Nonlinear Functional Analysis and Applications Vol. 26, No. 5 (2021), pp. 949-959 ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2021.26.05.06 http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright © 2021 Kyungnam University Press

FIXED POINT THEOREMS FOR (ξ, β) -EXPANSIVE MAPPING IN *G*-METRIC SPACE USING CONTROL FUNCTION

Jyoti Yadav¹, Manoj Kumar², Reena³, Mohammad Imdad⁴ and Sahil Arora⁵

¹Department of Mathematics Lords University Alwar Rajasthan, India e-mail: jyotiy744@gmail.com

²Department of Mathematics Baba Mastnath University, Asthal Bohar, Rohtak, Haryana, India e-mail: manojantil180gmail.com

³Department of Mathematics Prarambh State Institute of Advanced Studies in Teacher Education, Haryana, India e-mail: takshakreena@gmail.com

> ⁴Department of Mathematics Aligarh Muslim University, Aligarh, India e-mail: mhimdad@gmail.com

⁵Department of Mathematics K.R.M. D.A.V. College Nakodar, 144040, Punjab, India e-mail: sahil.sahil2130gmail.com

Abstract. In this paper, some fixed point theorems for new type of (ξ, β) -expansive mappings of type (S) and type (T) using control function and β -admissible function in \mathcal{G} -metric spaces are proved. Further, we prove certain fixed point results by relaxing the continuity condition.

1. INTRODUCTION

In 2011, Imdad et al. [6] generalized some common fixed point results for expansive mappings in symmetric spaces. Afterwards, some researchers established fixed point results for expansive mappings in complete metric spaces,

⁰Received August 18, 2020. Revised November 5, 2020. Accepted April 10, 2021.

⁰2010 Mathematics Subject Classification: 47H10, 54H25.

⁰Keywords: β -admissible function, expansive mapping, \mathcal{G} -metric space, fixed point.

⁰Corresponding author: M. Kumar(manojantil18@gmail.com).

cone metric spaces and 2-metric spaces (see [5], [12], [15]). In 2013, Shabani and Razani [14] investigated the solutions of minimization problem for noncyclic functions in the context of \mathcal{G} -metric spaces. In 2014, Karapinar [8] proved some interesting results for (ξ, α) -contractive mappings in generalized metric space. In 2010, Mustafa et al. [10] proved some fixed point results for expansive mappings in \mathcal{G} -metric spaces.

Afterwards, many researchers proved some fixed point results for another sort of contraction known as *F*-Suzuki contraction and α -type *F*-contraction in metric spaces and \mathcal{G} -metric spaces (see [2], [4], [9], [11]). In 2018, Jyoti et al. [7] introduced the notion of (β, ξ, ϕ) -expansive mappings in digital metric space. After then, some researchers established fixed point results in Hausdorff rectangular metric spaces and *b*-metric spaces with the help of *C*-functions (see [1], [3]).

Lemma 1.1. Let $\{x_n\}$ be a Cauchy sequence in $(\mathcal{H}, \mathcal{G})$ with $\lim_{n\to\infty} \mathcal{G}(x_n, u, u) = 0$. Then $\mathcal{G}(x_n, t, t) = \mathcal{G}(u, t, t)$ for every $t \in \mathcal{H}$.

Definition 1.2. ([13]) Let Ψ be the family of functions $\psi : [0, +\infty) \to [0, +\infty)$ satisfying the followings:

- (i) ψ is upper semi-continuous and strictly increasing;
- (ii) $\{\psi^n(\kappa)\}\$ tend to 0 as $n \to \infty$ for all $\kappa > 0$;
- (iii) $\psi(\kappa) < \kappa$ for all $\kappa > 0$.

These functions are known as comparison functions.

Definition 1.3. ([13]) Let $h : \mathcal{H} \to \mathcal{H}$ be a given self-map in a metric space (\mathcal{H}, ϖ) . Then, h is said to be an (α, ψ) -contraction if there exist two maps $\psi \in \Psi$ and $\alpha : \mathcal{H} \times \mathcal{H} \to [0, +\infty)$ such that

$$\alpha(x, z)\varpi(hx, hz) \le \psi(\varpi(x, z)),$$

for all $x, z \in \mathcal{H}$.

In 2012, Samet et al. introduced the notion of β -admissible functions as follows:

Definition 1.4. ([13]) Let $H : \mathcal{H} \to \mathcal{H}$ and $\beta : \mathcal{H} \times \mathcal{H} \to [0, +\infty)$. Then, H is said to be a β -admissible if $\beta(e, k, k) \ge 1$, then $\beta(He, Hk, Hk) \ge 1$, for all $e, k \in \mathcal{H}$.

2. Main results

In this section, we introduce (ξ, β) -expansive mappings of type (S) and type (T) and prove some fixed point theorems in a \mathcal{G} -metric space with the help of a β -admissible function.

