# GENERALIZATIONS OF ALESANDROV PROBLEM AND MAZUR-ULAM THEOREM FOR TWO-ISOMETRIES AND TWO-EXPANSIVE MAPPINGS 

Hamid Khodaei and Abdulqader Mohammadi


#### Abstract

We show that mappings preserving unit distance are close to two-isometries. We also prove that a mapping $f$ is a linear isometry up to translation when $f$ is a two-expansive surjective mapping preserving unit distance. Then we apply these results to consider two-isometries between normed spaces, strictly convex normed spaces and unital $C^{*}$-algebras. Finally, we propose some remarks and problems about generalized twoisometries on Banach spaces.


## 1. Introduction and preliminaries

Let $X$ and $Y$ be metric spaces. A mapping $f: X \rightarrow Y$ is called an isometry if $f$ satisfies $d_{Y}(f(x), f(y))=d_{X}(x, y)$ for all $x, y \in X$, where $d_{X}(\cdot, \cdot)$ and $d_{Y}(\cdot, \cdot)$ denote the metrics in the spaces $X$ and $Y$, respectively. For some fixed number $r>0$, we call $r$ a conservative (or preserved) distance for the mapping $f$ if $f$ preserves distance $r$; i.e., for all $x, y \in X$ with $d_{X}(x, y)=r$, we have $d_{Y}(f(x), f(y))=r$. In case of $r=1$, especially, we call it a distance one preserving property (DOPP). A mapping $f: X \rightarrow Y$ is said to have the strong distance one preserving property (SDOPP) if it has (DOPP) and in addition, if $d_{Y}(f(x), f(y))=1$ implies $d_{X}(x, y)=1$ for all $x, y \in X$.

The theory of isometric mappings had its beginning in the classical paper [13] by S. Mazur and S. Ulam who proved that any surjective isometry between real normed spaces is a linear mapping up to translation. The hypothesis of surjectivity is essential. Without this assumption, Baker [3] proved that every isometry from a normed space into a strictly convex normed space is linear up to translation.

Aleksandrov [2] posed the following problem: Examine whether the existence of a single conservative distance for some mapping $f$ implies that $f$ is an isometry. This problem is of great significance for the Mazur-Ulam theorem [13].

[^0]Rassias et al. [16-20] proved a series of results on the Aleksandrov problem on normed spaces. Chu et al. [5-12], [15] in linear $n$-normed spaces, defined the concept of an $n$-isometry that are suitable to represent the notion of a volume preserving mapping, and generalized the Aleksandrov problem to $n$-normed spaces.

An operator $f$ on a Hilbert space $H$ is a two-isometry if $f^{* 2} f^{2}-2 f^{*} f+I d=$ 0 , where Id denotes the identity operator. This last condition can be equivalently expressed as $\left\|f^{2} x\right\|^{2}-2\|f x\|^{2}+\|x\|^{2}=0$ for all $x \in H$. This formulation allows for an extension of the two-isometry concept to the Banach space setting. As noted by Richter, in [21], the notion of "two-isometry" generalizes, in a natural way, the well-known definition of isometry. Moreover, these generalized isometries do not belong to well studied classes such as contractions and subnormal operators and can be used as dilations for a class of expanding operators. The class of two-isometries has been generalized by the authors in [1]. A generalization of these operators to Banach spaces has been studied in the paper of Sid Ahmed [22] and Bayart [4]. Recently, the concept of twoexpansive operators on a Banach space has introduced and studied in slightly generalized form in [23, 24].

Definition 1.1. Let $\mathcal{X}$ be a normed space and $f: \mathcal{X} \rightarrow \mathcal{X}$ be a mapping (not necessarily linear). Then
(1) $f$ is called a two-isometry if, for all $x, y \in \mathcal{X}$,

$$
\begin{equation*}
\left\|f^{2}(x)-f^{2}(y)\right\|^{2}-2\|f(x)-f(y)\|^{2}+\|x-y\|^{2}=0 . \tag{1.1}
\end{equation*}
$$

(2) $f$ is called a two-expansive mapping if, for all $x, y \in \mathcal{X}$,

$$
\begin{equation*}
\left\|f^{2}(x)-f^{2}(y)\right\|^{2}-2\|f(x)-f(y)\|^{2}+\|x-y\|^{2} \leq 0 \tag{1.2}
\end{equation*}
$$

Remark 1.2. Let $\mathcal{X}$ be a normed space and $f: \mathcal{X} \rightarrow \mathcal{X}$ be a mapping. From Definition 1.1, it is clear that every isometry is a two-isometry, but there exists an invertible two-isometry $f$ which is not an isometry and there exists a continuous two-isometry $f$ which is not linear (see [4,22] and below in Examples 1.3 and 2.6). Also, it is easy to check that if $f$ is an isometry, then it has SDOPP. If $f$ is surjective and has SDOPP, then $f$ is bijective. Note that $f$ is injective. If not, then we could find $x, y$ in $\mathcal{X}$ with $x \neq y$ such that $f(x)=f(y)$. Choose $z$ in $\mathcal{X}$ so that $\|x-z\|=1$ and $\|z-y\| \neq 1$. Then we would have $\|f(x)-f(z)\|=\|f(y)-f(z)\|=1$. But then $\|y-z\|=1$, a contradiction, so $f$ is bijective.

