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Abstract. In this paper, some fixed point theorems for new type of (ξ, β)-expansive map-

pings of type (S) and type (T) using control function and β-admissible function in G-metric

spaces are proved. Further, we prove certain fixed point results by relaxing the continuity

condition.

1. Introduction

In 2011, Imdad et al. [6] generalized some common fixed point results for
expansive mappings in symmetric spaces. Afterwards, some researchers estab-
lished fixed point results for expansive mappings in complete metric spaces,
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cone metric spaces and 2-metric spaces (see [5], [12], [15]). In 2013, Sha-
bani and Razani [14] investigated the solutions of minimization problem for
noncyclic functions in the context of G-metric spaces. In 2014, Karapinar [8]
proved some interesting results for (ξ, α)-contractive mappings in generalized
metric space. In 2010, Mustafa et al. [10] proved some fixed point results for
expansive mappings in G-metric spaces.

Afterwards, many researchers proved some fixed point results for another
sort of contraction known as F -Suzuki contraction and α-type F -contraction
in metric spaces and G-metric spaces (see [2], [4], [9], [11]). In 2018, Jyoti et
al. [7] introduced the notion of (β, ξ, φ)-expansive mappings in digital metric
space. After then, some researchers established fixed point results in Hausdorff
rectangular metric spaces and b-metric spaces with the help of C-functions (see
[1], [3]).

Lemma 1.1. Let {xn} be a Cauchy sequence in (H,G) with limn→∞ G(xn, u, u)
= 0. Then G(xn, t, t) = G(u, t, t) for every t ∈ H.

Definition 1.2. ([13]) Let Ψ be the family of functions ψ : [0,+∞)→ [0,+∞)
satisfying the followings:

(i) ψ is upper semi-continuous and strictly increasing;
(ii) {ψn(κ)} tend to 0 as n→∞ for all κ > 0;

(iii) ψ(κ) < κ for all κ > 0.

These functions are known as comparison functions.

Definition 1.3. ([13]) Let h : H → H be a given self-map in a metric space
(H, $). Then, h is said to be an (α,ψ)-contraction if there exist two maps
ψ ∈ Ψ and α : H×H → [0,+∞) such that

α(x, z)$(hx, hz) ≤ ψ($(x, z)),

for all x, z ∈ H.

In 2012, Samet et al. introduced the notion of β-admissible functions as
follows:

Definition 1.4. ([13]) Let H : H → H and β : H×H×H → [0,+∞). Then,
H is said to be a β-admissible if β(e, k, k) ≥ 1, then β(He,Hk,Hk) ≥ 1, for
all e, k ∈ H.

2. Main results

In this section, we introduce (ξ, β)-expansive mappings of type (S) and type
(T) and prove some fixed point theorems in a G-metric space with the help of
a β-admissible function.
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Definition 2.1. Let Q : H → H be a function in (H,G). Then, Q is said to
be a (ξ, β)-expansive mapping of type (S) if there are two mappings ξ ∈ Φ
and β : H×H×H → [0,∞] such that

ξ(G(Qx,Qy,Qz)) ≥ β(x, y, z) min{G(x, y, z),G(x,Qx,Qx),G(y,Qy,Qy),

G(z,Qz,Qz),G(x,Qy,Qy),G(y,Qz,Qz)},
(2.1)

where Φ denote the class of all the mappings ξ : [0,∞)→ [0,∞) satisfying the
followings:

(i) ξ is upper semi-continuous;
(ii) ξ(κ) < κ for any κ > 0;

(iii) {ξn(κ)} converges to zero when n→∞ for every κ > 0.

Definition 2.2. Let Q : H → H be a function in (H,G). Then, Q is known
as (ξ, β)-expansive function of type (T ) if there exist two mappings ξ ∈ Φ and
β : H×H×H → [0,∞] such that

ξ(G(Qx,Qy,Qz)) ≥ β(x, y, z) min
{
G(x, y, z),

G(x,Qz,Qz) + G(z,Qy,Qy)

2

}
.

