_{n+1}\right)\right) \\
& \quad \geq \beta\left(x_{n}, x_{n+1}, x_{n+1}\right) \min \left\{\mathcal{G}\left(x_{n}, x_{n+1}, x_{n+1}\right), \mathcal{G}\left(x_{n}, \mathcal{Q} x_{n}, \mathcal{Q} x_{n}\right),\right. \\
& \quad \mathcal{G}\left(x_{n+1}, \mathcal{Q} x_{n+1}, \mathcal{Q} x_{n+1}\right), \mathcal{G}\left(x_{n+1}, \mathcal{Q} x_{n+1}, \mathcal{Q} x_{n+1}\right) \\
& \left.\quad \mathcal{G}\left(x_{n}, \mathcal{Q} x_{n+1}, \mathcal{Q} x_{n+1}\right), \mathcal{G}\left(x_{n+1}, \mathcal{Q} x_{n+1}, \mathcal{Q} x_{n+1}\right)\right\} .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
& \xi\left(\mathcal{G}\left(\mathcal{Q} x_{n}, \mathcal{Q} x_{n+1}, \mathcal{Q} x_{n+1}\right)\right) \\
& \geq \beta\left(x_{n}, x_{n+1}, x_{n+1}\right) \min \left\{\mathcal{G}\left(x_{n}, x_{n+1}, x_{n+1}\right), \mathcal{G}\left(x_{n}, x_{n-1}, x_{n-1}\right),\right. \\
& \left.\quad \mathcal{G}\left(x_{n+1}, x_{n}, x_{n}\right), \mathcal{G}\left(x_{n+1}, x_{n}, x_{n}\right) \mathcal{G}\left(x_{n}, x_{n}, x_{n}\right), \mathcal{G}\left(x_{n+1}, x_{n}, x_{n}\right)\right\} .
\end{aligned}
$$

By using definition of ξ, we get

$$
\mathcal{G}\left(x_{n-1}, x_{n}, x_{n}\right)>\xi\left(\mathcal{G}\left(\mathcal{Q} x_{n}, \mathcal{Q} x_{n+1}, \mathcal{Q} x_{n+1}\right)\right) .
$$

Therefore, we get

$$
\begin{align*}
& \mathcal{G}\left(x_{n-1}, x_{n}, x_{n}\right) \\
& \quad>\beta\left(x_{n}, x_{n+1}, x_{n+1}\right) \min \left\{\mathcal{G}\left(x_{n}, x_{n+1}, x_{n+1}\right), \mathcal{G}\left(x_{n}, x_{n-1}, x_{n-1}\right),\right. \tag{2.4}\\
& \left.\quad \mathcal{G}\left(x_{n+1}, x_{n}, x_{n}\right), \mathcal{G}\left(x_{n+1}, x_{n}, x_{n}\right), \mathcal{G}\left(x_{n}, x_{n}, x_{n}\right), \mathcal{G}\left(x_{n+1}, x_{n}, x_{n}\right)\right\} .
\end{align*}
$$

Since $(\mathcal{H}, \mathcal{G})$ is symmetrical, we have

$$
\mathcal{G}\left(x_{n}, x_{n+1}, x_{n+1}\right)=\mathcal{G}\left(x_{n+1}, x_{n}, x_{n}\right) .
$$

By using (2.4), we obtain
$\mathcal{G}\left(x_{n-1}, x_{n}, x_{n}\right)>\beta\left(x_{n}, x_{n+1}, x_{n+1}\right) \min \left\{\mathcal{G}\left(x_{n+1}, x_{n}, x_{n+1}\right), \mathcal{G}\left(x_{n-1}, x_{n}, x_{n-1}\right)\right\}$.
If there exist $n \in \mathbf{Z}_{+}$such that

$$
\min \left\{\mathcal{G}\left(x_{n+1}, x_{n}, x_{n+1}\right), \mathcal{G}\left(x_{n-1}, x_{n}, x_{n-1}\right)=\mathcal{G}\left(x_{n-1}, x_{n}, x_{n-1}\right),\right.
$$

then making use of (2.3), the above inequality is equivalent to

$$
\mathcal{G}\left(x_{n-1}, x_{n}, x_{n}\right)>\mathcal{G}\left(x_{n-1}, x_{n-1}, x_{n}\right),
$$

a contradiction.