Definition 2.1. Let $Q : \mathcal{H} \to \mathcal{H}$ be a function in $(\mathcal{H}, \mathcal{G})$. Then, Q is said to be a (ξ, β) -expansive mapping of type (S) if there are two mappings $\xi \in \Phi$ and $\beta : \mathcal{H} \times \mathcal{H} \times \mathcal{H} \to [0, \infty]$ such that

$$\xi(\mathcal{G}(\mathcal{Q}x, \mathcal{Q}y, \mathcal{Q}z)) \ge \beta(x, y, z) \min\{\mathcal{G}(x, y, z), \mathcal{G}(x, \mathcal{Q}x, \mathcal{Q}x), \mathcal{G}(y, \mathcal{Q}y, \mathcal{Q}y), \mathcal{G}(z, \mathcal{Q}z, \mathcal{Q}z), \mathcal{G}(x, \mathcal{Q}y, \mathcal{Q}y), \mathcal{G}(y, \mathcal{Q}z, \mathcal{Q}z)\},$$

$$(2.1)$$

where Φ denote the class of all the mappings $\xi : [0, \infty) \to [0, \infty)$ satisfying the followings:

- (i) ξ is upper semi-continuous;
- (ii) $\xi(\kappa) < \kappa$ for any $\kappa > 0$;
- (iii) $\{\xi^n(\kappa)\}$ converges to zero when $n \to \infty$ for every $\kappa > 0$.

Definition 2.2. Let $Q : \mathcal{H} \to \mathcal{H}$ be a function in $(\mathcal{H}, \mathcal{G})$. Then, Q is known as (ξ, β) -expansive function of type (T) if there exist two mappings $\xi \in \Phi$ and $\beta : \mathcal{H} \times \mathcal{H} \times \mathcal{H} \to [0, \infty]$ such that

$$\xi(\mathcal{G}(\mathcal{Q}x,\mathcal{Q}y,\mathcal{Q}z)) \ge \beta(x,y,z) \min\left\{\mathcal{G}(x,y,z), \frac{\mathcal{G}(x,\mathcal{Q}z,\mathcal{Q}z) + \mathcal{G}(z,\mathcal{Q}y,\mathcal{Q}y)}{2}\right\}.$$
(2.2)

Theorem 2.3. Let $Q : \mathcal{H} \to \mathcal{H}$ be (ξ, β) -expansive mapping of type (S) in $(\mathcal{H}, \mathcal{G})$ which is complete, symmetrical, one to one and onto. Also, Q satisfies the following conditions:

- (i) Q is continuous;
- (ii) \mathcal{Q}^{-1} is β -admissible and there exist $x_0 \in \mathcal{H}$ such that $\beta(x_0, \mathcal{Q}^{-1}x_0, \mathcal{Q}^{-1}x_0) \ge 1, \ \beta(x_0, \mathcal{Q}^{-2}x_0, \mathcal{Q}^{-2}x_0) \ge 1.$

Then, Q has a fixed point in H.

Proof. Let $\{x_n\}$ be the sequence such that $\mathcal{Q}x_{n+1} = x_n$, for every $n \in \mathbb{Z}_+$. If there exists a positive integer n such that $x_n = x_{n+1}$, then $\mathcal{Q}x_n = x_n$. So, x_n is a fixed point of \mathcal{Q} .

Let us assume that $x_{n+1} \neq x_n$, for every $n \in \mathbb{Z}_+$. Then,

$$\mathcal{G}(x_{n+1}, x_n, x_n) > 0, \ \forall n \in \mathbf{Z}_+.$$

From the assumption of the theorem, we have

$$\beta(x_0, \mathcal{Q}^{-1}x_0, \mathcal{Q}^{-1}x_0) = \beta(x_0, x_1, x_1) \ge 1$$

Since \mathcal{Q}^{-1} is β -admissible, we have

$$\beta(\mathcal{Q}^{-1}x_0, \mathcal{Q}^{-1}x_1, \mathcal{Q}^{-1}x_1) = \beta(x_1, x_2, x_2) \ge 1.$$

By induction on n, we have

$$\beta(x_n, x_{n+1}, x_{n+1}) \ge 1. \tag{2.3}$$

Proceeding in the same way, we obtain

$$\beta(x_0, \mathcal{Q}^{-2}x_0, \mathcal{Q}^{-2}x_0) = \beta(x_0, x_2, x_2) \ge 1$$

and

$$\beta(\mathcal{Q}^{-1}x_0, \mathcal{Q}^{-2}x_2, \mathcal{Q}^{-2}x_2) = \beta(x_1, x_3, x_3) \ge 1.$$

