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U-FLATNESS AND NON-EXPANSIVE MAPPINGS

IN BANACH SPACES

Ji Gao and Satit Saejung

Abstract. In this paper, we define the modulus of n-dimensional U -
flatness as the determinant of an (n+1)×(n+1) matrix. The properties of
the modulus are investigated and the relationships between this modulus
and other geometric parameters of Banach spaces are studied. Some
results on fixed point theory for non-expansive mappings and normal
structure in Banach spaces are obtained.

1. Introduction

Let X be a real Banach space with the dual space X∗. Denote by BX and
SX the closed unit ball and the unit sphere of X , respectively. Recall that
∇x ⊂ SX∗ denotes the set of norm 1 supporting functionals of x ∈ SX .

Brodskĭı and Mil’man [2] introduced the following geometric concepts in
1948:

Definition 1.1. Let X be a Banach space. A nonempty bounded and convex
subset K of X is said to have normal structure if for every convex subset C of
K that contains more than one point there is a point x0 ∈ C such that

sup{‖x0 − y‖ : y ∈ C} < diamC.

A Banach space X is said to have

• normal structure if every bounded convex subset ofX has normal struc-
ture;

• weak normal structure if every weakly compact convex set K of X has
normal structure;

• uniform normal structure if there exists 0 < c < 1 such that for every
bounded closed convex subset C of K that contains more than one
point there is a point x0 ∈ C such that

sup{‖x0 − y‖ : y ∈ C} < c · diamC.
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Remark 1.2. The following facts are known.

• uniform normal structure =⇒ normal structure =⇒ weak normal
structure.

• In the setting of reflexive spaces, normal structure ⇐⇒ weak normal
structure.

Kirk [9] proved that if a Banach space X has weak normal structure, then
it has weak fixed point property, that is, every non-expansive mapping from a
weakly compact and convex subset of X into itself has a fixed point.

Let N be the set of all natural numbers and n ∈ N.
For two sets of vectors {xi}n+1

i=1 ⊆ X and {fi}n+1
i=2 ⊆ X∗, the following

(n+ 1)× (n+ 1) matrix











1 1 · · · 1
〈x1, f2〉 〈x2, f2〉 · · · 〈xn+1, f2〉

...
...

. . .
...

〈x1, fn+1〉 〈x2, fn+1〉 · · · 〈xn+1, fn+1〉











is denoted by m(x1, x2, . . . , xn+1; f2, f3, . . . , fn+1) [6].
Gao and Saejung [6] introduced the concept of volume by the convex hull of

x1, x2, . . . , xn+1 in X of

v(x1, x2, . . . , xn+1) := sup{detm(x1, x2, . . . , xn+1; f2, f3, . . . , fn+1)},

where the supremum is taken over all fi ∈ ∇xi
, where i = 2, 3, . . . , n+ 1.

Definition 1.3 ([6]). Let νnX = sup{v(x1, x2, . . . , xn+1) : x1, x2, . . . xn+1 ∈
SX} be the upper bound of all n-dimensional volume in X .

Definition 1.4 ([6]). Let X be a Banach space. Define

Un
X(ε) = inf

{

1− 1

n+ 1
‖x1 + x2 + · · ·+ xn+1‖ :

x1, x2, . . . , xn+1 ∈ SX ,

v(x1, x2, . . . , xn+1) ≥ ε

}

,

where 0 ≤ ε ≤ νnX to be the modulus of n-dimensional U -convexity of X .

The following results were proved [6]:

Proposition 1.5. For a Banach space X with dim(X) > n, we have νnX ≥ 2.

Lemma 1.6. Un
X(ε) is a continuous function in [0, νnX).

Theorem 1.7. If X is a Banach space with Un
X(1) > 0 for some n ∈ N, then

X is reflexive.

Theorem 1.8. If X is a Banach space with Un
X(1) > 0 for some n ∈ N, then

X has normal structure.
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2. Main results

We introduce the concept of the modulus of n-dimensional flatness as follows:

Definition 2.1. Let X be a Banach space and 0 ≤ ε ≤ νnX . Then the modulus
of n-dimensional U -flatness of X is defined as follows:

Wn
X(ε) = sup

{

1− 1

n+ 1
‖x1 + x2 + · · ·+ xn+1‖

}

,

where the supremum is taken over all {xi}n+1
i=1 ⊆ SX such that there exist

{fi}n+1
i=2 ⊆ SX∗ with fi ∈ ∇xi

for all i = 2, . . . , n+1 and detm(x1, x2, . . . , xn+1;
f2, f3, . . . , fn+1) ≤ ε.

