1 |
M.A. Noor: New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 251 (2000), 217-229.
DOI
|
2 |
C. Wang, J.H. Zhu, B. Damjanovic & L.G. Hu: Approximating fixed points of a pair of contractive type mappings in generalized convex metric spaces. Appl. Math. Comput. 215 (2009), 1522-1525.
DOI
|
3 |
B. Xu & M.A. Noor: Fixed-point iterations for asymptotically nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 267 (2002), 444-453.
DOI
|
4 |
Y. Yao & M.A. Noor: Convergence of three-step iteration for asymptotically nonexpansive mappings. Appl. Math. Comput. 187 (2007), 883-892.
DOI
|
5 |
Q.Y. Liu, Z.B. Liu & N.J. Huang: Approximating the common fixed points of two sequencesof uniformly quasi-Lipschitzian mappings in convex metric spaces. Appl. Math. Comput. 216 (2010), 883-889.
DOI
|
6 |
K. Nammanee & S. Suantai: The modified Noor iterations with errors for nonLipschitzianmappings in Banach spaces. Appl. Math. Comput. 187 (2007), 669-679.
DOI
|
7 |
______: Some developments on general variational inequalities. Appl. Math. Comput. 152 (2004), 199-277.
DOI
|
8 |
M.A. Noor & Z. Huang: Three-step methods for nonexpansive mappings and variational inequalities. Appl. Math. Comput. 187 (2007), 680-685.
DOI
|
9 |
S. Suantai: Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings. J. Math. Anal. Appl. 311 (2005), 506-517.
DOI
ScienceOn
|
10 |
W. Takahashi: A convexity in metric space and nonexpansive mappings. Kodai. Math. Rep. 22 (1970), 142-149.
DOI
|
11 |
Y.X. Tian: Convergence of an Ishikawa type iterative scheme for asymptotically quasinonexpansive mappings. Comput. Math. Appl. 49 (2005), 1905-1912.
DOI
|
12 |
Y.X. Tian & C.D. Yang: Convergence theorems of three-step iterative scheme for a finite family of uniformly quasi-Lipschitzian mappings in convex metric spaces. Fixed Point Theory and Applications 2009, Article ID 891967, 12pages.
|
13 |
C. Wang & L.W. Liu: Convergence theorems for fixed points of uniformly quasiLipschizian mappings in convex metric spaces. Nonlinear Anal. TMA 70 (2009), 2067-2071.
DOI
|
14 |
S.S. Chang, L. Yang & X.R. Wang: Stronger convergence theorem for an infinite family of uniformly quasi-Lipschitzian mappings in convex metric spaces. Appl. Math. Comput. 217 (2010,) 277-282.
DOI
|
15 |
Y.J. Cho, H.Y. Zhou & G. Guo: Weak and strong convengence theorems for three-step iteration with errors for asymptotically nonexpansive mappings. Comput. Math. Appl. 47 (2004), 707-717.
DOI
|
16 |
A.R. Khan & M.A. Ahmed: Convergence of a general iterative scheme for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces and applications. Com. Math. Appl. 59 (2010), no. 8, 2990-2995.
DOI
ScienceOn
|
17 |
Hafiz Fukhar-ud-din & Safeer Hussin Khan: Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications. J. Math. Anal. Appl. 328 (2007), 821-829.
DOI
|
18 |
L.-G. Huang & X. Zhang: Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 322 (2007), 1468-1476.
|
19 |
N.J. Huang & Y.J. Cho: Fixed point theorems of compatiable mappings in convex metric spaces. Soochow J. Math. 22 (1996), 439-447.
|
20 |
A.R. Khan, A.A. Domlo & H. Fukhar-ud-din: Common fixed points Noor iteration for a finite family of asymptotically quasi-nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 341 (2008), 1-11.
DOI
|
21 |
B.-S. Lee: Approximating common fixed points of two sequences of uniformly quasiLipschitziammappings in convex cone metric spaces. Univ. J. Appl. Math. 1 (2013), no. 3, 166-171.
|