By repeating the same process, we obtain

$$\beta(x_n, x_{n+2}, x_{n+2}) \ge 1.$$

Now, we claim that $\lim_{n\to\infty} \mathcal{G}(x_n, x_{n+1}, x_{n+1}) = 0$. Putting $x = x_n$ and $y = z = x_{n+1}$ in (2.1), we get

$$\begin{split} \xi(\mathcal{G}(\mathcal{Q}x_{n}, \mathcal{Q}x_{n+1}, \mathcal{Q}x_{n+1})) \\ &\geq \beta(x_{n}, x_{n+1}, x_{n+1}) \min\{\mathcal{G}(x_{n}, x_{n+1}, x_{n+1}), \mathcal{G}(x_{n}, \mathcal{Q}x_{n}, \mathcal{Q}x_{n}), \\ \mathcal{G}(x_{n+1}, \mathcal{Q}x_{n+1}, \mathcal{Q}x_{n+1}), \mathcal{G}(x_{n+1}, \mathcal{Q}x_{n+1}, \mathcal{Q}x_{n+1}), \\ \mathcal{G}(x_{n}, \mathcal{Q}x_{n+1}, \mathcal{Q}x_{n+1}), \mathcal{G}(x_{n+1}, \mathcal{Q}x_{n+1}, \mathcal{Q}x_{n+1})\}. \end{split}$$

Therefore, we have

$$\begin{aligned} &\xi(\mathcal{G}(\mathcal{Q}x_{n},\mathcal{Q}x_{n+1},\mathcal{Q}x_{n+1})) \\ &\geq \beta(x_{n},x_{n+1},x_{n+1}) \min\{\mathcal{G}(x_{n},x_{n+1},x_{n+1}),\mathcal{G}(x_{n},x_{n-1},x_{n-1}), \\ &\mathcal{G}(x_{n+1},x_{n},x_{n}),\mathcal{G}(x_{n+1},x_{n},x_{n})\mathcal{G}(x_{n},x_{n},x_{n}),\mathcal{G}(x_{n+1},x_{n},x_{n})\}. \end{aligned}$$

By using definition of ξ , we get

$$\mathcal{G}(x_{n-1}, x_n, x_n) > \xi(\mathcal{G}(\mathcal{Q}x_n, \mathcal{Q}x_{n+1}, \mathcal{Q}x_{n+1}))$$

Therefore, we get

$$\begin{aligned}
\mathcal{G}(x_{n-1}, x_n, x_n) \\
> \beta(x_n, x_{n+1}, x_{n+1}) \min\{\mathcal{G}(x_n, x_{n+1}, x_{n+1}), \mathcal{G}(x_n, x_{n-1}, x_{n-1}), \\
\mathcal{G}(x_{n+1}, x_n, x_n), \mathcal{G}(x_{n+1}, x_n, x_n), \mathcal{G}(x_n, x_n, x_n), \mathcal{G}(x_{n+1}, x_n, x_n)\}.
\end{aligned}$$
(2.4)

Since $(\mathcal{H}, \mathcal{G})$ is symmetrical, we have

$$\mathcal{G}(x_n, x_{n+1}, x_{n+1}) = \mathcal{G}(x_{n+1}, x_n, x_n).$$

By using (2.4), we obtain

$$\mathcal{G}(x_{n-1}, x_n, x_n) > \beta(x_n, x_{n+1}, x_{n+1}) \min\{\mathcal{G}(x_{n+1}, x_n, x_{n+1}), \mathcal{G}(x_{n-1}, x_n, x_{n-1})\}$$

If there exist $n \in \mathbf{Z}_+$ such that

$$\min\{\mathcal{G}(x_{n+1}, x_n, x_{n+1}), \mathcal{G}(x_{n-1}, x_n, x_{n-1}) = \mathcal{G}(x_{n-1}, x_n, x_{n-1}),$$

then making use of (2.3), the above inequality is equivalent to

$$\mathcal{G}(x_{n-1}, x_n, x_n) > \mathcal{G}(x_{n-1}, x_{n-1}, x_n),$$

a contradiction.

Consequently, we have

$$\min\{\mathcal{G}(x_{n+1}, x_n, x_{n+1}), \mathcal{G}(x_{n-1}, x_n, x_{n-1}) = \mathcal{G}(x_{n+1}, x_n, x_{n+1})\}$$

Therefore, we have

$$\mathcal{G}(x_{n-1}, x_n, x_n) > \xi(\mathcal{G}(\mathcal{Q}x_n, \mathcal{Q}x_{n+1}, \mathcal{Q}x_{n+1})) \ge \mathcal{G}(x_n, x_{n+1}, x_{n+1}),$$

which gives that

$$\mathcal{G}(x_n, x_{n+1}, x_{n+1}) < \mathcal{G}(x_{n-1}, x_n, x_n).$$
 (2.5)