Remark 2.2. Wn
X(ε) is an increasing and continuous function on [0, νnX).

Proof. The proof is the same as that of Corollary 5 of [10]. �

Remark 2.3. The name of the modulus, U -flatness, is defined by comparing
with Definition 1.4.

Lemma 2.4 (Bishop-Phelps-Bollobás [1]). Let X be a Banach space, and let

0 < ε < 1. Given z ∈ BX and h ∈ SX∗ with 1 − 〈z, h〉 < ε2

4 , then there exist

y ∈ SX and g ∈ ∇y such that ‖y − z‖ < ε and ‖g − h‖ < ε.

Lemma 2.5. Let An×n be the following n× n matrix

An×n :=























1 −1 1 · · · (−1)n−1 (−1)n−2 (−1)n−1

− 1
2 1 −1 · · · (−1)n+1 (−1)n−1 (−1)n

0 − 1
2 1 · · · (−1)n−1 (−1)n (−1)n−1

...
...

...
. . .

...
...

...

0 0 0 · · · 1 −1 1
0 0 0 · · · − 1

2 1 −1
0 0 0 · · · 0 − 1

2 1























.

Then det(An×n) =
1

2n−1 .

Proof. It follows from mathematical induction:
By repeatedly using add 1

2 times the first row to second row, then use the
first row to estimate the determinant, we get the result. �

Lemma 2.6. Let B(n+1)×(n+1) be the following (n+ 1)× (n+ 1) matrix

B(n+1)×(n+1) :=























1 1 1 · · · 1 1 1
− 1

2 1 −1 · · · (−1)n−1 (−1)n (−1)n+1

0 − 1
2 1 · · · (−1)n (−1)n+1 (−1)n+2

...
...

...
. . .

...
...

...

0 0 0 · · · 1 −1 1
0 0 0 · · · − 1

2 1 −1
0 0 0 · · · 0 − 1

2 1























.
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Then det(B(n+1)×(n+1)) =
2n+1
2n .

Proof. It follows from mathematical induction and the preceding lemma:

Let n = 1, B2×2 =
[

1 1
− 1

2 1

]

, det(B2×2) =
3
2 .

If for n, det(Bn×n) = 2n−1
2n−1 , then for n + 1, by using the first column to

estimate the matrix, we have

det(B(n+1)×(n+1)) = det(An×n) +
1

2
det(Bn×n)

=
1

2n−1
+

2n− 1

2n
=

2n+ 1

2n
.

�

Theorem 2.7 ([7]). Let X be a Banach space. Then X is not reflexive if and

only if for any 0 < δ < 1 there are a sequence {xn} ⊆ SX and a sequence

{fn} ⊆ SX∗ such that

(a) 〈xm, fn〉 = δ whenever n ≤ m; and
(b) 〈xm, fn〉 = 0 whenever n > m.

Theorem 2.8. If X is a Banach space with Wn
X(2n+1

2n ) < 1 − 1
n+1 for some

n ∈ N, then X is reflexive.

Proof. Suppose that X is not reflexive. Let 0 < δ < 1 be given. Let {xi} ⊆ SX

and {fi} ⊆ SX∗ be two sequences satisfying the two conditions in Theorem 2.7.

Let n ∈ N be given. Let yi = (−1)i+1 xi+xi+1

2 for i = 1, . . . , n + 1 and

gi = (−1)i+1fi ∈ SX∗ for i = 2, . . . , n+ 1. Then, we have

δ ≤ 〈yi, gi〉 =
〈

(−1)i+1xi + xi+1

2
, (−1)i+1fi

〉

≤ 1

2
‖xi + xi+1‖ = ‖yi‖ ≤ 1,

and

detm(y1, y2, y3 . . . , yn−1, yn, yn+1; g2, g3, g4 . . . , gn−1, gn, gn+1)

= det























1 1 1 · · · 1 1 1
〈y1, g2〉 〈y2, g2〉 〈y3, g2〉 · · · 〈yn−1, g2〉 〈yn, g2〉 〈yn+1, g2〉
〈y1, g3〉 〈y2, g3〉 〈y3, g3〉 · · · 〈yn−1, g3〉 〈yn, g3〉 〈yn+1, g3〉

...
...

. . .
...

...
...