Consequently, we have

$$
\min \left\{\mathcal{G}\left(x_{n+1}, x_{n}, x_{n+1}\right), \mathcal{G}\left(x_{n-1}, x_{n}, x_{n-1}\right)=\mathcal{G}\left(x_{n+1}, x_{n}, x_{n+1}\right)\right.
$$

Therefore, we have

$$
\mathcal{G}\left(x_{n-1}, x_{n}, x_{n}\right)>\xi\left(\mathcal{G}\left(\mathcal{Q} x_{n}, \mathcal{Q} x_{n+1}, \mathcal{Q} x_{n+1}\right)\right) \geq \mathcal{G}\left(x_{n}, x_{n+1}, x_{n+1}\right),
$$

which gives that

$$
\begin{equation*}
\mathcal{G}\left(x_{n}, x_{n+1}, x_{n+1}\right)<\mathcal{G}\left(x_{n-1}, x_{n}, x_{n}\right) . \tag{2.5}
\end{equation*}
$$

Using mathematical induction, we obtain

$$
\mathcal{G}\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq \xi^{n} \mathcal{G}\left(x_{0}, x_{1}, x_{1}\right) .
$$

It follows from the definition of ξ that

$$
\lim _{n \rightarrow \infty} \mathcal{G}\left(x_{n}, x_{n+1}, x_{n+1}\right)=0
$$

Next, we assert that

$$
\lim _{n \rightarrow \infty} \mathcal{G}\left(x_{n}, x_{n+2}, x_{n+2}\right)=0
$$

Putting $x=x_{n}$ and $y=z=x_{n+2}$ in (2.1), we get

$$
\begin{aligned}
& \xi\left(\mathcal{G}\left(\mathcal{Q} x_{n}, \mathcal{Q} x_{n+2}, \mathcal{Q} x_{n+2}\right)\right) \\
& \quad \geq \beta\left(x_{n}, x_{n+2}, x_{n+2}\right) \min \left\{\mathcal{G}\left(x_{n}, x_{n+2}, x_{n+2}\right), \mathcal{G}\left(x_{n}, \mathcal{Q} x_{n}, \mathcal{Q} x_{n}\right),\right. \\
& \quad \mathcal{G}\left(x_{n+2}, \mathcal{Q} x_{n+2}, \mathcal{Q} x_{n+2}\right), \mathcal{G}\left(x_{n+2}, \mathcal{Q} x_{n+2}, \mathcal{Q} x_{n+2}\right), \\
& \left.\quad \mathcal{G}\left(x_{n}, \mathcal{Q} x_{n+2}, \mathcal{Q} x_{n+2}\right), \mathcal{G}\left(x_{n+2}, \mathcal{Q} x_{n+2}, \mathcal{Q} x_{n+2}\right)\right\} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \xi\left(\mathcal{G}\left(\mathcal{Q} x_{n}, \mathcal{Q} x_{n+2}, \mathcal{Q} x_{n+2}\right)\right) \\
& \quad \geq \beta\left(x_{n}, x_{n+2}, x_{n+2} \min \left\{\mathcal{G}\left(x_{n}, x_{n+2}, x_{n+2}\right), \mathcal{G}\left(x_{n}, x_{n-1}, x_{n-1}\right),\right.\right. \\
& \quad \mathcal{G}\left(x_{n+2}, x_{n+1}, x_{n+1}\right), \mathcal{G}\left(x_{n+2}, x_{n+1}, x_{n+1}\right), \\
& \left.\quad \mathcal{G}\left(x_{n}, x_{n+1}, x_{n+1}\right), \mathcal{G}\left(x_{n+2}, x_{n+1}, x_{n+1}\right)\right\} .
\end{aligned}
$$

By making use of definition of ξ, we obtain

$$
\mathcal{G}\left(x_{n-1}, x_{n+1}, x_{n+1}\right)>\xi\left(\mathcal{G}\left(\mathcal{Q} x_{n}, \mathcal{Q} x_{n+2}, \mathcal{Q} x_{n+2}\right)\right) .
$$

Therefore, we have

$$
\begin{align*}
& \mathcal{G}\left(x_{n-1}, x_{n+1}, x_{n+1}\right) \\
& >\beta\left(x_{n}, x_{n+2}, x_{n+2}\right) \min \left\{\mathcal{G}\left(x_{n}, x_{n+2}, x_{n+2}\right), \mathcal{G}\left(x_{n}, x_{n-1}, x_{n-1}\right),\right. \\
& \quad \mathcal{G}\left(x_{n+2}, x_{n+1}, x_{n+1}\right), \mathcal{G}\left(x_{n+2}, x_{n+1}, x_{n+1}\right), \tag{2.6}\\
& \left.\quad \mathcal{G}\left(x_{n}, x_{n+1}, x_{n+1}\right), \mathcal{G}\left(x_{n+2}, x_{n+1}, x_{n+1}\right)\right\} .
\end{align*}
$$