Example 1.3. Let $\alpha \geq 1$ and $f \in B\left(\ell_{2}\right)$ (the algebra of bounded linear operators $f$ on $\ell_{2}$ ) be a weighted right-shift operator with weight sequence $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$. That is, for $x=\left(x_{k}\right)_{k \in \mathbb{N}} \in \ell_{2}$

$$
(f x)_{n}=\left\{\begin{array}{cc}
0, & \text { if } n=0 \\
\alpha_{n} x_{n-1}, & \text { if } n \geq 1
\end{array}\right.
$$

where $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ is given by $\alpha_{n}=\sqrt{\frac{1+(n+1)\left(\alpha^{2}-1\right)}{1+n\left(\alpha^{2}-1\right)}}$. Note that for $\alpha \geq 1$, this is well-defined. Then $f$ is a two-isometry. This follows from the fact that $\left(\alpha_{n+2} \alpha_{n+1}\right)^{2}-2\left(\alpha_{n+1}\right)^{2}=-1$. Note that for $\alpha>1$ we have $\|f x\|>\|x\|$, for all non-zero $x$ and, in particular, $f$ is not an isometry for $\alpha>1$.

In this paper, we investigate the two-isometries and two-expansive mappings between normed spaces, strictly convex normed spaces and unital $C^{*}$-algebras. We propose some remarks and problems about generalized two-isometries on Banach spaces.

## 2. Main results

Theorem 2.1. Let $\mathcal{X}$ be a normed space of dimension at least 2 and $f$ be $a$ mapping having the SDOPP of $\mathcal{X}$ onto itself. Then:
(i) $f$ satisfies the condition
(2.1) $-(4 n+2)<\left\|f^{2}(x)-f^{2}(y)\right\|^{2}-2\|f(x)-f(y)\|^{2}+\|x-y\|^{2}<4 n+2$
for all $x, y \in \mathcal{X}$ and $n \in \mathbb{N}$. Also, $f$ preserves distance $n$ in both directions for $n \in \mathbb{N}$.
(ii) If $f$ is a two-expansive mapping, then $f$ is a linear isometry up to translation.

Proof. (i) From the SDOPP and the surjectivity of $f$, and Remark 1.2, we see that $f$ is bijective, and both $f$ and $f^{-1}$ preserve unit distance. In proving inequality (2.1) we will use the following notations. With $x$ in $\mathcal{X}$ and $r>0$, $B(x, r)=\{z:\|z-x\| \leq r\}, B^{\circ}(x, r)=\{z:\|z-x\|<r\}$ and $C_{x}(n, n+1]=$ $\{z: n<\|z-x\| \leq n+1\}$. Given $x$ in $\mathcal{X}$ and $n$ in $\mathbb{N} \backslash\{1\}$, let $z$ be an element of $B(x, n)$. Since $\operatorname{dim} X>1$, we can find a sequence $x=x_{0}, x_{1}, \ldots, x_{n}=z$ such that $\left\|x_{i+1}-x_{i}\right\|=1$ for $i=0,1, \ldots, n-1$. Thus

$$
\|f(x)-f(z)\| \leq \sum_{i=0}^{n-1}\left\|f\left(x_{i+1}\right)-f\left(x_{i}\right)\right\|=n
$$

Similarly, we get

$$
\left\|f^{2}(x)-f^{2}(z)\right\| \leq n
$$

Hence

$$
f(B(x, n)) \subset B(f(x), n), \quad f(B(f(x), n)) \subset B\left(f^{2}(x), n\right)
$$

The same argument applies to $f^{-1}$ in place of $f$ to obtain

$$
f^{-1}(B(f(x), n)) \subset B(x, n)
$$

Thus, for all $x \in \mathcal{X}$ and $n=2,3, \ldots$, we have

$$
f(B(x, n))=B(f(x), n), \quad f(B(f(x), n))=B\left(f^{2}(x), n\right) .
$$

Now $f$ is bijective, so for $x \in \mathcal{X}$ and $n$ in $\mathbb{N} \backslash\{1\}$, we have
$(2.2) f\left(C_{x}(n, n+1]\right)=C_{f(x)}(n, n+1], f\left(C_{f(x)}(n, n+1]\right)=C_{f^{2}(x)}(n, n+1]$.