...
〈y1, gn−1〉 〈y2, gn−1〉 〈y3, gn−1〉 · · · 〈yn−1, gn−1〉 〈yn, gn−1〉 〈yn+1, gn−1〉
〈y1, gn〉 〈y2, gn〉 〈y3, gn〉 · · · 〈yn−1, gn〉 〈yn, gn〉 〈yn+1, gn〉

〈y1, gn+1〉 〈y2, gn+1〉 〈y3, gn+1〉 · · · 〈y2, gn+1〉 〈yn, gn+1〉 〈yn+1, gn+1〉























= det























1 1 1 · · · 1 1 1
− δ

2 δ −δ · · · (−1)n−1δ (−1)nδ (−1)n+1δ

0 − δ
2 δ · · · (−1)n−2δ (−1)n−1δ (−1)nδ

...
...

...
. . .

...
...

...
0 0 0 · · · δ −δ δ

0 0 0 · · · − δ
2 δ −δ

0 0 0 · · · 0 − δ
2 δ
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= δn det























1 1 1 · · · 1 1 1
− 1

2 1 −1 · · · (−1)n−1 (−1)n (−1)n+1

0 − 1
2 1 · · · (−1)n−2 (−1)n−1 (−1)n

...
...

...
. . .

...
...

...
0 0 0 · · · 1 −1 1
0 0 0 · · · − 1

2 1 −1
0 0 0 · · · 0 − 1

2 1























.

By Lemmas 2.5 and 2.6, we have

detm(y1, y2, . . . , yn+1; g2, g3, . . . , gn+1) = δn
2n+ 1

2n
.

On the other hand, since

‖y1 + y2 + · · ·+ yn+1‖
n+ 1

=
‖(−1)n+2xn+2 + x1‖

2(n+ 1)
≤ 1

n+ 1
,

we have

1− ‖y1 + y2 + · · ·+ yn+1‖
n+ 1

≥ 1− 1

n+ 1
.

Since δ can be chosen arbitrarily closed to 1, let δ = 1− ε2

4 where ε can be
chosen arbitrarily closed to 0.

Let z1 = y1. Next, let i = 2, 3, . . . , n + 1. From Bishop-Phelps-Bollobás
result (Lemma 2.4), there exist zi ∈ SX and hi ∈ ∇zi such that ‖yi − zi‖ < ε

and ‖gi − hi‖ < ε.
This implies that

|〈zi, hj〉 − 〈yi, gj〉| ≤ |〈zi − yi, gj〉|+ |〈yi, hj − gj〉|+ |〈zi − yi, hj − gj〉| ≤ 3ε.

It follows then that

detm(z1, z2, . . . , zn+1;h2, h3, . . . , hn+1) =

(

1− ε2

4

)n
2n+ 1

2n
+ cε,

where c is a bounded constant. Moreover,

1− ‖z1 + z2 + · · ·+ zn+1‖
n+ 1

≥ 1− 1 + ε

n+ 1
.

From the definition of Wn
X(ε), we have

Wn
X

((

1− ε2

4

)n
2n+ 1

2n
+ cε

)

≥ 1− 1 + ε

n+ 1
.

Since ε can be arbitrarily close to 0, the theorem is proved. �
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Let C(n+1)×(n+1) be the following (n+ 1)× (n+ 1) matrix:

C(n+1)×(n+1) :=



























1 1 1 1 · · · 1 1 1
− 2

3 1 −1 1 · · · (−1)n−1 (−1)n (−1)n+1

1
3 − 2

3 1 −1 · · · (−1)n (−1)n+1 (−1)n+2

0 1
3 − 2

3 1 · · · (−1)n+1 (−1)n+2 (−1)n+3

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 1 −1 1
0 0 0 0 · · · − 2

3 1 −1
0 0 0 0 · · · 1

3 − 2
3 1



























.

Then det(C2×2) =
5
3 , and det(C3×3) =

7
9 .

Theorem 2.9. If X is a Banach space with Wn
X(detC(n+1)×(n+1)) < 2

3 for

some n ∈ N, then X is reflexive. In particular, for n = 1 we have if W 1
X(53 ) <

2
3 , then X is reflexive; and for n = 2 we have if W 2

X(79 ) <
2
3 , then X is reflexive.

Proof. Suppose that X is not reflexive. Let 0 < δ < 1 be given. Let {xi} ⊆ SX

and {fi} ⊆ SX∗ be two sequences satisfying the two conditions in Theorem 2.7.