Since $(\mathcal{H}, \mathcal{G})$ is symmetrical and utilizing (2.3), (2.5), we have

$$
\begin{equation*}
\mathcal{G}\left(x_{n-1}, x_{n+1}, x_{n+1}\right)>\min \left\{\mathcal{G}\left(x_{n}, x_{n+1}, x_{n+1}\right), \mathcal{G}\left(x_{n-1}, x_{n}, x_{n}\right)\right\} . \tag{2.7}
\end{equation*}
$$

Let $p_{n}=\mathcal{G}\left(x_{n+1}, x_{n+3}, x_{n+3}\right)$ and $q_{n}=\mathcal{G}\left(x_{n+2}, x_{n+3}, x_{n+3}\right)$. Then, from (2.7), we conclude that

$$
\begin{aligned}
p_{n-2} & =\mathcal{G}\left(x_{n-1}, x_{n+1}, x_{n+1}\right) \\
& >\xi\left(\mathcal{G}\left(x_{n-1}, x_{n+1}, x_{n+1}\right)\right) \\
& =\xi\left(\mathcal{G}\left(\mathcal{Q} x_{n}, \mathcal{Q} x_{n+2}, \mathcal{Q} x_{n+2}\right)\right) \\
& \geq \min \left\{\mathcal{G}\left(x_{n}, x_{n+1}, x_{n+1}\right), \mathcal{G}\left(x_{n-1}, x_{n}, x_{n}\right)\right\} \\
& =\min \left\{p_{n-1}, q_{n-1}\right\} .
\end{aligned}
$$

From (2.5), we have

$$
q_{n-2} \geq q_{n-1} \geq \min \left\{p_{n-1}, q_{n-1}\right\}
$$

Therefore, we conclude that

$$
\min \left\{p_{n-2}, q_{n-2}\right\} \geq \min \left\{p_{n-1}, q_{n-1}\right\}
$$

Hence, the sequence $\left\{\min \left\{p_{n}, q_{n}\right\}\right\}$ is monotonically decreasing sequence. Therefore, the sequence converges to $\ell \geq 0$.

Let us assume that $\ell>0$. Then, we have

$$
\lim _{n \rightarrow \infty} \sup \left(p_{n}\right)=\lim _{n \rightarrow \infty} \sup \left(\min \left\{p_{n}, q_{n}\right\}\right)=\lim _{n \rightarrow \infty} \min \left\{p_{n}, q_{n}\right\}=\ell
$$

Using (2.7), we get

$$
\begin{aligned}
\ell & =\lim _{n \rightarrow \infty} \sup \left(p_{n-2}\right) \\
& >\lim _{n \rightarrow \infty} \sup \left(\xi\left(\mathcal{G}\left(x_{n-1}, x_{n+1}, x_{n+1}\right)\right)\right) \\
& \geq \lim _{n \rightarrow \infty} \sup \left(\min \left\{p_{n-1}, q_{n-1}\right\}=\ell,\right.
\end{aligned}
$$

which is a contradiction. Therefore, we get

$$
\mathcal{G}\left(x_{n}, x_{n+2}, x_{n+2}\right)=0
$$

Now, we assert that $x_{a} \neq x_{b}$, for each $a \neq b$. Suppose, on the contrary that $x_{a}=x_{b}$ for some $a, b \in \mathbf{Z}_{+}$where $a \neq b$. Let us suppose that $a>b$. Then