(2.2)

Theorem 2.3. Let Q : H → H be (ξ, β)-expansive mapping of type (S) in
(H,G) which is complete, symmetrical, one to one and onto. Also, Q satisfies
the following conditions:

(i) Q is continuous;
(ii) Q−1 is β-admissible and there exist x0 ∈ H such that

β(x0,Q−1x0,Q−1x0) ≥ 1, β(x0,Q−2x0,Q−2x0) ≥ 1.

Then, Q has a fixed point in H.

Proof. Let {xn} be the sequence such that Qxn+1 = xn, for every n ∈ Z+. If
there exists a positive integer n such that xn = xn+1, then Qxn = xn. So, xn
is a fixed point of Q.

Let us assume that xn+1 6= xn, for every n ∈ Z+. Then,

G(xn+1, xn, xn) > 0, ∀n ∈ Z+.

From the assumption of the theorem, we have

β(x0,Q−1x0,Q−1x0) = β(x0, x1, x1) ≥ 1.

Since Q−1 is β-admissible, we have

β(Q−1x0,Q−1x1,Q−1x1) = β(x1, x2, x2) ≥ 1.

By induction on n,, we have

β(xn, xn+1, xn+1) ≥ 1. (2.3)
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Proceeding in the same way, we obtain

β(x0,Q−2x0,Q−2x0) = β(x0, x2, x2) ≥ 1

and

β(Q−1x0,Q−2x2,Q−2x2) = β(x1, x3, x3) ≥ 1.

By repeating the same process, we obtain

β(xn, xn+2, xn+2) ≥ 1.

Now, we claim that limn→∞ G(xn, xn+1, xn+1) = 0.
Putting x = xn and y = z = xn+1 in (2.1), we get

ξ(G(Qxn,Qxn+1,Qxn+1))

≥ β(xn, xn+1, xn+1) min{G(xn, xn+1, xn+1),G(xn,Qxn,Qxn),

G(xn+1,Qxn+1,Qxn+1),G(xn+1,Qxn+1,Qxn+1),

G(xn,Qxn+1,Qxn+1),G(xn+1,Qxn+1,Qxn+1)}.
Therefore, we have

ξ(G(Qxn,Qxn+1,Qxn+1))

≥ β(xn, xn+1, xn+1) min{G(xn, xn+1, xn+1),G(xn, xn−1, xn−1),

G(xn+1, xn, xn),G(xn+1, xn, xn)G(xn, xn, xn),G(xn+1, xn, xn)}.
By using definition of ξ, we get

G(xn−1, xn, xn) > ξ(G(Qxn,Qxn+1,Qxn+1)).

Therefore, we get

G(xn−1, xn, xn)

> β(xn, xn+1, xn+1) min{G(xn, xn+1, xn+1),G(xn, xn−1, xn−1),

G(xn+1, xn, xn),G(xn+1, xn, xn),G(xn, xn, xn),G(xn+1, xn, xn)}.
(2.4)

Since (H,G) is symmetrical, we have

G(xn, xn+1, xn+1) = G(xn+1, xn, xn).

By using (2.4), we obtain

G(xn−1, xn, xn) > β(xn, xn+1, xn+1)min{G(xn+1, xn, xn+1),G(xn−1, xn, xn−1)}.
If there exist n ∈ Z+ such that

min{G(xn+1, xn, xn+1),G(xn−1, xn, xn−1) = G(xn−1, xn, xn−1),

then making use of (2.3), the above inequality is equivalent to

G(xn−1, xn, xn) > G(xn−1, xn−1, xn),

a contradiction.
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Consequently, we have

min{G(xn+1, xn, xn+1),G(xn−1, xn, xn−1) = G(xn+1, xn, xn+1).

Therefore, we have

G(xn−1, xn, xn) > ξ(G(Qxn,Qxn+1,Qxn+1)) ≥ G(xn, xn+1, xn+1),

which gives that

G(xn, xn+1, xn+1) < G(xn−1, xn, xn). (2.5)

Using mathematical induction, we obtain

G(xn, xn+1, xn+1) ≤ ξnG(x0, x1, x1).

It follows from the definition of ξ that

lim
n→∞

G(xn, xn+1, xn+1) = 0.

Next, we assert that

lim
n→∞

G(xn, xn+2, xn+2) = 0.