Using mathematical induction, we obtain

$$\mathcal{G}(x_n, x_{n+1}, x_{n+1}) \le \xi^n \mathcal{G}(x_0, x_1, x_1).$$

It follows from the definition of ξ that

$$\lim_{n \to \infty} \mathcal{G}(x_n, x_{n+1}, x_{n+1}) = 0.$$

Next, we assert that

$$\lim_{n \to \infty} \mathcal{G}(x_n, x_{n+2}, x_{n+2}) = 0.$$

Putting $x = x_n$ and $y = z = x_{n+2}$ in (2.1), we get

$$\begin{aligned} \xi(\mathcal{G}(\mathcal{Q}x_{n}, \mathcal{Q}x_{n+2}, \mathcal{Q}x_{n+2})) \\ &\geq \beta(x_{n}, x_{n+2}, x_{n+2}) \min\{\mathcal{G}(x_{n}, x_{n+2}, x_{n+2}), \mathcal{G}(x_{n}, \mathcal{Q}x_{n}, \mathcal{Q}x_{n}), \\ \mathcal{G}(x_{n+2}, \mathcal{Q}x_{n+2}, \mathcal{Q}x_{n+2}), \mathcal{G}(x_{n+2}, \mathcal{Q}x_{n+2}, \mathcal{Q}x_{n+2}), \\ \mathcal{G}(x_{n}, \mathcal{Q}x_{n+2}, \mathcal{Q}x_{n+2}), \mathcal{G}(x_{n+2}, \mathcal{Q}x_{n+2}, \mathcal{Q}x_{n+2})\}. \end{aligned}$$

Therefore,

$$\begin{aligned} \xi(\mathcal{G}(\mathcal{Q}x_n, \mathcal{Q}x_{n+2}, \mathcal{Q}x_{n+2})) \\ &\geq \beta(x_n, x_{n+2}, x_{n+2} \min\{\mathcal{G}(x_n, x_{n+2}, x_{n+2}), \mathcal{G}(x_n, x_{n-1}, x_{n-1}), \\ \mathcal{G}(x_{n+2}, x_{n+1}, x_{n+1}), \mathcal{G}(x_{n+2}, x_{n+1}, x_{n+1}), \\ \mathcal{G}(x_n, x_{n+1}, x_{n+1}), \mathcal{G}(x_{n+2}, x_{n+1}, x_{n+1}) \}. \end{aligned}$$

By making use of definition of ξ , we obtain

$$\mathcal{G}(x_{n-1}, x_{n+1}, x_{n+1}) > \xi(\mathcal{G}(\mathcal{Q}x_n, \mathcal{Q}x_{n+2}, \mathcal{Q}x_{n+2})).$$

Therefore, we have

 $\mathcal{G}(x_{n-1}, x_{n+1}, x_{n+1})$

$$> \beta(x_n, x_{n+2}, x_{n+2}) \min\{\mathcal{G}(x_n, x_{n+2}, x_{n+2}), \mathcal{G}(x_n, x_{n-1}, x_{n-1}), \\ \mathcal{G}(x_{n+2}, x_{n+1}, x_{n+1}), \mathcal{G}(x_{n+2}, x_{n+1}, x_{n+1}), \\ \mathcal{G}(x_n, x_{n+1}, x_{n+1}), \mathcal{G}(x_{n+2}, x_{n+1}, x_{n+1})\}.$$

$$(2.6)$$

Since $(\mathcal{H}, \mathcal{G})$ is symmetrical and utilizing (2.3), (2.5), we have

$$\mathcal{G}(x_{n-1}, x_{n+1}, x_{n+1}) > \min\{\mathcal{G}(x_n, x_{n+1}, x_{n+1}), \mathcal{G}(x_{n-1}, x_n, x_n)\}.$$
 (2.7)

Let $p_n = \mathcal{G}(x_{n+1}, x_{n+3}, x_{n+3})$ and $q_n = \mathcal{G}(x_{n+2}, x_{n+3}, x_{n+3})$. Then, from (2.7), we conclude that

$$p_{n-2} = \mathcal{G}(x_{n-1}, x_{n+1}, x_{n+1})$$

> $\xi(\mathcal{G}(x_{n-1}, x_{n+1}, x_{n+1}))$
= $\xi(\mathcal{G}(\mathcal{Q}x_n, \mathcal{Q}x_{n+2}, \mathcal{Q}x_{n+2}))$
 $\geq \min\{\mathcal{G}(x_n, x_{n+1}, x_{n+1}), \mathcal{G}(x_{n-1}, x_n, x_n)\}$
= $\min\{p_{n-1}, q_{n-1}\}.$

From (2.5), we have

$$q_{n-2} \ge q_{n-1} \ge \min\{p_{n-1}, q_{n-1}\}.$$

Therefore, we conclude that

$$\min\{p_{n-2}, q_{n-2}\} \ge \min\{p_{n-1}, q_{n-1}\}.$$

Hence, the sequence $\{\min\{p_n, q_n\}\}$ is monotonically decreasing sequence. Therefore, the sequence converges to $\ell \geq 0$.