Let n ∈ N be given. Let yi = (−1)i+1 xi+xi+1+xi+2

3 for i = 1, . . . , n + 1 and

gi = (−1)i+1fi ∈ SX∗ for i = 2, . . . , n+ 1. Then, we have

δ ≤ 〈yi, gi〉 =
〈

(−1)i+1 xi + xi+1 + xi+2

3
, (−1)i+1fi

〉

≤ 1

3
‖xi + xi+1 + xi+2‖ = ‖yi‖ ≤ 1,

and

m(y1, y2, y3, y4, . . . , yn−1, yn, yn+1; g2, g3, g4, . . . , gn−1, gn, gn+1)

=



























1 1 1 1 · · · 1 1 1
〈y1, g2〉 〈y2, g2〉 〈y3, g2〉 〈y4, g2〉 · · · 〈yn−1, g2〉 〈yn, g2〉 〈yn+1, g2〉
〈y1, g3〉 〈y2, g3〉 〈y3, g3〉 〈y4, g3〉 · · · 〈yn−1, g3〉 〈yn, g3〉 〈yn+1, g3〉
〈y1, g4〉 〈y2, g4〉 〈y3, g4〉 〈y4, g4〉 · · · 〈yn−1, g4〉 〈yn, g4〉 〈yn+1, g4〉

...
...

...
...

. . .
...

...
...

〈y1, gn−1〉 〈y2, gn−1〉 〈y3, gn−1〉 〈y4, gn−1〉 · · · 〈yn−1, gn−1〉 〈yn, gn−1〉 〈yn+1, gn−1〉
〈y1, gn〉 〈y2, gn〉 〈y3, gn〉 〈y4, gn〉 · · · 〈yn−1, gn〉 〈yn, gn〉 〈yn+1, gn〉

〈y1, gn+1〉 〈y2, gn+1〉 〈y3, gn+1〉 〈y4, gn+1〉 · · · 〈yn−1, gn+1〉 〈yn, gn+1〉 〈yn+1, gn+1〉



























= δn



























1 1 1 1 · · · 1 1 1
− 2

3 1 −1 1 · · · (−1)n−1 (−1)n (−1)n+1

1
3 − 2

3 1 −1 · · · (−1)n (−1)n+1 (−1)n+2

0 1
3 − 2

3 1 · · · (−1)n+1 (−1)n+2 (−1)n+3

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 1 −1 1
0 0 0 0 · · · − 2

3 1 −1
0 0 0 0 · · · 1

3 − 2
3 1



























.
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We have

detm(y1, y2, y3, y4, . . . , yn−1, yn, yn+1; g2, g3, g4, . . . , gn−1, gn, gn+1)

= δn detC(n+1)×(n+1).

On the other hand, for n ≥ 2,

‖y1 + y2 + · · ·+ yn+1‖
n+ 1

=
‖x1 + x3 − x4 + · · ·+ (−1)nxn+1 + (−1)n+2xn+3‖

3(n+ 1)

≤ n+ 1

3(n+ 1)
δ =

1

3
δ,

and for n = 1,

‖y1 + y2 + · · ·+ yn+1‖
n+ 1

=
‖x1 − x4‖

6
≤ 1

3
δ.

We have

1− ‖y1 + y2 + · · ·+ yn+1‖
n+ 1

≥ 1− 1

3
δ ≥ 2

3
δ

for all n ∈ N.

The theorem can be proved by using the Bishop-Phelps-Bollobás result
(Lemma 2.4), and same idea in the proof of Theorem 2.8. �

We consider n = 1.

Theorem 2.10. If X is a Banach space with W 1
X(2m+1

m+1 ) < m
m+1 for some

m ∈ N, then X is reflexive. In particular, for m = 2 we have if W 1
X(53 ) <

2
3 ,

then X is reflexive.

Proof. Suppose that X is not reflexive. Let 0 < δ < 1 be given. Let {xi} ⊆ SX

and {fi} ⊆ SX∗ be two sequences satisfying the two conditions in Theorem 2.7.
Let m ∈ N be given. Let

y1 =
x1 + x2 + · · ·+ xm + xm+1

m+ 1
, y2 = −x2 + x3 + · · ·+ xm+1 + xm+2

m+ 1

and g2 = −f2 ∈ SX∗ .

Consider the 2-dimensional subspace of X spanned by y1 and y2.

We have

detm(y1, y2; g2) = det

[

1 1
〈y1, g2〉 〈y2, g2〉

]

= det

[

1 1
− m

m+1 1

]

δ =
2m+ 1

m+ 1
δ,

and
∥

∥

∥

y1 + y2

2

∥

∥

∥ =
∥

∥

∥

x1 − xm+2

2(m+ 1)

∥

∥

∥ ≤ 1

m+ 1
δ.

This is

1−
∥

∥

∥

y1 + y2

2

∥

∥

∥ ≥ m

m+ 1
δ.