Putting x = xn and y = z = xn+2 in (2.1), we get

ξ(G(Qxn,Qxn+2,Qxn+2))

≥ β(xn, xn+2, xn+2) min{G(xn, xn+2, xn+2),G(xn,Qxn,Qxn),

G(xn+2,Qxn+2,Qxn+2),G(xn+2,Qxn+2,Qxn+2),

G(xn,Qxn+2,Qxn+2),G(xn+2,Qxn+2,Qxn+2)}.
Therefore,

ξ(G(Qxn,Qxn+2,Qxn+2))

≥ β(xn, xn+2, xn+2 min{G(xn, xn+2, xn+2),G(xn, xn−1, xn−1),

G(xn+2, xn+1, xn+1),G(xn+2, xn+1, xn+1),

G(xn, xn+1, xn+1),G(xn+2, xn+1, xn+1)}.
By making use of definition of ξ, we obtain

G(xn−1, xn+1, xn+1) > ξ(G(Qxn,Qxn+2,Qxn+2)).

Therefore, we have

G(xn−1, xn+1, xn+1)

> β(xn, xn+2, xn+2) min{G(xn, xn+2, xn+2),G(xn, xn−1, xn−1),

G(xn+2, xn+1, xn+1),G(xn+2, xn+1, xn+1),

G(xn, xn+1, xn+1),G(xn+2, xn+1, xn+1)}.

(2.6)

Since (H,G) is symmetrical and utilizing (2.3), (2.5), we have

G(xn−1, xn+1, xn+1) > min{G(xn, xn+1, xn+1),G(xn−1, xn, xn)}. (2.7)
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Let pn = G(xn+1, xn+3, xn+3) and qn = G(xn+2, xn+3, xn+3). Then, from
(2.7), we conclude that

pn−2 = G(xn−1, xn+1, xn+1)

> ξ(G(xn−1, xn+1, xn+1))

= ξ(G(Qxn,Qxn+2,Qxn+2))

≥ min{G(xn, xn+1, xn+1),G(xn−1, xn, xn)}
= min{pn−1, qn−1}.

From (2.5), we have

qn−2 ≥ qn−1 ≥ min{pn−1, qn−1}.

Therefore, we conclude that

min{pn−2, qn−2} ≥ min{pn−1, qn−1}.

Hence, the sequence {min{pn, qn}} is monotonically decreasing sequence. There-
fore, the sequence converges to ` ≥ 0.

Let us assume that ` > 0. Then, we have

lim
n→∞

sup(pn) = lim
n→∞

sup(min{pn, qn}) = lim
n→∞

min{pn, qn} = `.

Using (2.7), we get

` = lim
n→∞

sup(pn−2)

> lim
n→∞

sup(ξ(G(xn−1, xn+1, xn+1)))

≥ lim
n→∞

sup(min{pn−1, qn−1} = `,

which is a contradiction. Therefore, we get

G(xn, xn+2, xn+2) = 0.

Now, we assert that xa 6= xb, for each a 6= b. Suppose, on the contrary that
xa = xb for some a, b ∈ Z+ where a 6= b. Let us suppose that a > b. Then

ξ(G(xb, xb−1, xb−1)) = ξ(G(xb,Qxb,Qxb))
= ξ(G(xa,Qxa,Qxa))

= ξ(G(Qxa+1,Qxa,Qxa))

≥ β(xa+1, xa, xa)H(xn+1, xn, xn)

≥ H(xn+1, xn, xn),
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where

H(xn+1, xn, xn)

= min{G(xa+1, xa, xa),G(xa+1,Qxa+1,Qxa+1),G(xa,Qxa,Qxa),

G(xa,Qxa,Qxa),G(xa+1,Qxa,Qxa),G(xa,Qxa,Qxa)}
= min{G(xa+1, xa, xa),G(xa+1, xa, xa),G(xa, xa−1, xa−1),

G(xa, xa−1, xa−1),G(xa+1, xa−1, xa−1),G(xa, xa−1, xa−1)}
= min{G(xa+1, xa, xa),G(xa, xa−1, xa−1)}.