Let us assume that $\ell > 0$. Then, we have

$$\lim_{n \to \infty} \sup(p_n) = \lim_{n \to \infty} \sup(\min\{p_n, q_n\}) = \lim_{n \to \infty} \min\{p_n, q_n\} = \ell.$$

Using (2.7), we get

$$\ell = \lim_{n \to \infty} \sup(p_{n-2})$$

>
$$\lim_{n \to \infty} \sup(\xi(\mathcal{G}(x_{n-1}, x_{n+1}, x_{n+1})))$$

>
$$\lim_{n \to \infty} \sup(\min\{p_{n-1}, q_{n-1}\} = \ell,$$

which is a contradiction. Therefore, we get

$$\mathcal{G}(x_n, x_{n+2}, x_{n+2}) = 0.$$

Now, we assert that $x_a \neq x_b$, for each $a \neq b$. Suppose, on the contrary that $x_a = x_b$ for some $a, b \in \mathbb{Z}_+$ where $a \neq b$. Let us suppose that a > b. Then

$$\begin{aligned} \xi(\mathcal{G}(x_b, x_{b-1}, x_{b-1})) &= \xi(\mathcal{G}(x_b, \mathcal{Q}x_b, \mathcal{Q}x_b)) \\ &= \xi(\mathcal{G}(x_a, \mathcal{Q}x_a, \mathcal{Q}x_a)) \\ &= \xi(\mathcal{G}(\mathcal{Q}x_{a+1}, \mathcal{Q}x_a, \mathcal{Q}x_a)) \\ &\geq \beta(x_{a+1}, x_a, x_a) H(x_{n+1}, x_n, x_n) \\ &\geq H(x_{n+1}, x_n, x_n), \end{aligned}$$

where

$$\begin{split} H(x_{n+1}, x_n, x_n) \\ &= \min\{\mathcal{G}(x_{a+1}, x_a, x_a), \mathcal{G}(x_{a+1}, \mathcal{Q}x_{a+1}, \mathcal{Q}x_{a+1}), \mathcal{G}(x_a, \mathcal{Q}x_a, \mathcal{Q}x_a), \\ &\quad \mathcal{G}(x_a, \mathcal{Q}x_a, \mathcal{Q}x_a), \mathcal{G}(x_{a+1}, \mathcal{Q}x_a, \mathcal{Q}x_a), \mathcal{G}(x_a, \mathcal{Q}x_a, \mathcal{Q}x_a)\} \\ &= \min\{\mathcal{G}(x_{a+1}, x_a, x_a), \mathcal{G}(x_{a+1}, x_a, x_a), \mathcal{G}(x_a, x_{a-1}, x_{a-1}), \\ &\quad \mathcal{G}(x_a, x_{a-1}, x_{a-1}), \mathcal{G}(x_{a+1}, x_{a-1}, x_{a-1}), \mathcal{G}(x_a, x_{a-1}, x_{a-1})\} \\ &= \min\{\mathcal{G}(x_{a+1}, x_a, x_a), \mathcal{G}(x_a, x_{a-1}, x_{a-1})\}. \end{split}$$

If $\min\{\mathcal{G}(x_{a+1}, x_a, x_a), \mathcal{G}(x_a, x_{a-1}, x_{a-1})\} = \mathcal{G}(x_{a+1}, x_a, x_a)$, then we have $\xi(\mathcal{G}(x_b, x_{b-1}, x_{b-1})) \ge \mathcal{G}(x_{a+1}, x_a, x_a),$

implies that

$$\mathcal{G}(x_{a+1}, x_a, x_a) \leq \xi(\mathcal{G}(x_b, x_{b-1}, x_{b-1})) \\
\leq \xi^{b-a} \mathcal{G}(x_{a+1}, x_a, x_a).$$
(2.8)

If $\min\{\mathcal{G}(x_{a+1}, x_a, x_a), \mathcal{G}(x_a, x_{a-1}, x_{a-1})\} = \mathcal{G}(x_a, x_{a-1}, x_{a-1})$, then we have $\xi(\mathcal{G}(x_b, x_{b-1}, x_{b-1})) \ge \mathcal{G}(x_a, x_b)$ $_{a-1}),$

$$\xi(\mathcal{G}(x_b, x_{b-1}, x_{b-1})) \ge \mathcal{G}(x_a, x_{a-1}, x_a)$$

that is,

$$\mathcal{G}(x_a, x_{a-1}, x_{a-1}) \le \xi(\mathcal{G}(x_b, x_{b-1}, x_{b-1}))$$

$$\le \xi^{b-a+1} \mathcal{G}(x_a, x_{a-1}, x_{a-1}).$$
(2.9)

Using (2.8) and (2.9), we have

$$\mathcal{G}(x_{a+1}, x_a, x_a) \le \xi^{b-a} \mathcal{G}(x_{a+1}, x_a, x_a)$$

and

$$\mathcal{G}(x_a, x_{a-1}, x_{a-1}) \le \xi^{b-a+1} \mathcal{G}(x_a, x_{a-1}, x_{a-1})$$

In both cases, this is a contradiction. So, $x_a \neq x_b$, for each $a \neq b$.

Next, we assert that $\{x_n\}$ is a Cauchy sequence, that is,

$$\lim_{n \to \infty} \mathcal{G}(x_n, x_{n+m}, x_{n+m}) = 0.$$
(2.10)

We have proved (2.10) for cases m = 1 and m = 2, respectively.

Let us take $m \geq 3$. Now, two cases arise. Case 1 : For m = 2r where $r \ge 2$.

