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Abstract. In this paper, we have studied some fixed point theorems on complete G-

metric spaces.

1. Introduction

The study of metric fixed point theory is very actual today due to enormous
applications in many important areas such as mathematical economics, operation
research, and approximation theory. In 2006, Mustafa and Sims introduced a new
concept of generalized metric space called G-metric space [3]. Recently, Mustafa
et.al. [4 − 8] and Shatanawi [11] studied many fixed point theorems for mappings
satisfying various contractive conditions on complete G-metric spaces. In this pa-
per, we prove some fixed point theorems on complete G-metric spaces. Moreover,
strength of hypothesis made in Theorem 2.1 [7] has been weighed through an illus-
trative example.

2. Definitions and preliminaries

In this section, we present some basic definitions and results for G-metric spaces
that will be used in the sequel.

Definition 2.1([3]). Let X be a non empty set, and let G : X ×X ×X → R+ be
a function satisfying the following axioms:
(G1)G(x, y, z) = 0 if x = y = z,
(G2) 0 < G(x, x, y), for all x, y ∈ X, with x ̸= y,
(G3)G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X, with z ̸= y,
(G4)G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all three variables),
(G5)G(x, y, z) ≤ G(x, a, a)+G(a, y, z), for all x, y, z, a ∈ X, (rectangle inequality).

Then the function G is called a generalized metric, or, more specifically a G-
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metric on X, and the pair (X,G) is called a G-metric space.

Example 2.2([3]). Let R be the set of all real numbers. DefineG : R×R×R → R+

by
G(x, y, z) =| x− y | + | y − z | + | z − x |, for all x, y, z ∈ R.

Then it is clear that (R,G) is a G-metric space.

Proposition 2.3([3]). Let (X,G) be a G-metric space. Then for any x, y, z, and
a ∈ X, it follows that

(1) if G(x, y, z) = 0 then x = y = z,

(2) G(x, y, z) ≤ G(x, x, y) +G(x, x, z),

(3) G(x, y, y) ≤ 2G(y, x, x),

(4) G(x, y, z) ≤ G(x, a, z) +G(a, y, z),

(5) G(x, y, z) ≤ 2
3 (G(x, y, a) +G(x, a, z) +G(a, y, z)),

(6) G(x, y, z) ≤ G(x, a, a) +G(y, a, a) +G(z, a, a).

Definition 2.4([3]). Let (X,G) be a G-metric space, let (xn) be a sequence of
points of X, we say that (xn) is G-convergent to x if lim

n,m→∞
G(x, xn, xm) = 0; that

is, for any ϵ > 0, there exists n0 ∈ N such that G(x, xn, xm) < ϵ, for all n,m ≥ n0.

We call x as the limit of the sequence (xn) and write xn
(G)−→ x.

Proposition 2.5([3]). Let (X,G) be a G-metric space, then the following are
equivalent.

(1) (xn) is G− convergent to x.

(2) G(xn, xn, x) → 0, as n → ∞.

(3) G(xn, x, x) → 0, as n → ∞.

(4) G(xn, xm, x) → 0, as n,m → ∞.

Definition 2.6([3]). Let (X,G) be a G-metric space, a sequence (xn) is called G-
Cauchy if given ϵ > 0, there is n0 ∈ N such that G(xn, xm, xl) < ϵ, for all n,m, l ≥
n0; that is, if G(xn, xm, xl) → 0 as n,m, l → ∞.

Proposition 2.7([3]). In a G-metric space (X,G), the following are equivalent.
(1) The sequence (xn) is G− Cauchy.

(2) For every ϵ > 0, there exists n0 ∈ N such that

G(xn, xm, xm) < ϵ, for all n,m ≥ n0.
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Definition 2.8([3]). Let (X,G) and (X
′
, G

′
) be G-metric spaces and let f :

(X,G) → (X
′
, G

′
) be a function, then f is said to be G-continuous at a point

a ∈ X if given ϵ > 0, there exists δ > 0 such that x, y ∈ X; G(a, x, y) <
δ implies G

′
(f(a), f(x), f(y)) < ϵ. A function f is G-continuous on X if and only

if it is G-continuous at all a ∈ X.

