Browse > Article
http://dx.doi.org/10.7468/jksmeb.2015.22.2.185

STRONG CONVERGENCE IN NOOR-TYPE ITERATIVE SCHEMES IN CONVEX CONE METRIC SPACES  

LEE, BYUNG-SOO (DEPARTMENT OF MATHEMATICS, KYUNGSUNG UNIVERSITY)
Publication Information
The Pure and Applied Mathematics / v.22, no.2, 2015 , pp. 185-197 More about this Journal
Abstract
The author considers a Noor-type iterative scheme to approximate com- mon fixed points of an infinite family of uniformly quasi-sup(fn)-Lipschitzian map- pings and an infinite family of gn-expansive mappings in convex cone metric spaces. His results generalize, improve and unify some corresponding results in convex met- ric spaces [1, 3, 9, 16, 18, 19] and convex cone metric spaces [8].
Keywords
convex structure; convex cone metric space; Noor-type iteration; f- expansive mapping; asymptotically f-expansive mapping; asymptotically quasi-f-expansive map- ping; f-uniformly quasi-sup(f)-Lipschitzian mapping.;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M.A. Noor: New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 251 (2000), 217-229.   DOI
2 C. Wang, J.H. Zhu, B. Damjanovic & L.G. Hu: Approximating fixed points of a pair of contractive type mappings in generalized convex metric spaces. Appl. Math. Comput. 215 (2009), 1522-1525.   DOI
3 B. Xu & M.A. Noor: Fixed-point iterations for asymptotically nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 267 (2002), 444-453.   DOI
4 Y. Yao & M.A. Noor: Convergence of three-step iteration for asymptotically nonexpansive mappings. Appl. Math. Comput. 187 (2007), 883-892.   DOI
5 Q.Y. Liu, Z.B. Liu & N.J. Huang: Approximating the common fixed points of two sequencesof uniformly quasi-Lipschitzian mappings in convex metric spaces. Appl. Math. Comput. 216 (2010), 883-889.   DOI
6 K. Nammanee & S. Suantai: The modified Noor iterations with errors for nonLipschitzianmappings in Banach spaces. Appl. Math. Comput. 187 (2007), 669-679.   DOI
7 ______: Some developments on general variational inequalities. Appl. Math. Comput. 152 (2004), 199-277.   DOI
8 M.A. Noor & Z. Huang: Three-step methods for nonexpansive mappings and variational inequalities. Appl. Math. Comput. 187 (2007), 680-685.   DOI
9 S. Suantai: Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings. J. Math. Anal. Appl. 311 (2005), 506-517.   DOI   ScienceOn
10 W. Takahashi: A convexity in metric space and nonexpansive mappings. Kodai. Math. Rep. 22 (1970), 142-149.   DOI
11 Y.X. Tian: Convergence of an Ishikawa type iterative scheme for asymptotically quasinonexpansive mappings. Comput. Math. Appl. 49 (2005), 1905-1912.   DOI
12 Y.X. Tian & C.D. Yang: Convergence theorems of three-step iterative scheme for a finite family of uniformly quasi-Lipschitzian mappings in convex metric spaces. Fixed Point Theory and Applications 2009, Article ID 891967, 12pages.
13 C. Wang & L.W. Liu: Convergence theorems for fixed points of uniformly quasiLipschizian mappings in convex metric spaces. Nonlinear Anal. TMA 70 (2009), 2067-2071.   DOI
14 S.S. Chang, L. Yang & X.R. Wang: Stronger convergence theorem for an infinite family of uniformly quasi-Lipschitzian mappings in convex metric spaces. Appl. Math. Comput. 217 (2010,) 277-282.   DOI
15 Y.J. Cho, H.Y. Zhou & G. Guo: Weak and strong convengence theorems for three-step iteration with errors for asymptotically nonexpansive mappings. Comput. Math. Appl. 47 (2004), 707-717.   DOI
16 A.R. Khan & M.A. Ahmed: Convergence of a general iterative scheme for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces and applications. Com. Math. Appl. 59 (2010), no. 8, 2990-2995.   DOI   ScienceOn
17 Hafiz Fukhar-ud-din & Safeer Hussin Khan: Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications. J. Math. Anal. Appl. 328 (2007), 821-829.   DOI
18 L.-G. Huang & X. Zhang: Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 322 (2007), 1468-1476.
19 N.J. Huang & Y.J. Cho: Fixed point theorems of compatiable mappings in convex metric spaces. Soochow J. Math. 22 (1996), 439-447.
20 A.R. Khan, A.A. Domlo & H. Fukhar-ud-din: Common fixed points Noor iteration for a finite family of asymptotically quasi-nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 341 (2008), 1-11.   DOI
21 B.-S. Lee: Approximating common fixed points of two sequences of uniformly quasiLipschitziammappings in convex cone metric spaces. Univ. J. Appl. Math. 1 (2013), no. 3, 166-171.