In order to show that (2.2) also holds for $n=1$, we fix $x \in \mathcal{X}$ and choose any $z \in C_{x}(1,2]$. Then $f(z) \in B(f(x), 2)$. If $u=z+(z-x) /\|z-x\|$, then

$$
\|u-z\|=\left\|\frac{z-x}{\|z-x\|}\right\|=\frac{\|z-x\|}{\|z-x\|}=1 .
$$

So, by SDOPP, we have $\|f(u)-f(z)\|=1$ and also $\left\|f^{2}(u)-f^{2}(z)\right\|=1$. Since

$$
\|u-x\| \leq\|u-z\|+\|z-x\| \leq 3
$$

Hence $u=z+(z-x) /\|z-x\|$ is contained in $C_{x}(2,3]$. By (2.2), we get $f(u) \in C_{f(x)}(2,3]$, so that

$$
\begin{equation*}
\|f(x)-f(u)\|>2 \tag{2.3}
\end{equation*}
$$

If $\|f(z)-f(x)\| \leq 1$, then

$$
\|f(x)-f(u)\| \leq\|f(x)-f(z)\|+\|f(z)-f(u)\| \leq 2
$$

which contradicts (2.3). Thus we have $f\left(C_{x}(1,2]\right) \subset C_{f(x)}(1,2]$. Similarly, we obtain $f\left(C_{f(x)}(1,2]\right) \subset C_{f^{2}(x)}(1,2]$. Since the similar result will hold for $f^{-1}$, it follows that

$$
\begin{equation*}
f\left(C_{x}(1,2]\right)=C_{f(x)}(1,2], \quad f\left(C_{f(x)}(1,2]\right)=C_{f^{2}(x)}(1,2], \tag{2.4}
\end{equation*}
$$

and we conclude that (2.2) is true for all $n$ in $\mathbb{N}$. Now we will prove that

$$
\begin{equation*}
f\left(B^{\circ}(x, 1)\right)=B^{\circ}(f(x), 1), \quad f\left(B^{\circ}(f(x), 1)\right)=B^{\circ}\left(f^{2}(x), 1\right) . \tag{2.5}
\end{equation*}
$$

As above, it is sufficient to prove

$$
\begin{equation*}
f\left(B^{\circ}(x, 1)\right) \subset B^{\circ}(f(x), 1), \quad f\left(B^{\circ}(f(x), 1)\right) \subset B^{\circ}\left(f^{2}(x), 1\right) \tag{2.6}
\end{equation*}
$$

since the similar result will then hold for $f^{-1}$. If (2.6) is not true, then for some integer $n \geq 1$ we would have $f(z) \in C_{f(x)}(n, n+1]$ for some $z$ in $B^{\circ}(x, 1)$. Since $C_{f(x)}(n, n+1]=f\left(C_{x}(n, n+1]\right)$, then $f(z) \in f\left(C_{x}(n, n+1]\right)$ and $z \in$ $C_{x}(n, n+1]$ for some $n \geq 1$, which is a contradiction. Thus (2.6) holds and we have (2.5).

The fact that (2.2) holds for all positive integers $n$, together with (2.5) implies that (2.1) is true. Indeed, given $x$ and $y$ in $X$, let $n+1$ be the integral part of $\|x-y\|$, so that $y \in C_{x}(n, n+1]$ if $n \geq 1$, while if $n=0$, then either $y \in B^{\circ}(x, 1)$ or else $\|x-y\|=1$ and (2.1) becomes trivial. In the non-trivial cases we find by (2.2) or (2.5) that

$$
\begin{aligned}
n^{2}<\left\|f^{2}(x)-f^{2}(y)\right\|^{2} & \leq(n+1)^{2}, \quad n^{2}<\|x-y\|^{2} \leq(n+1)^{2}, \\
-2(n+1)^{2} & \leq-2\|f(x)-f(y)\|^{2}<-2 n^{2},
\end{aligned}
$$

from which (2.1) follows.
It remains to prove that $f$ and $f^{-1}$ both preserve the distance $n$ for each $n \in \mathbb{N}$. Make the induction assumption that $f$ preserves the distance $n$. For $n=1$ this is true by hypothesis. Let $x$ and $z$ satisfy $\|x-z\|=n+1$, so that
$z \in C_{x}(n, n+1]$. Hence, $f(z) \in C_{f(x)}(n, n+1]$ so that $\|f(x)-f(z)\| \leq n+1$. Put

$$
u=f(x)+\frac{f(z)-f(x)}{\|f(z)-f(x)\|}, \quad v=f^{-1}(u)
$$

Since $\|u-f(x)\|=1$, we have $\|v-x\|=1$. Now if $\|u-f(z)\|<n$, we would have $\|v-z\|<n$, and since $\|v-x\|=1$ it would follow that $\|x-z\|<n+1$, which is a contradiction. Hence, $\|u-f(z)\| \geq n$, so that

$$
\begin{aligned}
n \leq\|u-f(z)\| & =\left\|f(x)-f(z)+\frac{f(z)-f(x)}{\|f(z)-f(x)\|}\right\| \\
& =\|f(z)-f(x)\|\left(1-\|f(z)-f(x)\|^{-1}\right) \\
& =\|f(z)-f(x)\|-1 .
\end{aligned}
$$