Proposition 2.9([3]). Let (X,G) and (X
′
, G

′
) be G-metric spaces, then a function

f : X → X
′
is G-continuous at a point x ∈ X if and only if it is G-sequentially con-

tinuous at x; that is, whenever (xn) is G-convergent to x, (f(xn)) is G-convergent
to f(x).

Proposition 2.10([3]). Let (X,G) be a G-metric space, then the function
G(x, y, z) is jointly continuous in all three of its variables.

Proposition 2.11([3]). Every G-metric space (X,G) will define a metric space
(X, dG) by

dG(x, y) = G(x, y, y) +G(y, x, x), for all x, y ∈ X.

Definition 2.12([3]). A G-metric space (X,G) is said to be G-complete (or a
complete G-metric space) if every G-Cauchy sequence in (X,G) is G-convergent in
(X,G).

Proposition 2.13([3]). A G-metric space (X,G) is G-complete if and only if
(X, dG) is a complete metric space.

Definition 2.14([3]). A G-metric space (X,G) is called symmetric G-metric space
if G(x, y, y) = G(y, x, x) for all x, y ∈ X, and called non-symmetric if it is not
symmetric.

Theorem 2.15([7]). Let (X,G) be a complete G-metric space and let T : X −→ X
be an onto mapping satisfying the following condition for all x, y, z ∈ X,

G(T (x), T (y), T (z)) ≥ aG(x, y, z)+bG(x, x, T (x))+cG(y, y, T (y))+dG(z, z, T (z))

where a+ b+ c+ d > 1 and b+ c < 1. Then T has a fixed point.

3. Main results

We begin with the following definition.

Definition 3.1([7]). Let (X,G) be a G-metric space and T be a self mapping on
X. Then T is called G-expansive mapping if there exists a constant c > 1 such that
for all x, y, z ∈ X, we have

G(T (x), T (y), T (z)) ≥ cG(x, y, z).

Before presenting our results, we state the following theorem.
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Theorem 3.2([7]). Let (X,G) be a complete G-metric space. If there exists a
constant c > 1 and a surjective self mapping T on X, such that for all x, y, z ∈ X

(3.1) G(T (x), T (y), T (z)) ≥ cG(x, y, z),

then T has a unique fixed point.

The following example shows that T is onto in Theorem 3.2 can not be relaxed.

Example 3.3. Let R be the set of all real numbers. Define G : R × R × R → R+

by
G(x, y, z) =| x− y | + | y − z | + | z − x |, for all x, y, z ∈ R.

Then it is clear that (R,G) is a G-metric space.
Let T : R −→ R be a mapping defined as follows:

T (x) =

 2x− 1 for x ≤ 0,

2x+ 1 for x > 0.

We have

(3.2) G(T (x), T (y), T (z)) =| T (x)− T (y) | + | T (y)− T (z) | + | T (z)− T (x) |,

for all x, y, z ∈ R.
Now,

| T (x)− T (y) | = | 2x− 1− 2y − 1 | for x ≤ 0 and y > 0

= 2 | y + 1− x | for x ≤ 0 and y > 0

≥ 2 | y − x | for x ≤ 0 and y > 0

= 2 | x− y | for x ≤ 0 and y > 0.

Also,
| T (x)− T (y) |= 2 | x− y | for x, y ≤ 0

and
| T (x)− T (y) |= 2 | x− y | for x, y > 0.

Thus,
| T (x)− T (y) |≥ 2 | x− y | for x, y ∈ R.

The argument similar to that used above establishes

| T (y)− T (z) |≥ 2 | y − z | for y, z ∈ R

and
| T (z)− T (x) |≥ 2 | z − x | for z, x ∈ R.
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So, (3.2) becomes

G(T (x), T (y), T (z)) ≥ 2 | x− y | +2 | y − z | +2 | z − x |= 2G(x, y, z),

for all x, y, z ∈ R, which implies that T satisfies Condition (3.1) in Theorem 3.2.
Again, for all x, y ∈ R,

dG(x, y) = G(x, y, y) +G(y, x, x)

= 2 | x− y | +2 | x− y |
= 4 | x− y | .