Using (2.8) and definition of $(\mathcal{H}, \mathcal{G})$, we obtain

$$\begin{aligned} \mathcal{G}(x_n, x_{n+m}, x_{n+m}) &= \mathcal{G}(x_n, x_{n+2r}, x_{n+2r}) \\ &\leq \mathcal{G}(x_n, x_{n+2}, x_{n+2}) + \mathcal{G}(x_{n+2}, x_{n+3}, x_{n+3}) \\ &+ \dots + \mathcal{G}(x_{n+2r-1}, x_{n+2r}, x_{n+2r}) \\ &\leq \mathcal{G}(x_n, x_{n+2}, x_{n+2}) + \sum_{d=n+2}^{n+2r-1} \xi^d(\mathcal{G}(x_0, x_1, x_1)) \\ &\leq \mathcal{G}(x_n, x_{n+2}, x_{n+2}) + \sum_{d=n}^{\infty} \xi^d(\mathcal{G}(x_0, x_1, x_1)) \\ &\to 0 \text{ as } n \to \infty. \end{aligned}$$

Case 2 : For m = 2r + 1 where $r \ge 1$.

Using (2.8) and definition of $(\mathcal{H}, \mathcal{G})$, we obtain

$$\begin{aligned}
\mathcal{G}(x_n, x_{n+m}, x_{n+m}) &= \mathcal{G}(x_n, x_{n+2r+1}, x_{n+2r+1}) \\
&\leq \mathcal{G}(x_n, x_{n+1}, x_{n+1}) + \mathcal{G}(x_{n+1}, x_{n+2}, x_{n+2}) \\
&+ \dots + \mathcal{G}(x_{n+2r}, x_{n+2r+1}, x_{n+2r+1}) \\
&\leq \sum_{d=n}^{n+2r} \xi^d (\mathcal{G}(x_0, x_1, x_1)) \\
&\leq \sum_{d=n}^{\infty} \xi^d (\mathcal{G}(x_0, x_1, x_1)) \\
&\to 0 \text{ as } n \to \infty.
\end{aligned}$$

In both cases $\lim_{n\to\infty} \mathcal{G}(\mathbf{x}_n, \mathbf{x}_{n+m}, \mathbf{x}_{n+m}) = 0$, which yields that $\{\mathbf{x}_n\}$ is Cauchy. Since $(\mathcal{H}, \mathcal{G})$ is complete, there exist $u \in \mathcal{H}$ such that

$$\lim_{n \to \infty} \mathcal{G}(\mathbf{x}_n, u, u) = 0.$$

Using the first assumption of the Theorem 2.3, we get

$$\lim_{n \to \infty} \mathcal{G}(\mathcal{Q}x_n, \mathcal{Q}u, \mathcal{Q}u) = \lim_{n \to \infty} \mathcal{G}(x_{n+1}, \mathcal{Q}u, \mathcal{Q}u) = 0.$$

Therefore, we have $\mathcal{Q}u = \lim_{n \to \infty} x_{n+1} = u$. So, \mathcal{Q} has a fixed point $u \in \mathcal{H}$. \Box

Theorem 2.4. Let $Q : \mathcal{H} \to \mathcal{H}$ be a (ξ, β) -expansive mapping of type (T) in $(\mathcal{H}, \mathcal{G})$, which is complete, symmetrical, one to one and onto. Also, Q satisfies the conditions of Theorem 2.3. Then, Q has a fixed point in \mathcal{H} .

Proof. Let $\{x_n\}$ be a sequence such that $\mathcal{Q}x_{n+1} = x_n$, for each $n \in \mathbb{Z}_+$. Then, by using Theorem 2.3, we get

$$\beta(x_n, x_{n+2}, x_{n+2}) \ge 1.$$

Next, we assert that $\lim_{n\to\infty} \mathcal{G}(x_{n+1}, x_n, x_{n+1}) = 0.$

Putting $x = x_n$ and $y = z = x_{n+1}$ in (2.1), we get

$$\begin{split} \xi(\mathcal{G}(\mathcal{Q}x_{n},\mathcal{Q}x_{n+1},\mathcal{Q}x_{n+1})) \\ &= \xi(\mathcal{G}(\mathcal{Q}x_{n},\mathcal{Q}x_{n+1},\mathcal{Q}x_{n+1})) \\ &\geq \beta(x_{n},x_{n+1},x_{n+1}) \min\left\{\mathcal{G}(x_{n},x_{n+1},x_{n+1}), \\ \frac{\mathcal{G}(x_{n+1},\mathcal{Q}x_{n+1},\mathcal{Q}x_{n+1}) + \mathcal{G}(x_{n+1}\mathcal{Q}x_{n+1},\mathcal{Q}x_{n+1})}{2}\right\} \\ &= \beta(x_{n},x_{n+1},x_{n+1}) \min\{\mathcal{G}(x_{n},x_{n},x_{n}),\mathcal{G}(x_{n+1},x_{n},x_{n})\}. \end{split}$$

By using identical steps as in proof of Theorem 2.3, we can show that \mathcal{Q} has a fixed point in \mathcal{H} .