Note that $\|f(z)-f(x)\|>1$, for otherwise, since $f(B(x, 1))=B(f(x), 1)$ we would have $\|x-z\| \leq 1$, a contradiction. Therefore $\|f(x)-f(z)\| \geq n+1$, and it follows that $\|f(x)-f(z)\|=n+1$. This completes the induction proof. The case for $f^{-1}$ is proved similarly.
(ii) First we show that $f$ is a two-isometry. From the above, $f$ is bijective and both $f$ and $f^{-1}$ preserve the distance $n$ for all positive integers $n$. Let

$$
\left\|f^{2}(x)-f^{2}(y)\right\|^{2}-2\|f(x)-f(y)\|^{2}+\|x-y\|^{2} \neq 0
$$

Then, since $f$ is a two-expansive mapping, we have by (1.2) that

$$
\begin{equation*}
\left\|f^{2}(x)-f^{2}(y)\right\|^{2}-2\|f(x)-f(y)\|^{2}+\|x-y\|^{2}<0 \tag{2.7}
\end{equation*}
$$

Since $f$ is bijective, it follows that

$$
\begin{equation*}
\left\|f^{-2}(x)-f^{-2}(y)\right\|^{2}<2\left\|f^{-1}(x)-f^{-1}(y)\right\|^{2}-\|x-y\|^{2} . \tag{2.8}
\end{equation*}
$$

Replacing $x$ and $y$ in (2.8) by $f^{-1}(x)$ and $f^{-1}(y)$, respectively, and then using (2.8), we obtain

$$
\left\|f^{-3}(x)-f^{-3}(y)\right\|^{2}<3\left\|f^{-1}(x)-f^{-1}(y)\right\|^{2}-2\|x-y\|^{2} .
$$

By adopting the method used above, we have

$$
\left\|f^{-k}(x)-f^{-k}(y)\right\|^{2}<k\left\|f^{-1}(x)-f^{-1}(y)\right\|^{2}-(k-1)\|x-y\|^{2}
$$

where $k \in \mathbb{N} \backslash\{1\}$. Therefore,

$$
\frac{k-1}{k}\|x-y\|^{2}<\left\|f^{-1}(x)-f^{-1}(y)\right\|^{2}
$$

Allowing $k$ tending to infinity, it is easy to see that

$$
\|x-y\|<\left\|f^{-1}(x)-f^{-1}(y)\right\|
$$

Hence we obtain

$$
\begin{equation*}
\|x-y\|>\|f(x)-f(y)\| . \tag{2.9}
\end{equation*}
$$

Given two distinct $x$ and $y$ in $X$, take $m \in \mathbb{N}$ with $\|x-y\|<m$. Set $z=$ $x+m(y-x) /\|y-x\|$, so that $\|z-x\|=m$ and $\|z-y\|=m-\|y-x\|$. Hence

$$
\|f(z)-f(x)\|=m
$$

and by (2.9) we have

$$
\|f(z)-f(y)\|<\|z-y\|=m-\|y-x\| .
$$

But again using (2.9),

$$
\begin{aligned}
\|f(z)-f(x)\| & \leq\|f(z)-f(y)\|+\|f(y)-f(x)\| \\
& <m-\|y-x\|+\|y-x\|=m
\end{aligned}
$$

which is a contradiction. Thus, (2.7) is false and we have (1.1). Therefore, $f$ is a two-isometry.

Next we show that $f$ is an isometry. From the above, $f$ is a bijective twoisometry. Then we see that $f^{\ell}(\ell=1,-1)$ satisfy (1.1). Thus, by (1.1), we get

$$
\begin{equation*}
\left\|f^{2 \ell}(x)-f^{2 \ell}(y)\right\|^{2}-\left\|f^{\ell}(x)-f^{\ell}(y)\right\|^{2}=\left\|f^{\ell}(x)-f^{\ell}(y)\right\|^{2}-\|x-y\|^{2} \tag{2.10}
\end{equation*}
$$

Setting $x=f^{\ell}(x)$ and $y=f^{\ell}(y)$ in (2.10), and using (2.10), we get

$$
\left\|f^{3 \ell}(x)-f^{3 \ell}(y)\right\|^{2}-\left\|f^{2 \ell}(x)-f^{2 \ell}(y)\right\|^{2}=\left\|f^{\ell}(x)-f^{\ell}(y)\right\|^{2}-\|x-y\|^{2} .
$$