Clearly, (X, dG) is complete and hence by Proposition 2.13, (X,G) is a complete
G-metric space.
But T does not have a fixed point, since it is not onto.

Theorem 3.4. Let (X,G) be a complete G-metric space, and let T : X −→ X be
an onto mapping satisfying

G(T (x), T (y), T (z))

≥ aG(x, y, z) + bG(x, x, T (x)) + cG(y, y, T (y)) + dG(z, z, T (z))

(3.3)

for all x, y, z ∈ X, where a, b, c, d ≥ 0 with a+ b+ c+ d > 1 and b < 1. Then T has
fixed points in X.

Proof. Let x0 ∈ X be arbitrary. Since T is onto, there is an element x1 ∈ X
satisfying x1 ∈ T−1(x0). By the same way, we can find xn ∈ T−1(xn−1) for n =
2, 3, 4, · · ·. If xm−1 = xm for some m, then xm ∈ T−1(xm−1) implies T (xm) =
xm−1 = xm and so xm is a fixed point of T .
Without loss of generality, we can suppose that xn−1 ̸= xn for every n. From (3.3),
we have

G(xn−1, xn, xn) = G(T (xn), T (xn+1), T (xn+1))

≥ aG(xn, xn+1, xn+1) + bG(xn, xn, xn−1)

+cG(xn+1, xn+1, xn) + dG(xn+1, xn+1, xn).

So, it must be the case that

(3.4) (1− b)G(xn−1, xn, xn) ≥ (a+ c+ d)G(xn, xn+1, xn+1).

If (a + c + d) = 0, then a + b + c + d = b < 1, which is a contradiction since
a+ b+ c+ d > 1.
Hence a+ c+ d ̸= 0 and from (3.4), we have

(3.5) G(xn, xn+1, xn+1) ≤
1− b

a+ c+ d
G(xn−1, xn, xn)
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where 0 < 1−b
a+c+d < 1.

Let q = 1−b
a+c+d . Then 0 < q < 1 and by repeated application of (3.5), we have

(3.6) G(xn, xn+1, xn+1) ≤ qn G(x0, x1, x1).

Then for all n,m ∈ N, n < m, we have by repeated use of the rectangle inequality
and (3.6) that

G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2)

+G(xn+2, xn+3, xn+3) + · · ·+G(xm−1, xm, xm)

≤
(
qn + qn+1 + · · ·+ qm−1

)
G(x0, x1, x1)

≤ qn

1− q
G(x0, x1, x1).

Then, limG(xn, xm, xm) = 0, as n,m → ∞, since lim qn

1−q G(x0, x1, x1) = 0, as

n,m → ∞. For n,m, l ∈ N , (G5) implies that

G(xn, xm, xl) ≤ G(xn, xm, xm) +G(xl, xm, xm),

taking limit as n,m, l → ∞, we get G(xn, xm, xl) → 0. So (xn) is a G-Cauchy
sequence. By completeness of (X,G), there exists u ∈ X such that (xn) is G-
convergent to u.

Let y ∈ T−1(u) and so, u = T (y). Then

G(xn, u, u) = G(T (xn+1), T (y), T (y))

≥ aG(xn+1, y, y) + bG(xn+1, xn+1, xn)

+cG(y, y, u) + dG(y, y, u).

Taking the limit as n → ∞, and using the fact that the function G is continuous
on its variables, we have

0 ≥ aG(u, y, y) + bG(u, u, u) + cG(y, y, u) + dG(y, y, u).

So,
(a+ c+ d)G(u, y, y) ≤ 0,

which implies G(u, y, y) = 0, since a+ c+ d ̸= 0. Therefore, by Proposition 2.3, we
have u = y and hence, u = T (u). 2

Remark 3.5. The above theorem states that a fixed point of T is not unique. The
identity mapping I satisfies the condition of Theorem 3.4. But a fixed point of I is
not unique.