$$
\begin{aligned}
\xi\left(\mathcal{G}\left(x_{b}, x_{b-1}, x_{b-1}\right)\right) & =\xi\left(\mathcal{G}\left(x_{b}, \mathcal{Q} x_{b}, \mathcal{Q} x_{b}\right)\right) \\
& =\xi\left(\mathcal{G}\left(x_{a}, \mathcal{Q} x_{a}, \mathcal{Q} x_{a}\right)\right) \\
& =\xi\left(\mathcal{G}\left(\mathcal{Q} x_{a+1}, \mathcal{Q} x_{a}, \mathcal{Q} x_{a}\right)\right) \\
& \geq \beta\left(x_{a+1}, x_{a}, x_{a}\right) H\left(x_{n+1}, x_{n}, x_{n}\right) \\
& \geq H\left(x_{n+1}, x_{n}, x_{n}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& H\left(x_{n+1}, x_{n}, x_{n}\right) \\
& \quad=\min \left\{\mathcal{G}\left(x_{a+1}, x_{a}, x_{a}\right), \mathcal{G}\left(x_{a+1}, \mathcal{Q} x_{a+1}, \mathcal{Q} x_{a+1}\right), \mathcal{G}\left(x_{a}, \mathcal{Q} x_{a}, \mathcal{Q} x_{a}\right),\right. \\
& \left.\quad \mathcal{G}\left(x_{a}, \mathcal{Q} x_{a}, \mathcal{Q} x_{a}\right), \mathcal{G}\left(x_{a+1}, \mathcal{Q} x_{a}, \mathcal{Q} x_{a}\right), \mathcal{G}\left(x_{a}, \mathcal{Q} x_{a}, \mathcal{Q} x_{a}\right)\right\} \\
& =\min \left\{\mathcal{G}\left(x_{a+1}, x_{a}, x_{a}\right), \mathcal{G}\left(x_{a+1}, x_{a}, x_{a}\right), \mathcal{G}\left(x_{a}, x_{a-1}, x_{a-1}\right),\right. \\
& \left.\quad \mathcal{G}\left(x_{a}, x_{a-1}, x_{a-1}\right), \mathcal{G}\left(x_{a+1}, x_{a-1}, x_{a-1}\right), \mathcal{G}\left(x_{a}, x_{a-1}, x_{a-1}\right)\right\} \\
& =\min \left\{\mathcal{G}\left(x_{a+1}, x_{a}, x_{a}\right), \mathcal{G}\left(x_{a}, x_{a-1}, x_{a-1}\right)\right\} .
\end{aligned}
$$

If $\min \left\{\mathcal{G}\left(x_{a+1}, x_{a}, x_{a}\right), \mathcal{G}\left(x_{a}, x_{a-1}, x_{a-1}\right)\right\}=\mathcal{G}\left(x_{a+1}, x_{a}, x_{a}\right)$, then we have

$$
\xi\left(\mathcal{G}\left(x_{b}, x_{b-1}, x_{b-1}\right)\right) \geq \mathcal{G}\left(x_{a+1}, x_{a}, x_{a}\right)
$$

implies that

$$
\begin{align*}
\mathcal{G}\left(x_{a+1}, x_{a}, x_{a}\right) & \leq \xi\left(\mathcal{G}\left(x_{b}, x_{b-1}, x_{b-1}\right)\right) \\
& \leq \xi^{b-a} \mathcal{G}\left(x_{a+1}, x_{a}, x_{a}\right) . \tag{2.8}
\end{align*}
$$

If $\min \left\{\mathcal{G}\left(x_{a+1}, x_{a}, x_{a}\right), \mathcal{G}\left(x_{a}, x_{a-1}, x_{a-1}\right)\right\}=\mathcal{G}\left(x_{a}, x_{a-1}, x_{a-1}\right)$, then we have

$$
\xi\left(\mathcal{G}\left(x_{b}, x_{b-1}, x_{b-1}\right)\right) \geq \mathcal{G}\left(x_{a}, x_{a-1}, x_{a-1}\right),
$$

that is,

$$
\begin{align*}
\mathcal{G}\left(x_{a}, x_{a-1}, x_{a-1}\right) & \leq \xi\left(\mathcal{G}\left(x_{b}, x_{b-1}, x_{b-1}\right)\right) \\
& \leq \xi^{b-a+1} \mathcal{G}\left(x_{a}, x_{a-1}, x_{a-1}\right) . \tag{2.9}
\end{align*}
$$

Using (2.8) and (2.9), we have

$$
\mathcal{G}\left(x_{a+1}, x_{a}, x_{a}\right) \leq \xi^{b-a} \mathcal{G}\left(x_{a+1}, x_{a}, x_{a}\right)
$$

and

$$
\mathcal{G}\left(x_{a}, x_{a-1}, x_{a-1}\right) \leq \xi^{b-a+1} \mathcal{G}\left(x_{a}, x_{a-1}, x_{a-1}\right) .
$$

In both cases, this is a contradiction. So, $x_{a} \neq x_{b}$, for each $a \neq b$.
Next, we assert that $\left\{x_{n}\right\}$ is a Cauchy sequence, that is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{G}\left(x_{n}, x_{n+m}, x_{n+m}\right)=0 . \tag{2.10}
\end{equation*}
$$

We have proved (2.10) for cases $m=1$ and $m=2$, respectively.
Let us take $m \geq 3$. Now, two cases arise.
Case 1: For $m=2 r$ where $r \geq 2$.