Theorem 2.5. Let $Q : \mathcal{H} \to \mathcal{H}$ be a (ξ, β) -expansive mapping of type (S) in $(\mathcal{H}, \mathcal{G})$, which is complete, symmetrical, one to one and onto. Also, Q satisfies the following conditions:

- (i) If {x_n} is a sequence in H such that β(x_n, x_{n+1}, x_{n+1}) ≥ 1 and {x_n} tends to x when n → ∞, then there exist a subsequence {x_{nt}} of {x_n} in order that β(x_{nt}, x, x) ≥ 1;
- (ii) \mathcal{Q}^{-1} is β -admissible and there exists $x_0 \in \mathcal{H}$ such that $\beta(x_0, \mathcal{Q}^{-1}x_0, \mathcal{Q}^{-1}x_0) \geq 1$, $\beta(x_0, \mathcal{Q}^{-2}x_0, \mathcal{Q}^{-2}x_0) \geq 1$.

Then, Q has a fixed point in H.

Proof. Let $\{x_n\}$ be the sequence in \mathcal{H} such that $x_n = \mathcal{Q}x_{n+1}$. By using identical steps as in proof of Theorem 2.3, we can prove that $\{x_n\}$ is a Cauchy sequence in \mathcal{H} , which converges to $w \in \mathcal{H}$.

Using Lemma 1.1, we have

$$\lim_{n \to \infty} \mathcal{G}(x_{n_t+1}, \mathcal{Q}w, \mathcal{Q}w) = \mathcal{G}(w, \mathcal{Q}w, \mathcal{Q}w).$$
(2.11)

Now, we assert that Qw = w. Assume on the contrary that $Qw \neq w$. Using the assumption (i) of the Theorem 2.5, there exist a subsequence $\{x_{n_t}\}$ of $\{x_n\}$ such that $\beta(x_{n_t}, w, w) \geq 1$. Letting $t \to \infty$ and using (2.1), (2.11), we obtain

$$\begin{aligned}
\mathcal{G}(x_{n_t-1}, w, w) &> \xi(\mathcal{G}(\mathcal{Q}x_{n_t}, \mathcal{Q}w, \mathcal{Q}w)) \\
&\geq \beta(x_{n_t}, w, w) \min\{\mathcal{G}(x_{n_t}, w, w), \mathcal{G}(x_{n_t}, \mathcal{Q}x_{n_t}, \mathcal{Q}x_{n_t}), \\
\mathcal{G}(w, \mathcal{Q}w, \mathcal{Q}w), \mathcal{G}(w, \mathcal{Q}w, \mathcal{Q}w), \mathcal{G}(x_{n_t}, \mathcal{Q}w, \mathcal{Q}w), \mathcal{G}(w, \mathcal{Q}w, \mathcal{Q}w)\} \\
&\geq \min\{\mathcal{G}(x_{n_t}, w, w), \mathcal{G}(x_{n_t}, x_{n_t-1}, x_{n_t-1}), \mathcal{G}(w, \mathcal{Q}w, \mathcal{Q}w), \\
\mathcal{G}(w, \mathcal{Q}w, \mathcal{Q}w), \mathcal{G}(x_{n_t}, \mathcal{Q}w, \mathcal{Q}w), \mathcal{G}(w, \mathcal{Q}w, \mathcal{Q}w)\} \\
&\geq \mathcal{G}(w, \mathcal{Q}w, \mathcal{Q}w).
\end{aligned}$$
(2.12)

By definition of ξ , we obtain

$$\xi(\mathcal{G}(w,\mathcal{Q}w,\mathcal{Q}w)) < \mathcal{G}(w,\mathcal{Q}w,\mathcal{Q}w).$$
(2.13)

By combining (3.12) and (3.13), we have

$$\mathcal{G}(w, \mathcal{Q}w, \mathcal{Q}w) \le \xi(\mathcal{G}(w, \mathcal{Q}w, \mathcal{Q}w)) < \mathcal{G}(w, \mathcal{Q}w, \mathcal{Q}w),$$

which is a contradiction. So, Qw = w. Hence, w is a fixed point of Q.

Theorem 2.6. Let $Q : \mathcal{H} \to \mathcal{H}$ be a (ξ, β) -expansive mapping of type(T) in $(\mathcal{H}, \mathcal{G})$ which is complete, symmetrical, one to one and onto. Also, Q satisfies the conditions of Theorem 2.5. Then, Q has a fixed point in \mathcal{H} .

Proof. Let $\{x_n\}$ a sequence in \mathcal{H} such that $x_n = \mathcal{Q}x_{n+1}$. By using identical steps as in proof of Theorem 2.4, we can prove that $\{x_n\}$ is a cauchy sequence in \mathcal{H} , which converges to $w \in \mathcal{H}$.