Then, for any integer $j \in \mathbb{N}$,
$\left\|f^{\ell j}(x)-f^{\ell j}(y)\right\|^{2}-\left\|f^{\ell(j-1)}(x)-f^{\ell(j-1)}(y)\right\|^{2}=\left\|f^{\ell}(x)-f^{\ell}(y)\right\|^{2}-\|x-y\|^{2}$.
Hence

$$
\begin{aligned}
0 & \leq\left\|f^{\ell k}(x)-f^{\ell k}(y)\right\|^{2} \\
& =\sum_{j=1}^{k}\left(\left\|f^{\ell j}(x)-f^{\ell j}(y)\right\|^{2}-\left\|f^{\ell(j-1)}(x)-f^{\ell(j-1)}(y)\right\|^{2}\right)+\|x-y\|^{2} \\
& =k\left(\left\|f^{\ell}(x)-f^{\ell}(y)\right\|^{2}-\|x-y\|^{2}\right)+\|x-y\|^{2} \\
& =k\left\|f^{\ell}(x)-f^{\ell}(y)\right\|^{2}-(k-1)\|x-y\|^{2},
\end{aligned}
$$

which yields

$$
\frac{k-1}{k}\|x-y\|^{2} \leq\left\|f^{\ell}(x)-f^{\ell}(y)\right\|^{2}
$$

Allowing $k$ tending to infinity, it is easy to see that

$$
\|x-y\| \leq\left\|f^{\ell}(x)-f^{\ell}(y)\right\|,
$$

which proves $f$ is an isometry. Finally, applying Mazur-Ulam theorem, we conclude that $f$ is a linear isometry up to translation.

Corollary 2.2. Let $\mathcal{X}$ be a normed space and $f$ be a surjective two-isometry of $\mathcal{X}$ onto itself. Then:
(i) $f^{-1}$ is a two-isometry.
(ii) $f$ is an isometry.
(iii) $f$ is a linear mapping up to translation.

Now, we consider the Mazur-Ulam theorem for two-isometries without the surjectivity condition.

The notion of rotundity plays an important role in the studies of the geometry of Banach spaces [14]. A normed space $\mathcal{X}$ is said to be rotund or strictly convex if in its closed unit ball $B_{\mathcal{X}}$ every boundary point in $B_{\mathcal{X}}$ is an extreme point, i.e., any one of the following equivalent conditions holds [14, pp. 425441]:
(a) The unit sphere $S_{\mathcal{X}}$ contains no line segments;
(b) Every supporting hyperplane intersects $S_{\mathcal{X}}$ in at most one point;
(c) Distinct boundary points have distinct supporting planes;
(d) If $\|x\|=\|y\|=1$ and $x \neq y$, then $\left\|\frac{x+y}{2}\right\|<1$;
(e) If $\|x+y\|=\|x\|+\|y\|$ and $y \neq 0$, then $x=\lambda y$ for some $\lambda \geq 0$;
(f) If $x, y$ in $\mathcal{X}$ are linearly independent, then $\|x+y\|<\|x\|+\|y\|$.

The main result of [3] asserts that if $f$ is an isometry from a normed space $\mathcal{X}$ into a rotund normed space $\mathcal{Y}$ (not necessarily onto), then $f$ is a linear mapping up to translation. The proof was based on the following lemma [3].

Lemma 2.3. If $\mathcal{X}$ is a strictly convex normed space, $x, y, z \in \mathcal{X}$ and $\|z-x\|=$ $\|z-y\|=\frac{1}{2}\|x-y\|$, then $z=\frac{x+y}{2}$.

Theorem 2.4. Suppose $\mathcal{X}$ is a strictly convex normed space. Let $f: \mathcal{X} \rightarrow \mathcal{X}$ be a mapping satisfying

$$
\begin{equation*}
\left\|f^{2}\left(\frac{x+y}{2}\right)-f^{2}(x)\right\|=\frac{1}{2}\left\|f^{2}(x)-f^{2}(y)\right\| \tag{2.11}
\end{equation*}
$$

for all $x, y \in \mathcal{X}$. Then
(i) $f^{2}-f^{2}(0)$ is additive.
(ii) If $f$ is a continuous two-isometry satisfying (2.11), then $f$ is a linear mapping up to translation.