Using (2.8) and definition of $(\mathcal{H}, \mathcal{G})$, we obtain

$$
\begin{aligned}
\mathcal{G}\left(x_{n}, x_{n+m}, x_{n+m}\right)= & \mathcal{G}\left(x_{n}, x_{n+2 r}, x_{n+2 r}\right) \\
\leq & \mathcal{G}\left(x_{n}, x_{n+2}, x_{n+2}\right)+\mathcal{G}\left(x_{n+2}, x_{n+3}, x_{n+3}\right) \\
& +\cdots+\mathcal{G}\left(x_{n+2 r-1}, x_{n+2 r}, x_{n+2 r}\right) \\
\leq & \mathcal{G}\left(x_{n}, x_{n+2}, x_{n+2}\right)+\sum_{d=n+2}^{n+2 r-1} \xi^{d}\left(\mathcal{G}\left(x_{0}, x_{1}, x_{1}\right)\right) \\
\leq & \mathcal{G}\left(x_{n}, x_{n+2}, x_{n+2}\right)+\sum_{d=n}^{\infty} \xi^{d}\left(\mathcal{G}\left(x_{0}, x_{1}, x_{1}\right)\right) \\
\rightarrow & 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Case 2: For $m=2 r+1$ where $r \geq 1$.
Using (2.8) and definition of $(\mathcal{H}, \mathcal{G})$, we obtain

$$
\begin{aligned}
\mathcal{G}\left(x_{n}, x_{n+m}, x_{n+m}\right)= & \mathcal{G}\left(x_{n}, x_{n+2 r+1}, x_{n+2 r+1}\right) \\
\leq & \mathcal{G}\left(x_{n}, x_{n+1}, x_{n+1}\right)+\mathcal{G}\left(x_{n+1}, x_{n+2}, x_{n+2}\right) \\
& +\cdots+\mathcal{G}\left(x_{n+2 r}, x_{n+2 r+1}, x_{n+2 r+1}\right) \\
\leq & \sum_{d=n}^{n+2 r} \xi^{d}\left(\mathcal{G}\left(x_{0}, x_{1}, x_{1}\right)\right) \\
\leq & \sum_{d=n}^{\infty} \xi^{d}\left(\mathcal{G}\left(x_{0}, x_{1}, x_{1}\right)\right) \\
\rightarrow & 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

In both cases $\lim _{n \rightarrow \infty} \mathcal{G}\left(\mathrm{x}_{n}, \mathrm{x}_{n+m}, \mathrm{x}_{n+m}\right)=0$, which yields that $\left\{\mathrm{x}_{n}\right\}$ is Cauchy. Since $(\mathcal{H}, \mathcal{G})$ is complete, there exist $u \in \mathcal{H}$ such that

$$
\lim _{n \rightarrow \infty} \mathcal{G}\left(\mathrm{x}_{n}, u, u\right)=0 .
$$

Using the first assumption of the Theorem 2.3, we get

$$
\lim _{n \rightarrow \infty} \mathcal{G}\left(\mathcal{Q} x_{n}, \mathcal{Q} u, \mathcal{Q} u\right)=\lim _{n \rightarrow \infty} \mathcal{G}\left(x_{n+1}, \mathcal{Q} u, \mathcal{Q} u\right)=0 .
$$

Therefore, we have $\mathcal{Q} u=\lim _{n \rightarrow \infty} x_{n+1}=u$. So, \mathcal{Q} has a fixed point $u \in \mathcal{H}$.
Theorem 2.4. Let $\mathcal{Q}: \mathcal{H} \rightarrow \mathcal{H}$ be a (ξ, β)-expansive mapping of type (T) in $(\mathcal{H}, \mathcal{G})$, which is complete, symmetrical, one to one and onto. Also, \mathcal{Q} satisfies the conditions of Theorem 2.3. Then, \mathcal{Q} has a fixed point in \mathcal{H}.
Proof. Let $\left\{x_{n}\right\}$ be a sequence such that $\mathcal{Q} x_{n+1}=x_{n}$, for each $n \in \mathbf{Z}_{+}$. Then, by using Theorem 2.3, we get