Remark 3.6. Theorem 2.15 is a special case of Theorem 3.4.
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Theorem 3.7. Let (X,G) be a complete G-metric space, and let T : X −→ X be
an onto G-continuous mapping satisfying

(3.7) G(T (x), T 2(x), T 2(x)) ≥ aG(x, T (x), T (x))

for all x ∈ X, where a > 1. Then T has a fixed point in X.

Proof. Let x0 ∈ X be arbitrary. We define a sequence (xn) by xn = T−1(xn−1)
for n = 1, 2, 3, · · ·, since T is onto. We may assume that xn ̸= xn−1 for all n ∈ N .
Then by (3.7), we have

G(T (xn+1), T
2(xn+1), T

2(xn+1)) ≥ aG(xn+1, T (xn+1), T (xn+1)).

So,
G(xn, xn−1, xn−1) ≥ aG(xn+1, xn, xn)

which implies

(3.8) G(xn+1, xn, xn) ≤
1

a
G(xn, xn−1, xn−1)

where 0 < 1
a < 1.

Let q = 1
a , then 0 < q < 1 since a > 1 and by repeated application of (3.8), we

have

(3.9) G(xn+1, xn, xn) ≤ qn G(x1, x0, x0).

Then for all n,m ∈ N, n < m, we have by repeated use of the rectangle inequality
and (3.9) that

G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2)

+G(xn+2, xn+3, xn+3) + · · ·+G(xm−1, xm, xm)

≤ 2G(xn+1, xn, xn) + 2G(xn+2, xn+1, xn+1)

+2G(xn+3, xn+2, xn+2) + · · ·+ 2G(xm, xm−1, xm−1)

≤ 2
(
qn + qn+1 + · · ·+ qm−1

)
G(x1, x0, x0)

≤ 2 qn

1− q
G(x1, x0, x0).

Then, limG(xn, xm, xm) = 0, as n,m → ∞, since lim 2 qn

1−q G(x1, x0, x0) = 0, as

n,m → ∞. For n,m, l ∈ N , (G5) implies that

G(xn, xm, xl) ≤ G(xn, xm, xm) +G(xl, xm, xm),

taking limit as n,m, l → ∞, we get G(xn, xm, xl) → 0. So (xn) is a G-Cauchy
sequence. By completeness of (X,G), there exists u ∈ X such that (xn) is G-
convergent to u. By G-continuity of T , we have

T (xn) = xn−1
(G)−→ T (u)
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which implies u = T (u). 2

As an application of Theorem 3.7, we have the following results.

Corollary 3.8. Let (X,G) be a complete G-metric space, and let T : X −→ X be
an onto G-continuous mapping satisfying

(3.10) G(T (x), T (y), T (z)) ≥ a min

 G(x, T (x), T (x)), G(y, T (y), T (y)),

G(z, T (z), T (z)), G(x, y, z)


for all x, y, z ∈ X, where a > 1. Then T has a fixed point in X.

Proof. Replacing y and z by T (x) in (3.10), we obtain

G(T (x), T 2(x), T 2(x))

≥ a min

 G(x, T (x), T (x)), G(T (x), T 2(x), T 2(x)),

G(T (x), T 2(x), T 2(x)), G(x, T (x), T (x))


= a min{G(x, T (x), T (x)), G(T (x), T 2(x), T 2(x))}

(3.11)

Without loss of generality, we may assume that T (x) ̸= T 2(x). For, otherwise, T
has a fixed point. Then T (x) ̸= T 2(x) and condition (3.11) imply that

G(T (x), T 2(x), T 2(x)) ≥ aG(x, T (x), T (x))

which is Condition (3.7). Hence the result follows from Theorem 3.7. 2

Corollary 3.9. Let (X,G) be a complete non-symmetric G-metric space, and T :
X −→ X be onto G-continuous. If there exist non-negative reals a, b, c, d with
a+ b+ c+ d > 1 and b+ c < 1 such that

(3.12) G(T (x), T (y), T (z)) ≥

 aG(x, T (x), T (x)) + bG(y, T (y), T (y))

+cG(z, T (z), T (z)) + dG(x, y, z)


for all x, y, z ∈ X, then T has a fixed point in X.