Similar to the proof of Theorem 2.8 we have

W 1
X

(

2m+ 1

m+ 1

)

≥ m

m+ 1
.
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This completes the proof. �

In 2008, Saejung proved the following result:

Lemma 2.11 ([11]). If X is a Banach space with BX∗ is weak* sequentially

compact and it fails to have weak normal structure, then for any ε > 0 and

n ∈ N there are {x1, x2, . . . , xn} ⊆ SX and {f1, f2, . . . , fn} ⊆ SX∗ such that

(a) |‖xi − xj‖ − 1| < ε for all i 6= j;
(b) 〈xi, fi〉 = 1 for all 1 ≤ i ≤ n; and
(c) |〈xi, fj〉| < ε for all i 6= j.

Theorem 2.12. If X is a Banach space with BX∗ is weak* sequentially com-

pact and Wn
X(1) < 1− 1

n+1 for some n ∈ N, then X has weak normal structure.

Proof. Suppose that X does not have weak normal structure. Let 0 < ε < 1 be
given. Then there are {xi}n+1

i=1 ⊆ SX and {fi}n+1
i=1 ⊆ SX∗ satisfying the three

conditions in Lemma 2.11.
For convenience, let |〈xi, fj〉| = εi,j . Then εi,j ≤ ε for all i 6= j.

Let yi = xi+1−xi

‖xi+1−xi‖
∈ SX for i = 1, . . . , n + 1 and gi = fi+1 ∈ SX∗ for

i = 2, . . . , n+ 1. Then
‖yi − (xi+1 − xi)‖ ≤ ε

for i = 1, . . . , n+ 1. Moreover,

‖y1 + y2 + · · ·+ yi + · · ·+ yn+1‖
≤ ‖(x2 − x1) + (x3 − x2) + · · ·+ (xi+1 − xi) + · · ·+ (xn+2 − xn+1)‖+(n+ 1)ε

= ‖xn+2 − x1‖+ (n+ 1)ε.

Next, we consider the following matrix:

m(y1, y2, . . . , yn+1; g2, g3, . . . , gn+1)

=



















1 1 1 · · · 1 1
〈y1, g2〉 〈y2, g2〉 〈y3, g2〉 · · · 〈yn, g2〉 〈yn+1, g2〉
〈y1, g3〉 〈y2, g3〉 〈y3, g3〉 · · · 〈yn, g3〉 〈yn+1, g3〉

...
...

...
. . .

...
...

〈y1, gn〉 〈y2, gn〉 〈y3, gn〉 · · · 〈yn, gn〉 〈yn+1, gn〉
〈y1, gn+1〉 〈y2, gn+1〉 〈y3, gn+1〉 · · · 〈yn, gn+1〉 〈yn+1, gn+1〉



















=























1 1 1 · · · 1 1
ε2,3−ε1,3
‖x2−x1‖

1−ε2,3
‖x3−x2‖

ε4,3−1
‖x4−x3‖

· · · εn+1,3−εn,3

‖xn+1−xn‖
εn+2,3−εn+1,3

‖xn+2−xn+1‖
ε2,4−ε1,4
‖x2−x1‖

ε3,4−ε2,4
‖x3−x2‖

1−ε3,4
‖x4−x3‖

· · · εn+1,4−εn,4

‖xn+1−xn‖
εn+2,4−εn+1,4

‖xn+2−xn+1‖

...
...

...
. . .

...
...

ε2,n+1−ε1,n+1

‖x2−x1‖
ε3,n+1−ε2,n+1

‖x3−x2‖
ε4,n+1−ε3,n+1

‖x4−x3‖
· · · 1−εn,n+1

‖xn+1−xn‖
εn+2,n+1−1

‖xn+2−xn+1‖
ε2,n+2−ε1,n+2

‖x2−x1‖
ε3,n+2−ε2,n+2

‖x3−x2‖
ε4,n+2−ε3,n+2

‖x4−x3‖
· · · εn+1,n+2−εn,n+2

‖xn+1−xn‖
1−εn+1,n+2

‖xn+2−xn+1‖























.

It follows then that

detm(y1, y2, . . . , yn+1; g2, g3, . . . , gn+1) = 1 + cε,



U-FLATNESS AND NON-EXPANSIVE MAPPINGS IN BANACH SPACES 501

where c is a bounded constant.
On the other hand, since

‖y1 + y2 + · · ·+ yn+1‖
n+ 1

≤ ‖xn+2 − x1‖
n+ 1

+ ε ≤ 1 + ε

n+ 1
+ ε,

we have

1− ‖y1 + y2 + · · ·+ yn+1‖
n+ 1

≥ 1− 1 + ε

n+ 1
− ε.