$$
\beta\left(x_{n}, x_{n+2}, x_{n+2}\right) \geq 1 .
$$

Next, we assert that $\lim _{n \rightarrow \infty} \mathcal{G}\left(x_{n+1}, x_{n}, x_{n+1}\right)=0$.
Putting $x=x_{n}$ and $y=z=x_{n+1}$ in (2.1), we get

$$
\begin{aligned}
& \xi\left(\mathcal{G}\left(\mathcal{Q} x_{n}, \mathcal{Q} x_{n+1}, \mathcal{Q} x_{n+1}\right)\right) \\
& \quad=\xi\left(\mathcal{G}\left(\mathcal{Q} x_{n}, \mathcal{Q} x_{n+1}, \mathcal{Q} x_{n+1}\right)\right) \\
& \quad \geq \beta\left(x_{n}, x_{n+1}, x_{n+1}\right) \min \left\{\mathcal{G}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right. \\
& \left.\quad \frac{\mathcal{G}\left(x_{n+1}, \mathcal{Q} x_{n+1}, \mathcal{Q} x_{n+1}\right)+\mathcal{G}\left(x_{n+1} \mathcal{Q} x_{n+1}, \mathcal{Q} x_{n+1}\right)}{2}\right\} \\
& \quad=\beta\left(x_{n}, x_{n+1}, x_{n+1}\right) \min \left\{\mathcal{G}\left(x_{n}, x_{n}, x_{n}\right), \mathcal{G}\left(x_{n+1}, x_{n}, x_{n}\right)\right\} .
\end{aligned}
$$

By using identical steps as in proof of Theorem 2.3, we can show that \mathcal{Q} has a fixed point in \mathcal{H}.

Theorem 2.5. Let $\mathcal{Q}: \mathcal{H} \rightarrow \mathcal{H}$ be a (ξ, β)-expansive mapping of type (S) in $(\mathcal{H}, \mathcal{G})$, which is complete, symmetrical, one to one and onto. Also, \mathcal{Q} satisfies the following conditions:
(i) If $\left\{\mathrm{x}_{n}\right\}$ is a sequence in \mathcal{H} such that $\beta\left(\mathrm{x}_{n}, \mathrm{x}_{n+1}, \mathrm{x}_{n+1}\right) \geq 1$ and $\left\{x_{n}\right\}$ tends to x when $n \rightarrow \infty$, then there exist a subsequence $\left\{x_{n_{t}}\right\}$ of $\left\{x_{n}\right\}$ in order that $\beta\left(x_{n_{t}}, x, x\right) \geq 1$;
(ii) \mathcal{Q}^{-1} is β-admissible and there exists $x_{0} \in \mathcal{H}$ such that $\beta\left(x_{0}, \mathcal{Q}^{-1} x_{0}, \mathcal{Q}^{-1} x_{0}\right) \geq 1, \beta\left(x_{0}, \mathcal{Q}^{-2} x_{0}, \mathcal{Q}^{-2} x_{0}\right) \geq 1$.

Then, \mathcal{Q} has a fixed point in \mathcal{H}.
Proof. Let $\left\{x_{n}\right\}$ be the sequence in \mathcal{H} such that $x_{n}=\mathcal{Q} x_{n+1}$. By using identical steps as in proof of Theorem 2.3, we can prove that $\left\{x_{n}\right\}$ is a Cauchy sequence in \mathcal{H}, which converges to $w \in \mathcal{H}$.

Using Lemma 1.1, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{G}\left(x_{n_{t}+1}, \mathcal{Q} w, \mathcal{Q} w\right)=\mathcal{G}(w, \mathcal{Q} w, \mathcal{Q} w) . \tag{2.11}
\end{equation*}
$$

Now, we assert that $\mathcal{Q} w=w$. Assume on the contrary that $\mathcal{Q} w \neq w$. Using the assumption (i) of the Theorem 2.5, there exist a subsequence $\left\{x_{n_{t}}\right\}$ of $\left\{x_{n}\right\}$ such that $\beta\left(x_{n_{t}}, w, w\right) \geq 1$. Letting $t \rightarrow \infty$ and using (2.1), (2.11), we obtain