Proof. (i) Interchanging $x$ and $y$ in (2.11), we get

$$
\begin{equation*}
\left\|f^{2}\left(\frac{x+y}{2}\right)-f^{2}(y)\right\|=\frac{1}{2}\left\|f^{2}(x)-f^{2}(y)\right\| \tag{2.12}
\end{equation*}
$$

for all $x, y \in \mathcal{X}$. It follows from (2.11), (2.12) and Lemma 2.3 that

$$
\begin{equation*}
f^{2}\left(\frac{x+y}{2}\right)=\frac{f^{2}(x)+f^{2}(y)}{2} \tag{2.13}
\end{equation*}
$$

for all $x, y \in \mathcal{X}$. Setting $y=0$ in (2.13), we obtain $f^{2}\left(\frac{x}{2}\right)=\frac{1}{2}\left(f^{2}(x)+f^{2}(0)\right)$ for all $x \in \mathcal{X}$. Combining the last equation with (2.13) yields $\frac{1}{2}\left(f^{2}(x+y)+f^{2}(0)\right)=$ $\frac{1}{2}\left(f^{2}(x)+f^{2}(y)\right)$, which is

$$
\begin{equation*}
f^{2}(x+y)+f^{2}(0)=f^{2}(x)+f^{2}(y) \tag{2.14}
\end{equation*}
$$

for all $x, y \in \mathcal{X}$. Define $F: \mathcal{X} \rightarrow \mathcal{X}$ by $F(x)=f^{2}(x)-f^{2}(0)$. Hence from (2.14), we see that $F(x+y)=F(x)+F(y)$ for all $x, y \in \mathcal{X}$; i.e., $F$ is additive.
(ii) Since $f$ is a two-isometry, it follows from (1.1) that

$$
\begin{align*}
& 2\left\|f\left(\frac{x+y}{2}\right)-f(x)\right\|^{2}-\left\|f^{2}\left(\frac{x+y}{2}\right)-f^{2}(x)\right\|^{2} \\
= & \left\|\frac{x+y}{2}-x\right\|^{2}  \tag{2.15}\\
= & \frac{1}{4}\|x-y\|^{2} \\
= & \frac{1}{4}\left(2\|f(x)-f(y)\|^{2}-\left\|f^{2}(x)-f^{2}(y)\right\|^{2}\right)
\end{align*}
$$

for all $x, y \in \mathcal{X}$. Similarly,

$$
\begin{align*}
& 2\left\|f\left(\frac{x+y}{2}\right)-f(y)\right\|^{2}-\left\|f^{2}\left(\frac{x+y}{2}\right)-f^{2}(y)\right\|^{2}  \tag{2.16}\\
= & \frac{1}{4}\left(2\|f(x)-f(y)\|^{2}-\left\|f^{2}(x)-f^{2}(y)\right\|^{2}\right)
\end{align*}
$$

for all $x, y \in \mathcal{X}$. It follows from (2.11), (2.12), (2.15) and (2.16) that

$$
\left\|f\left(\frac{x+y}{2}\right)-f(x)\right\|=\left\|f\left(\frac{x+y}{2}\right)-f(y)\right\|=\frac{1}{2}\|f(x)-f(y)\|
$$

for all $x, y \in \mathcal{X}$. Using Lemma 2.3, we have

$$
f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}
$$

for all $x, y \in \mathcal{X}$. The argument above implies that $f-f(0)$ is additive. By the continuity of $f$, we obtain that $f$ is a linear two-isometry up to translation.

In the next example we show that there exists a continuous surjective mapping having the SDOPP which is not a two-isometry.
Example 2.5. Suppose that $f:\left(\mathbb{R}^{2},\|\cdot\|_{\infty}\right) \longrightarrow\left(\mathbb{R}^{2},\|\cdot\|_{\infty}\right)$ is a mapping defined by $f(x, y)=\left([x]+(x-[x])^{2}, y\right)$. Then it is easy to see that $f$ is a continuous surjective mapping satisfying the SDOPP, but $f$ is not a twoisometry.

The following example shows that the surjectivity condition of Corollary 2.2 and the hypothesis (2.11) of Theorem 2.4 cannot be omitted in general.

Example 2.6. Let $f: \ell_{2} \rightarrow \ell_{2}$ be defined by

$$
f\left(x_{1}, x_{2}, x_{3}, \ldots\right):=\left(c x_{1} x_{2}, \frac{1}{c}, x_{1}, x_{2}, x_{3}, \ldots\right)
$$

where $x_{1} \neq 0$ and $c$ is a nonzero real constant. Then

$$
f^{2}\left(x_{1}, x_{2}, x_{3}, \ldots\right):=\left(c x_{1} x_{2}, \frac{1}{c}, c x_{1} x_{2}, \frac{1}{c}, x_{1}, x_{2}, x_{3}, \ldots\right)
$$

and we obtain

$$
\begin{aligned}
& \left\|f^{2}\left(\frac{x+y}{2}\right)-f^{2}(x)\right\|^{2} \\
= & \frac{1}{4}\left(2\left|c\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)-c x_{1} x_{2}\right|^{2}+\sum_{n=1}^{\infty}\left|x_{n}-y_{n}\right|^{2}\right) \\
\neq & \frac{1}{4}\left(2\left|c x_{1} x_{2}-c y_{1} y_{2}\right|^{2}+\sum_{n=1}^{\infty}\left|x_{n}-y_{n}\right|^{2}\right)=\frac{1}{4}\left\|f^{2}(x)-f^{2}(y)\right\|^{2},
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|f^{2}(x)-f^{2}(y)\right\|^{2}-2\|f(x)-f(y)\|^{2}+\|x-y\|^{2} \\
= & \left(2\left|c x_{1} x_{2}-c y_{1} y_{2}\right|^{2}+\sum_{n=1}^{\infty}\left|x_{n}-y_{n}\right|^{2}\right)-2\left(\left|c x_{1} x_{2}-c y_{1} y_{2}\right|^{2}+\sum_{n=1}^{\infty}\left|x_{n}-y_{n}\right|^{2}\right) \\
& +\sum_{n=1}^{\infty}\left|x_{n}-y_{n}\right|^{2}=0
\end{aligned}
$$