Let z1 = y1. Next, let i = 2, 3, . . . , n+ 1.
From Bishop-Phelps-Bollobás result (Lemma 2.4), there exist zi ∈ SX and

hi ∈ ∇zi such that

‖yi − zi‖ < ε and ‖gi − hi‖ < ε.

In particular,

|〈zi, hj〉 − 〈yi, gj〉| ≤ |〈zi − yi, gj〉|+ |〈yi, hj − gj〉|+ |〈zi − yi, hj − gj〉| ≤ 3ε.

This implies that

detm(z1, z2, . . . , zn+1, h2, h3, . . . , hn+1)

= det



















1 1 1 · · · 1 1
〈z1, h2〉 〈z2, h2〉 〈z3, h2〉 · · · 〈zn, h2〉 〈zn+1, h2〉
〈z1, h3〉 〈z2, h3〉 〈z3, h3〉 · · · 〈zn, h3〉 〈zn+1, h3〉

...
...

...
. . .

...
...

〈z1, hn〉 〈z2, hn〉 〈z3, hn〉 · · · 〈zn, hn〉 〈zn+1, hn〉
〈z1, hn+1〉 〈z2, hn+1〉 〈z3, hn+1〉 · · · 〈zn, hn+1〉 〈zn+1, hn+1〉



















= 1 + dε,

where d is a bounded constant. Hence

1− ‖z1 + z2 + · · ·+ zn+1‖
n+ 1

≥ 1− 1 + ε

n+ 1
− 2ε.

Since ε can be arbitrarily small, it follows from the definition of Wn
X(·) that

Wn
X(1) ≥ 1− 1

n+ 1
.

This completes the proof. �

Theorem 2.13. If X is a Banach space satisfying one of the following two

conditions:

• Wn
X(1) < 1− 1

n+1 for some n ∈ N with n ≥ 2; or

• W 1
X(1) < 1

2 and W 1
X(53 ) <

2
3 for n = 1.

Then X has normal structure.

Proof. Since X is reflexive, it follows that BX∗ is weak* sequentially compact.
Moreover, 2n+1

2n < 1 for n ∈ N and n ≥ 3, and 7
9 < 1 for n = 2. The first result

is a direct consequence of Theorems 2.8, 2.9 and 2.12. The second result is a
direct consequence of Theorems 2.10 and 2.12. �
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Definition 2.14 ([4, 5]). Let X and Y be Banach spaces. We say that Y is
finitely representable in X if for any ε > 0 and any finite dimensional subspace
N ⊆ Y there is an isomorphism T : N → X such that for any y ∈ N ,

(1− ε)‖y‖ ≤ ‖Ty‖ ≤ (1 + ε)‖y‖.

We say that X is super-reflexive if any space Y which is finitely representable
in X is reflexive.

Theorem 2.15. If X is a Banach space with Wn
X(2n+1

2n ) < 1− 1
n+1 for some

n ∈ N and n ≥ 2, or W 1
X(2m+1

m+1 ) < m
m+1 for n = 1 and some m ∈ N, then X

is super-reflexive. In particular, for m = 2 we have if W 1
X(53 ) <

2
3 , then X is

super-reflexive.

Proof. We only prove the first part (for n ≥ 2). The proof of second part (for
n = 1) is same.

The proof is similar to that of Theorem 2.12 in [6]. Suppose that X is not
super-reflexive. Then there exists a nonreflexive Banach space Y such that Y
can be finitely representable. From Remark 2.2 and Theorem 2.8, for each n

there exists some positive function f(ε) which goes to 0 as ε goes to 0, satisfies
Wn

Y (
2n+1
2n − ε) > 1 − 1

n+1 − f(ε). Therefore, there exist {yi}n+1
i=1 ⊆ SY and

{gi} ∈ ∇yi
⊆ SY ∗ for i = 2, . . . , n+ 1 such that

det











1 1 · · · 1 1
〈y1, g2〉 〈y2, g2〉 · · · 〈yn, g2〉 〈yn+1, g2〉

...
...

. . .
...

...
〈y1, gn+1〉 〈y2, gn+1〉 · · · 〈yn, gn+1〉 〈yn+1, gn+1〉











≤ 2n+ 1

2n
− ε,

and

1− ‖y1 + y2 + · · ·+ yn+1‖
n+ 1

> 1− 1

n+ 1
− f(ε).

Let N = span{y1, y2, . . . , yn+1}, and T : N → M ⊆ X be an isomorphism
with range M .