If min{G(xa+1, xa, xa),G(xa, xa−1, xa−1)} = G(xa+1, xa, xa), then we have

ξ(G(xb, xb−1, xb−1)) ≥ G(xa+1, xa, xa),

implies that

G(xa+1, xa, xa) ≤ ξ(G(xb, xb−1, xb−1))

≤ ξb−aG(xa+1, xa, xa). (2.8)

If min{G(xa+1, xa, xa),G(xa, xa−1, xa−1)} = G(xa, xa−1, xa−1), then we have

ξ(G(xb, xb−1, xb−1)) ≥ G(xa, xa−1, xa−1),

that is,

G(xa, xa−1, xa−1) ≤ ξ(G(xb, xb−1, xb−1))

≤ ξb−a+1G(xa, xa−1, xa−1). (2.9)

Using (2.8) and (2.9), we have

G(xa+1, xa, xa) ≤ ξb−aG(xa+1, xa, xa)

and

G(xa, xa−1, xa−1) ≤ ξb−a+1G(xa, xa−1, xa−1).

In both cases, this is a contradiction. So, xa 6= xb, for each a 6= b.
Next, we assert that {xn} is a Cauchy sequence, that is,

lim
n→∞

G(xn, xn+m, xn+m) = 0. (2.10)

We have proved (2.10) for cases m = 1 and m = 2, respectively.
Let us take m ≥ 3. Now, two cases arise.

Case 1 : For m = 2r where r ≥ 2.
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Using (2.8) and definition of (H,G), we obtain

G(xn, xn+m, xn+m) = G(xn, xn+2r, xn+2r)

≤ G(xn, xn+2, xn+2) + G(xn+2, xn+3, xn+3)

+ · · ·+ G(xn+2r−1, xn+2r, xn+2r)

≤ G(xn, xn+2, xn+2) +
n+2r−1∑
d=n+2

ξd(G(x0, x1, x1))

≤ G(xn, xn+2, xn+2) +
∞∑
d=n

ξd(G(x0, x1, x1))

→ 0 as n→∞.
Case 2 : For m = 2r + 1 where r ≥ 1.

Using (2.8) and definition of (H,G), we obtain

G(xn, xn+m, xn+m) = G(xn, xn+2r+1, xn+2r+1)

≤ G(xn, xn+1, xn+1) + G(xn+1, xn+2, xn+2)

+ · · ·+ G(xn+2r, xn+2r+1, xn+2r+1)

≤
n+2r∑
d=n

ξd(G(x0, x1, x1))

≤
∞∑
d=n

ξd(G(x0, x1, x1))

→ 0 as n→∞.
In both cases limn→∞ G(xn, xn+m, xn+m) = 0, which yields that {xn} is Cauchy.
Since (H,G) is complete, there exist u ∈ H such that

lim
n→∞

G(xn, u, u) = 0.

Using the first assumption of the Theorem 2.3, we get

lim
n→∞

G(Qxn,Qu,Qu) = lim
n→∞

G(xn+1,Qu,Qu) = 0.

Therefore, we haveQu = limn→∞ xn+1 = u. So, Q has a fixed point u ∈ H. �

Theorem 2.4. Let Q : H → H be a (ξ, β)-expansive mapping of type (T) in
(H,G), which is complete, symmetrical, one to one and onto. Also, Q satisfies
the conditions of Theorem 2.3. Then, Q has a fixed point in H.

Proof. Let {xn} be a sequence such that Qxn+1 = xn, for each n ∈ Z+. Then,
by using Theorem 2.3, we get

β(xn, xn+2, xn+2) ≥ 1.
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Next, we assert that limn→∞ G(xn+1, xn, xn+1) = 0.
Putting x = xn and y = z = xn+1 in (2.1), we get

ξ(G(Qxn,Qxn+1,Qxn+1))

= ξ(G(Qxn,Qxn+1,Qxn+1))

≥ β(xn, xn+1, xn+1) min
{
G(xn, xn+1, xn+1),

G(xn+1,Qxn+1,Qxn+1) + G(xn+1Qxn+1,Qxn+1)

2

}
= β(xn, xn+1, xn+1) min{G(xn, xn, xn),G(xn+1, xn, xn)}.