for all $x, y \in \ell_{2}$. Thus, $f$ is a two-isometry. It is clear that $f$ is continuous but $f$ is not linear mapping up to translation.
Theorem 2.7. Let $\mathcal{X}$ be an unital $C^{*}$-algebra and $U(\mathcal{X})$ be the set of unitary elements in $\mathcal{X}$. If $f: \mathcal{X} \rightarrow \mathcal{X}$ is a surjective two-isometry with $f(\jmath)=\jmath$, where $\jmath \in\{0, i\}$ and

$$
\begin{equation*}
f(u v)=f(u) f(v) \tag{2.17}
\end{equation*}
$$

for all $u, v \in U(\mathcal{X})$, then $f$ is a $C^{*}$-isomorphism.
Proof. From Corollary 2.2 and Kadison [10], it follows that if $f: \mathcal{X} \rightarrow \mathcal{X}$ is a surjective two-isometry and $u \in U(\mathcal{X})$ (i.e., $u u^{*}=u^{*} u=1$ ), then $f(u)$ is not a zero divisor and $f(u) \in U(\mathcal{X})$. Thus

$$
\begin{equation*}
f(u) f(u)^{*}=1 \tag{2.18}
\end{equation*}
$$

for all $u \in U(\mathcal{X})$. It follows from (2.17) that $f(u)=f(1) f(u)$, and so $f(1)=1$. Replacing $v$ by $u^{*}$ in (2.17) and using $f(1)=1$, we obtain

$$
\begin{equation*}
1=f\left(u u^{*}\right)=f(u) f\left(u^{*}\right) \tag{2.19}
\end{equation*}
$$

for all $u \in U(\mathcal{X})$. Now it follows from (2.18) and (2.19) that

$$
\begin{equation*}
f\left(u^{*}\right)=f(u)^{*} \tag{2.20}
\end{equation*}
$$

for all $u \in U(\mathcal{X})$. Again applying the equality (2.17) and using $f(i)=i$, we have

$$
\begin{equation*}
f(i u)=i f(u) \tag{2.21}
\end{equation*}
$$

for all $u \in U(\mathcal{X})$. Using Corollary 2.2 and $f(0)=0$, We observe that $f$ is $\mathbb{R}$-linear. Since for every $c \in \mathbb{C}$ we can find $\alpha, \beta \in \mathbb{R}$ such that $c=\alpha+i \beta$, we can conclude from (2.21) and the $\mathbb{R}$-linearity of $f$ that $f(c u)=c f(u)$ for
all $c \in \mathbb{C}$ and all $u \in U(\mathcal{X})$. Also, since for every $x \in \mathcal{X}$ we can find a finite linear combination of unitary elements $\sum_{k=1}^{n} c_{k} u_{k}$ such that $x=\sum_{k=1}^{n} c_{k} u_{k}$ where $c_{k} \in \mathbb{C}$ and $u_{k} \in U(\mathcal{X})$, we can conclude from $f(c u)=c f(u)$ and the $\mathbb{R}$-linearity of $f$ that $f(c x)=c f(x)$ for all $c \in \mathbb{C}$ and all $x \in \mathcal{X}$. Thus $f$ is $\mathbb{C}$-linear. Utilizing (2.20) and the $\mathbb{C}$-linearity of $f$, we get

$$
\begin{aligned}
f\left(x^{*}\right)=f\left(\sum_{k=1}^{n} \bar{c}_{k} u_{k}^{*}\right) & =\sum_{k=1}^{n} \bar{c}_{k} f\left(u_{k}^{*}\right) \\
& =\sum_{k=1}^{n} \bar{c}_{k} f\left(u_{k}\right)^{*}=f\left(\sum_{k=1}^{n} c_{k} u_{k}\right)^{*}=f(x)^{*}
\end{aligned}
$$

for all $x \in \mathcal{X}$. Furthermore, if $y \in \mathcal{X}$, then there exists a finite linear combination of unitary elements $\sum_{\ell=1}^{m} d_{\ell} v_{\ell}$ such that $y=\sum_{\ell=1}^{m} d_{\ell} v_{\ell}$ where $d_{\ell} \in \mathbb{C}$ and $v_{\ell} \in U(\mathcal{X})$. Hence, we have