Let us consider the conjugate mapping T ∗ of T . Let gi|N be the restricting

gi on N. Then 〈Tyj, (T ∗)−1gi|N〉 = 〈yj , gi〉 for 1 ≤ i, j ≤ n+ 1.
We have

1− ε ≤ ‖T ‖ ≤ 1 + ε,

1− ε ≤ ‖T ∗‖ ≤ 1 + ε,

and

1− ε ≤ ‖(T ∗)−1‖ ≤ 1 + ε.

Let xi = Tyi and fi = (T ∗)−1gi|N for i = 1, . . . , n+ 1. Then

〈xj , fi〉 = 〈Tyj, (T ∗)−1gi|N 〉 = 〈yj , gi〉.
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If i = j, then 〈xi, fi〉 = 〈yi, gi〉 = 1, so fi ∈ ∇xi
and we have

det











1 1 · · · 1 1
〈x1, f2〉 〈x2, f2〉 · · · 〈xn, f2〉 〈xn+1, f2〉

...
...

. . .
...

...
〈x1, fn+1〉 〈x2, fn+1〉 · · · 〈xn, fn+1〉 〈xn+1, fn+1〉











= det











1 1 · · · 1 1
〈y1, g2〉 〈y2, g2〉 · · · 〈yn, g2〉 〈yn+1, g2〉

...
...

. . .
...

...
〈y1, gn+1〉 〈y2, gn+1〉 · · · 〈yn, gn+1〉 〈yn+1, gn+1〉











≤ 2n+ 1

2n
− ε.

On the other hand,

‖x1 + x2 + · · ·+ xn+1‖
n+ 1

=
‖T (y1 + y2 + · · ·+ yn+1)‖

n+ 1

≤ (1 + ε)
‖y1 + y2 + · · ·+ yn+1‖

n+ 1

≤ 1 + ε

n+ 1
+ (1 + ε)f(ε).

This implies that

1− ‖x1 + x2 + · · ·+ xn+1‖
n+ 1

≥ 1− 1 + ε

n+ 1
− (1 + ε)f(ε).

Since f(ε) can be arbitrarily small, we have

Wn
X

(

2n+ 1

2n

)

≥ 1− 1

n+ 1
.

This completes the proof. �

We consider the uniform normal structure. To discuss this result, let us
recall the concept of the “ultra”-technique.

Let F be a filter of an index set I, and let {xi}i∈I be a subset in a Hausdorff
topological space X , {xi}i∈I is said to converge to x with respect to F , denoted
by limF xi = x, if for each neighborhood V of x, {i ∈ I : xi ∈ V } ∈ F .
A filter U on I is called an ultrafilter if it is maximal with respect to the
ordering of the set inclusion. An ultrafilter is called trivial if it is of the form
{A : A ⊆ I, i0 ∈ A} for some i0 ∈ I. We will use the fact that if U is an
ultrafilter, then

(i) for any A ⊆ I, either A ⊆ U or I −A ⊆ U ;
(ii) if {xi}i∈I has a cluster point x, then limU xi exists and equals to x.

Let {Xi}i∈I be a family of Banach spaces and let l∞(I,Xi) denote the subspace
of the product space equipped with the norm ‖(xi)‖ = supi∈I ‖xi‖ < ∞.
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Definition 2.16 ([3, 12]). Let U be an ultrafilter on I and let NU = {(xi) ∈
l∞(I,Xi) : limU ‖xi‖ = 0}. The ultra-product of {Xi}i∈I is the quotient space
l∞(I,Xi)/NU equipped with the quotient norm.

We will use (xi)U to denote the element of the ultra-product. It follows from
remark (ii) above, and the definition of quotient norm that

(2.1) ‖(xi)U‖ = lim
U

‖xi‖.

In the following we will restrict our index set I to be N, the set of natural
numbers, and let Xi = X, i ∈ N for some Banach space X . For an ultrafilter
U on N, we use XU to denote the ultra-product. Note that if U is nontrivial,
then X can be embedded into XU isometrically.

Lemma 2.17 ([12]). Suppose that U is an ultrafilter on N and X is a Banach

space. Then (X∗)U ∼= (XU )
∗ if and only if X is super-reflexive; and in this

case, the mapping J defined by

〈(xi)U , J((fi)U )〉 = lim
U
〈xi, fi〉 for all (xi)U ∈ XU

is the canonical isometric isomorphism from (X∗)U onto (XU )
∗.

Theorem 2.18. Let X be a super-reflexive Banach space. Then for any non-

trivial ultrafilter U on N, and for all n ∈ N and ε > 0, we have Wn
XU

(ε) =
Wn

X(ε).