Proof. Replacing y and z by T (x) in (3.12), we obtain

G(T (x), T 2(x), T 2(x)) ≥

 aG(x, T (x), T (x)) + (b+ c)G(T (x), T 2(x), T 2(x))

+dG(x, T (x), T (x))

 .

So, it must be the case that

(3.13) G(T (x), T 2(x), T 2(x)) ≥ a+ d

1− b− c
G(x, T (x), T (x)), since b+ c < 1.
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Let k = a+d
1−b−c , then k > 1 since a+ b+ c+ d > 1 and (3.13) becomes

G(T (x), T 2(x), T 2(x)) ≥ k G(x, T (x), T (x)),

which is Condition (3.7). Hence the result follows from Theorem 3.7. 2

Theorem 3.10. Let (X,G) be a complete G-metric space, and S, T : X −→ X be
onto G-continuous. If there exists a with 1 < 2a < 2 such that

min {G(S(x), T (y), T (y)), G(T (y), S(x), S(x))} ≥ a{G(S(x), x, x) +G(T (y), y, y)}

for all x, y ∈ X, then S and T have a common fixed point in X.

Proof. Let x0 ∈ X be arbitrary. Since S is onto, there is an element x1, sat-
isfying x1 ∈ S−1(x0). Since T is also onto, there is an element x2, satisfying
x2 ∈ T−1(x1). Proceeding in the same way, we can find x2n+1 ∈ S−1(x2n)
and x2n+2 ∈ T−1(x2n+1) for n = 1, 2, 3, · · ·. Therefore, x2n = S(x2n+1) and
x2n+1 = T (x2n+2), for n = 0, 1, 2, · · ·.

Now, if n = 2m, then

G(xn−1, xn, xn) = G(x2m−1, x2m, x2m) = G(T (x2m), S(x2m+1), S(x2m+1))

≥ min

 G(S(x2m+1), T (x2m), T (x2m)),

G(T (x2m), S(x2m+1), S(x2m+1))


≥ a {G(S(x2m+1), x2m+1, x2m+1) +G(T (x2m), x2m, x2m)}
= a {G(x2m, x2m+1, x2m+1) +G(x2m−1, x2m, x2m)}
= a {G(xn, xn+1, xn+1) +G(xn−1, xn, xn)} .

Therefore, G(xn, xn+1, xn+1) ≤ 1−a
a G(xn−1, xn, xn).

If n = 2m+ 1, then by the same argument used in above, we obtain

G(xn, xn+1, xn+1) ≤
1− a

a
G(xn−1, xn, xn).

Thus for any positive integer n,

(3.14) G(xn, xn+1, xn+1) ≤
1− a

a
G(xn−1, xn, xn).

Let q = 1−a
a . Then 0 < q < 1 since 1 < 2a < 2 and by repeated application of

(3.14), we have

(3.15) G(xn, xn+1, xn+1) ≤ qn G(x0, x1, x1).
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Then for all n,m ∈ N, n < m, we have by repeated use of the rectangle inequality
and (3.15) that

G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2)

+G(xn+2, xn+3, xn+3) + · · ·+G(xm−1, xm, xm)

≤
(
qn + qn+1 + · · ·+ qm−1

)
G(x0, x1, x1)

≤ qn

1− q
G(x0, x1, x1).

Then, lim G(xn, xm, xm) = 0, as n,m → ∞. So, by Proposition 2.7, the se-
quence (xn) is G-Cauchy sequence. By completeness of (X,G), there exists u ∈ X
such that (xn) is G-convergent to u. By G-continuity of S and T , we have

S(x2m+1) = x2m
(G)−→ S(u) as m −→ ∞

and

T (x2m+2) = x2m+1
(G)−→ T (u) as m −→ ∞.

Hence S(u) = u and T (u) = u, which means that u is a common fixed point of S
and T . 2
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