Using Lemma 1.1, we have

$$\lim_{w \to \infty} \mathcal{G}(x_{n_t+1}, \mathcal{Q}w, \mathcal{Q}w) = \mathcal{G}(w, \mathcal{Q}w, \mathcal{Q}w).$$
(2.14)

Now, we claim that Qw = w. Suppose on the contrary that $Qw \neq w$. Letting $t \to \infty$, using (2.1) and (2.14), we obtain

$$\begin{aligned}
\mathcal{G}(x_{n_t-1}, w, w) &> \xi(\mathcal{G}(\mathcal{Q}x_{n_t}, \mathcal{Q}w, \mathcal{Q}w)) \\
&\geq \beta(x_{n_t}, w, w) \min\left\{\mathcal{G}(x_{n_t}, w, w), \frac{\mathcal{G}(w, \mathcal{Q}w, \mathcal{Q}w) + \mathcal{G}(w, \mathcal{Q}w, \mathcal{Q}w)}{2}\right\} \\
&\geq \min\{\mathcal{G}(x_{n_t}, w, w), \mathcal{G}(w, \mathcal{Q}w, \mathcal{Q}w)\}.
\end{aligned}$$
(2.15)

Letting $t \to \infty$ in (2.15), we have

$$\xi(\mathcal{G}(w, \mathcal{Q}w, \mathcal{Q}w)) \ge \mathcal{G}(w, \mathcal{Q}w, \mathcal{Q}w).$$
(2.16)

By definition of ξ , we obtain

$$\xi(\mathcal{G}(w,\mathcal{Q}w,\mathcal{Q}w)) < \mathcal{G}(w,\mathcal{Q}w,\mathcal{Q}w).$$
(2.17)

By combining (2.16) and (2.17), we have

$$\mathcal{G}(w, \mathcal{Q}w, \mathcal{Q}w) \le \xi(\mathcal{G}(w, \mathcal{Q}w, \mathcal{Q}w)) < \mathcal{G}(w, \mathcal{Q}w, \mathcal{Q}w),$$

which is a contradiction. So Qw = w. Hence, w is a fixed point of Q.

3. CONCLUSION

In this manuscript, some common fixed point theorems are proved for (ξ, β) expansive mappings of type (S) and type (T) using control function and β admissible function in \mathcal{G} -metric space.

References

- A.H. Ansari and A. Razani, Some fixed point theorems for C-class functions in b-metric spaces, Sahand Comm. Math. Anal., 10(1) (2018), 85-96.
- [2] S. Arora, M. Kumar and S. Mishra, A new type of coincidence and common fixedpoint theorems for modified α-admissible Z-contraction via simulation function, J. Math. Fund. Sci., 52(1) (2020), 27-42.
- [3] L.B. Budhia, H. Aydi, A.H. Ansari and D. Gopal, Some new fixed point results in rectangular metric spaces with an application to fractional-order functional differential equations, Nonlinear Anal. Model. Control, 25(4) (2020), 580-597.
- [4] D. Gopal, M. Abbas, D.K. Patel and C. Vetro, Fixed points of α-type F-contractive mappings with an application to nonlinear fractional differential equation, Acta Math. Sci., 36(3) (2016), 957-970.
- [5] D. Gopal and H. Huang, A note on some recent fixed point theorems for expansion mappings, J. Adv. Math. Stud., 9(1) (2016), 94-98.
- [6] M. Imdad, J. Ali and V. Popa, Impact of occasionally weakly compatible property on common fixed point theorems for expansive mappings, Filomat, 25(2) (2011), 79-89.
- [7] K. Jyoti and A. Rani, Fixed point theorem for expansive mappings in digital metric spaces, Asian J. Math.Comput. Research, 24(2) (2018), 56-66.
- [8] E. Karapinar, Discussion on α-ψ contractions on generalized metric spaces, Abs. Appl. Anal., Article ID 962784, (2014), 1-7.
- M. Kumar, S. Arora, M. Imdad and W.M. Alfaqih, Coincidence and common fixed point results via simulation functions in G-metric spaces, Fixed Point Theor. Appl., 19 (2019), 288-300.
- [10] Z. Mustafa, F. Awawdeh and W. Shatanawi, Fixed point theorem for expansive mappings in G-metric spaces, Int. J. Contemp. Math. Sciences, 5(50) (2010), 2463-2472.
- [11] H. Piri and P. Kumam, Wardowski type fixed point theorems in complete metric spaces, Fixed Point Theory and Appl., 45 (2016), 1-12.
- [12] Poonam, S. Garg and S. Kumar, Fixed points for $\zeta \alpha$ expansive mapping in 2-metric spaces, Int. J. Math. Stat. Invention, **2**(5) (2014), 55-58.
- [13] B. Samet, C. Vetro and P. Vetro, Fixed point theorem for (α ψ)-contractive type mappings, Nonlinear Anal. TMA., 75 (2012), 2154-2165.
- [14] S. Shabani and A. Razani, Global optimal solutions for noncyclic mappings in G-metric spaces, Miskolc Math. Notes, 14(1) (2013), 255-263.
- [15] P. Shahi, J. Kaur and S.S. Bhatia, Fixed point theorems for (ξ, α) -expansive mappings in complete metric spaces, Fixed Point Theory Appl., **157** (2012), 1-12.