Proof. Since X can be embedded into XU isometrically, we may consider X as
a subspace of XU . From the definition of Wn

X(ε), we have Wn
XU

(ε) ≥ Wn
X(ε).

We prove the reverse inequality.
For any very small η > 0, from the definition of Wn

XU

(ε), let (x1
i )U , (x

2
i )U ,

. . . , (xn
i )U , (x

n+1
i )U belong to SXU

, and let (f2
i )U ∈ ∇(x2

i
)U , (f

3
i )U ∈ ∇(x3

i
)U ,

. . . , (fn
i )U ∈ ∇(xn

i
)U , (f

n+1
i )U ∈ ∇(xn+1

i
)U

be such that

m((x1
i )U , (x

2
i )U , . . . , (x

n
i )U , (x

n+1
i )U ; (f

2
i )U , (f

3
i )U , . . . , (f

n
i )U , (f

n+1
i )U ) ≤ ε,

and

1− ‖(x1
i )U + (x2

i )U + · · ·+ (xn
i )U + (xn+1

i )U‖
n+ 1

> Wn
XU

(ε)− η.

Without loss of generality, we may assume by (2.1) that

1− η < ‖(xj
i )U‖ < 1 + η for j = 1, . . . , n+ 1,

1− η < ‖(f j
i )U‖ < 1 + η for j = 2, . . . , n+ 1,

and

1− η < 〈(xj
i )U , (f

j
i )U 〉 < 1 + η for j = 2, . . . , n+ 1.

From the property of ultra-product, we know the subsets

P = {i : m((x1
i )U , (x

2
i )U , . . . , (x

n
i )U , (x

n+1
i )U ; (f

2
i )U , (f

3
i )U , . . . , (f

n
i )U , (f

n+1
i )U )≤ε}
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and

Q =

{

i : 1− ‖(x1
i )U + (x2

i )U + · · ·+ (xn
i )U + (xn+1

i )U‖
n+ 1

> Wn
XU

(ε)− η

}

are all in U . So the intersection P ∩Q is in U too, and hence is not empty.
Let i ∈ P ∩Q be fixed. Then

1− η < ‖xj
i‖ < 1 + η for j = 1, . . . , n+ 1;

1− η < ‖f j
i ‖ < 1 + η for j = 2, . . . , n+ 1;

1− η < 〈xj
i , f

j
i 〉 < 1 + η for j = 2, . . . , n+ 1;

m(x1
i , x

2
i , . . . , x

n
i , x

n+1
i ; f2

i , f
3
i , . . . , f

n
i , f

n+1
i ) ≤ ε;

and

1− ‖x1
i + x2

i + · · ·+ xn
i + xn+1

i ‖
n+ 1

> Wn
XU

(ε)− η.

From Lemma 2.4, for 0 < η < 1 (since η can be arbitrarily small, if necessary

we can normalize vectors xj
i and f

j
i to use Lemma 2.4) there are {yj}n+1

j=1 ⊆ SX

and {gj}n+1
j=2 ⊆ SX∗ such that

• gj ∈ ∇yj
for all j = 2, . . . , n+ 1;

• ‖xj
i − yj‖ < η for all j = 1, . . . , n+ 1;

• ‖f j
i − gj‖ < η for j = 2, . . . , n+ 1.

Similar to the proof of Theorem 2.8, we have

detm(y1, y2, . . . , yn, yn+1; g2, g3, . . . , gn, gn+1) ≤ ε+ cη,

and 1− ‖y1+y2+···+yn+yn+1‖
n+1 > Wn

XU

(ε)− dη, where c and d are constants.

Since η > 0 can be arbitrarily small, we have Wn
X(ε) ≥ Wn

XU

(ε). �

Lemma 2.19 ([8]). If X is a super-reflexive Banach space, then X has uniform

normal structure if and only if XU has normal structure.

Theorem 2.20. Suppose that X is a Banach space satisfying one of the fol-

lowing conditions:

• Wn
X(1) < 1− 1

n+1 for some n ∈ N with n ≥ 2; or

• W 1
X(1) < 1

2 and W 1
X(53 ) <

2
3 for n = 1.

Then X has uniform normal structure.

Proof. It follows directly from Theorems 2.13, 2.15, 2.18 and Lemma 2.19. �

Example. LetH be a Hilbert space. We haveW 1
H(ε) = 2−

√
4−2ε
2 for 0 ≤ ε ≤ 2.

Since W 1
H(1) = 2−

√
2

2 = 0.29289 · · · < 1
2 , and W 1

H(53 ) =
2−

√
2
3

2 = 0.59175 · · ·
< 2

3 , from Theorem 2.20, H has uniform normal structure.
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