$$
\begin{align*}
& \mathcal{G}\left(x_{n_{t}-1}, w, w\right) \\
& \quad> \xi\left(\mathcal{G}\left(\mathcal{Q} \mathrm{x}_{n_{t}}, \mathcal{Q} w, \mathcal{Q} w\right)\right. \\
& \geq \beta\left(x_{n_{t}}, w, w\right) \min \left\{\mathcal{G}\left(x_{n_{t}}, w, w\right), \mathcal{G}\left(x_{n_{t}}, \mathcal{Q} x_{n_{t}}, \mathcal{Q} x_{n_{t}}\right)\right. \\
&\left.\quad \mathcal{G}(w, \mathcal{Q} w, \mathcal{Q} w), \mathcal{G}(w, \mathcal{Q} w, \mathcal{Q} w), \mathcal{G}\left(x_{n_{t}}, \mathcal{Q} w, \mathcal{Q} w\right), \mathcal{G}(w, \mathcal{Q} w, \mathcal{Q} w)\right\} \\
& \geq \min \left\{\mathcal{G}\left(x_{n_{t}}, w, w\right), \mathcal{G}\left(x_{n_{t}}, x_{n_{t}-1}, x_{n_{t}-1}\right), \mathcal{G}(w, \mathcal{Q} w, \mathcal{Q} w)\right. \\
&\left.\quad \mathcal{G}(w, \mathcal{Q} w, \mathcal{Q} w), \mathcal{G}\left(x_{n_{t}}, \mathcal{Q} w, \mathcal{Q} w\right), \mathcal{G}(w, \mathcal{Q} w, \mathcal{Q} w)\right\} \\
& \geq \mathcal{G}(w, \mathcal{Q} w, \mathcal{Q} w) . \tag{2.12}
\end{align*}
$$

By definition of ξ, we obtain

$$
\begin{equation*}
\xi(\mathcal{G}(w, \mathcal{Q} w, \mathcal{Q} w))<\mathcal{G}(w, \mathcal{Q} w, \mathcal{Q} w) \tag{2.13}
\end{equation*}
$$

By combining (3.12) and (3.13), we have

$$
\mathcal{G}(w, \mathcal{Q} w, \mathcal{Q} w) \leq \xi(\mathcal{G}(w, \mathcal{Q} w, \mathcal{Q} w))<\mathcal{G}(w, \mathcal{Q} w, \mathcal{Q} w)
$$

which is a contradiction. So, $\mathcal{Q} w=w$. Hence, w is a fixed point of \mathcal{Q}.
Theorem 2.6. Let $\mathcal{Q}: \mathcal{H} \rightarrow \mathcal{H}$ be a (ξ, β)-expansive mapping of type (T) in $(\mathcal{H}, \mathcal{G})$ which is complete, symmetrical, one to one and onto. Also, \mathcal{Q} satisfies the conditions of Theorem 2.5. Then, \mathcal{Q} has a fixed point in \mathcal{H}.
Proof. Let $\left\{x_{n}\right\}$ a sequence in \mathcal{H} such that $x_{n}=\mathcal{Q} x_{n+1}$. By using identical steps as in proof of Theorem 2.4, we can prove that $\left\{x_{n}\right\}$ is a cauchy sequence in \mathcal{H}, which converges to $w \in \mathcal{H}$.

Using Lemma 1.1, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{G}\left(x_{n_{t}+1}, \mathcal{Q} w, \mathcal{Q} w\right)=\mathcal{G}(w, \mathcal{Q} w, \mathcal{Q} w) . \tag{2.14}
\end{equation*}
$$

Now, we claim that $\mathcal{Q} w=w$. Suppose on the contrary that $\mathcal{Q} w \neq w$.
Letting $t \rightarrow \infty$, using (2.1) and (2.14), we obtain

$$
\begin{align*}
& \mathcal{G}\left(x_{n_{t}-1}, w, w\right) \\
& \quad>\xi\left(\mathcal{G}\left(\mathcal{Q} x_{n_{t}}, \mathcal{Q} w, \mathcal{Q} w\right)\right. \\
& \quad \geq \beta\left(x_{n_{t}}, w, w\right) \min \left\{\mathcal{G}\left(x_{n_{t}}, w, w\right), \frac{\mathcal{G}(w, \mathcal{Q} w, \mathcal{Q} w)+G(w, \mathcal{Q} w, \mathcal{Q} w)}{2}\right\} \\
& \quad \geq \min \left\{\mathcal{G}\left(x_{n_{t}}, w, w\right), \mathcal{G}(w, \mathcal{Q} w, \mathcal{Q} w)\right\} . \tag{2.15}
\end{align*}
$$

Letting $t \rightarrow \infty$ in (2.15), we have

$$
\begin{equation*}
\xi(\mathcal{G}(w, \mathcal{Q} w, \mathcal{Q} w) \geq \mathcal{G}(w, \mathcal{Q} w, \mathcal{Q} w) \tag{2.16}
\end{equation*}
$$