By using identical steps as in proof of Theorem 2.3, we can show that Q has
a fixed point in H. �

Theorem 2.5. Let Q : H → H be a (ξ, β)-expansive mapping of type (S) in
(H,G), which is complete, symmetrical, one to one and onto. Also, Q satisfies
the following conditions:

(i) If {xn} is a sequence in H such that β(xn, xn+1, xn+1) ≥ 1 and {xn}
tends to x when n→∞, then there exist a subsequence {xnt} of {xn}
in order that β(xnt , x, x) ≥ 1;

(ii) Q−1 is β-admissible and there exists x0 ∈ H such that
β(x0,Q−1x0,Q−1x0) ≥ 1, β(x0,Q−2x0,Q−2x0) ≥ 1.

Then, Q has a fixed point in H.

Proof. Let {xn} be the sequence in H such that xn = Qxn+1. By using
identical steps as in proof of Theorem 2.3, we can prove that {xn} is a Cauchy
sequence in H, which converges to w ∈ H.

Using Lemma 1.1, we have

lim
n→∞

G(xnt+1,Qw,Qw) = G(w,Qw,Qw). (2.11)

Now, we assert that Qw = w. Assume on the contrary that Qw 6= w. Using
the assumption (i) of the Theorem 2.5, there exist a subsequence {xnt} of {xn}
such that β(xnt , w, w) ≥ 1. Letting t→∞ and using (2.1), (2.11), we obtain

G(xnt−1, w, w)

> ξ(G(Qxnt ,Qw,Qw)

≥ β(xnt , w, w) min{G(xnt , w, w),G(xnt ,Qxnt ,Qxnt),

G(w,Qw,Qw),G(w,Qw,Qw),G(xnt ,Qw,Qw),G(w,Qw,Qw)}
≥ min{G(xnt , w, w),G(xnt , xnt−1, xnt−1),G(w,Qw,Qw),

G(w,Qw,Qw),G(xnt ,Qw,Qw),G(w,Qw,Qw)}
≥ G(w,Qw,Qw). (2.12)
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By definition of ξ, we obtain

ξ(G(w,Qw,Qw)) < G(w,Qw,Qw). (2.13)

By combining (3.12) and (3.13), we have

G(w,Qw,Qw) ≤ ξ(G(w,Qw,Qw)) < G(w,Qw,Qw),

which is a contradiction. So, Qw = w. Hence, w is a fixed point of Q. �

Theorem 2.6. Let Q : H → H be a (ξ, β)-expansive mapping of type(T) in
(H,G) which is complete, symmetrical, one to one and onto. Also, Q satisfies
the conditions of Theorem 2.5. Then, Q has a fixed point in H.

Proof. Let {xn} a sequence in H such that xn = Qxn+1. By using identical
steps as in proof of Theorem 2.4, we can prove that {xn} is a cauchy sequence
in H, which converges to w ∈ H.

Using Lemma 1.1, we have

lim
n→∞

G(xnt+1,Qw,Qw) = G(w,Qw,Qw). (2.14)

Now, we claim that Qw = w. Suppose on the contrary that Qw 6= w.
Letting t→∞, using (2.1) and (2.14), we obtain

G(xnt−1, w, w)

> ξ(G(Qxnt ,Qw,Qw)

≥ β(xnt , w, w) min
{
G(xnt , w, w),

G(w,Qw,Qw)+G(w,Qw,Qw)

2

}
≥ min{G(xnt , w, w),G(w,Qw,Qw)}. (2.15)

Letting t→∞ in (2.15), we have

ξ(G(w,Qw,Qw) ≥ G(w,Qw,Qw). (2.16)

By definition of ξ, we obtain

ξ(G(w,Qw,Qw)) < G(w,Qw,Qw). (2.17)

By combining (2.16) and (2.17), we have

G(w,Qw,Qw) ≤ ξ(G(w,Qw,Qw)) < G(w,Qw,Qw),

which is a contradiction. So Qw = w. Hence, w is a fixed point of Q. �

3. Conclusion

In this manuscript, some common fixed point theorems are proved for (ξ, β)-
expansive mappings of type (S) and type (T ) using control function and β-
admissible function in G-metric space.
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