By definition of ξ, we obtain

$$
\begin{equation*}
\xi(\mathcal{G}(w, \mathcal{Q} w, \mathcal{Q} w))<\mathcal{G}(w, \mathcal{Q} w, \mathcal{Q} w) \tag{2.17}
\end{equation*}
$$

By combining (2.16) and (2.17), we have

$$
\mathcal{G}(w, \mathcal{Q} w, \mathcal{Q} w) \leq \xi(\mathcal{G}(w, \mathcal{Q} w, \mathcal{Q} w))<\mathcal{G}(w, \mathcal{Q} w, \mathcal{Q} w)
$$

which is a contradiction. So $\mathcal{Q} w=w$. Hence, w is a fixed point of \mathcal{Q}.

3. Conclusion

In this manuscript, some common fixed point theorems are proved for (ξ, β) expansive mappings of type (S) and type (T) using control function and β admissible function in \mathcal{G}-metric space.

References

[1] A.H. Ansari and A. Razani, Some fixed point theorems for C-class functions in b-metric spaces, Sahand Comm. Math. Anal., 10(1) (2018), 85-96.
[2] S. Arora, M. Kumar and S. Mishra, A new type of coincidence and common fixedpoint theorems for modified α-admissible Z-contraction via simulation function, J. Math. Fund. Sci., 52(1) (2020), 27-42.
[3] L.B. Budhia, H. Aydi, A.H. Ansari and D. Gopal, Some new fixed point results in rectangular metric spaces with an application to fractional-order functional differential equations, Nonlinear Anal. Model. Control, 25(4) (2020), 580-597.
[4] D. Gopal, M. Abbas, D.K. Patel and C. Vetro, Fixed points of α-type F-contractive mappings with an application to nonlinear fractional differential equation, Acta Math. Sci., 36(3) (2016), 957-970.
[5] D. Gopal and H. Huang, A note on some recent fixed point theorems for expansion mappings, J. Adv. Math. Stud., 9(1) (2016), 94-98.
[6] M. Imdad, J. Ali and V. Popa, Impact of occasionally weakly compatible property on common fixed point theorems for expansive mappings, Filomat, 25(2) (2011), 79-89.
[7] K. Jyoti and A. Rani, Fixed point theorem for expansive mappings in digital metric spaces, Asian J. Math.Comput. Research, 24(2) (2018), 56-66.
[8] E. Karapinar, Discussion on $\alpha-\psi$ contractions on generalized metric spaces, Abs. Appl. Anal., Article ID 962784, (2014), 1-7.
[9] M. Kumar, S. Arora, M. Imdad and W.M. Alfaqih, Coincidence and common fixed point results via simulation functions in G-metric spaces, Fixed Point Theor. Appl., 19 (2019), 288-300.
[10] Z. Mustafa, F. Awawdeh and W. Shatanawi, Fixed point theorem for expansive mappings in G-metric spaces, Int. J. Contemp. Math. Sciences, 5(50) (2010), 2463-2472.
[11] H. Piri and P. Kumam, Wardowski type fixed point theorems in complete metric spaces, Fixed Point Theory and Appl., 45 (2016), 1-12.
[12] Poonam, S. Garg and S. Kumar, Fixed points for $\zeta-\alpha$ expansive mapping in 2-metric spaces, Int. J. Math. Stat. Invention, 2(5) (2014), 55-58.
[13] B. Samet, C. Vetro and P. Vetro, Fixed point theorem for $(\alpha-\psi)$-contractive type mappings, Nonlinear Anal. TMA., 75 (2012), 2154-2165.
[14] S. Shabani and A. Razani, Global optimal solutions for noncyclic mappings in G-metric spaces, Miskolc Math. Notes, 14(1) (2013), 255-263.
[15] P. Shahi, J. Kaur and S.S. Bhatia, Fixed point theorems for (ξ, α)-expansive mappings in complete metric spaces, Fixed Point Theory Appl., 157 (2012), 1-12.

[^0]: ${ }^{0}$ Received August 18, 2020. Revised November 5, 2020. Accepted April 10, 2021.
 ${ }^{0} 2010$ Mathematics Subject Classification: $47 \mathrm{H} 10,54 \mathrm{H} 25$.
 ${ }^{0}$ Keywords: β-admissible function, expansive mapping, \mathcal{G}-metric space, fixed point.
 ${ }^{0}$ Corresponding author: M. Kumar(manojantil18@gmail.com).