$$
\begin{aligned}
f(x y) & =f\left(\sum_{\ell=1}^{m} d_{\ell} x v_{\ell}\right)=\sum_{\ell=1}^{m} d_{\ell} f\left(x v_{\ell}\right) \\
& =\sum_{\ell=1}^{m} d_{\ell} f\left(\sum_{k=1}^{n} c_{k} u_{k} v_{\ell}\right)=\sum_{\ell=1}^{m} d_{\ell} \sum_{k=1}^{n} c_{k} f\left(u_{k} v_{\ell}\right) \\
& =\sum_{\ell=1}^{m} d_{\ell} \sum_{k=1}^{n} c_{k} f\left(u_{k}\right) f\left(v_{\ell}\right)=\sum_{\ell=1}^{m} d_{\ell} f\left(\sum_{k=1}^{n} c_{k} u_{k}\right) f\left(v_{\ell}\right) \\
& =\sum_{\ell=1}^{m} d_{\ell} f(x) f\left(v_{\ell}\right)=f(x) f\left(\sum_{\ell=1}^{m} d_{\ell} v_{\ell}\right)=f(x) f(y)
\end{aligned}
$$

for all $x, y \in \mathcal{X}$. That is, $f$ is multiplicative. Therefore, $f$ is a $C^{*}$-isomorphism.

## 3. Final remarks

The results above raise the following remarks and problems about generalized two-isometries.

Remark 3.1. A mapping $f$ (not necessarily linear) on a normed space $\mathcal{X}$ is an $(m, p)$-isometry ( $m \geq 1$ integer and $p>0$ real) if, for all $x, y \in \mathcal{X}$,

$$
\sum_{i=0}^{m}(-1)^{i}\binom{m}{i}\left\|f^{m-i}(x)-f^{m-i}(y)\right\|^{p}=0
$$

(see $[4,22]$ ). In case of $m, p=2$, especially, we call it a two-isometry (see Definition 1.1).
Problem 3.2. Let $\mathcal{X}$ be a normed space (or a strictly convex normed space). Under what conditions is a mapping preserving a distance $r>0$ an $(m, p)$ isometry?

Problem 3.3. Let $f$ on a normed space $\mathcal{X}$ be a surjective ( $m, p$ )-isometry. Is then $f$ necessarily a linear mapping up to translation?

Another related subject is the study of $\varepsilon-(m, p)$-isometries on Banach spaces (see $[9,17,18]$ ).

Remark 3.4. Given $\varepsilon>0$, a mapping $f$ on a Banach space $\mathcal{X}$ is called an $\varepsilon$ - $(m, p)$-isometry if, for all $x, y \in \mathcal{X}$,

$$
\left|\sum_{i=0}^{m}(-1)^{i}\binom{m}{i}\left\|f^{m-i}(x)-f^{m-i}(y)\right\|^{p}\right| \leq \epsilon
$$

Problem 3.5. Let $f$ on a Banach space $\mathcal{X}$ be an $\varepsilon$ - $(m, p)$-isometry. Under what assumptions are there a constant $\gamma$ and an $(m, p)$-isometry $T$ on $\mathcal{X}$ such that $\|f(x)-T(x)\| \leq \gamma \varepsilon$ for all $x \in \mathcal{X}$ ?

## References

[1] J. Agler and M. Stankus, m-isometric transformations of Hilbert space. I, Integral Equations Operator Theory 21 (1995), no. 4, 383-429. https://doi.org/10.1007/ BF01222016
[2] A. D. Aleksandrov, Mappings of families of sets, Dokl. Akad. Nauk SSSR 191 (1970), 503-506.
[3] J. A. Baker, Isometries in normed spaces, Amer. Math. Monthly 78 (1971), 655-658. https://doi.org/10.2307/2316577
[4] F. Bayart, m-isometries on Banach spaces, Math. Nachr. 284 (2011), no. 17-18, 21412147. https://doi.org/10.1002/mana. 200910029
[5] H.-Y. Chu, On the Mazur-Ulam problem in linear 2-normed spaces, J. Math. Anal. Appl. 327 (2007), no. 2, 1041-1045. https://doi.org/10.1016/j.jmaa.2006.04.053
[6] H.-Y. Chu, S. K. Choi, and D. S. Kang, Mappings of conservative distances in linear n-normed spaces, Nonlinear Anal. 70 (2009), no. 3, 1168-1174. https://doi.org/10. 1016/j.na.2008.02.002
[7] H.-Y. Chu, K. Lee, and C.-G. Park, On the Aleksandrov problem in linear n-normed spaces, Nonlinear Anal. 59 (2004), no. 7, 1001-1011. https://doi.org/10.1016/j.na. 2004.07.046
[8] H.-Y. Chu, C.-G. Park, and W.-G. Park, The Aleksandrov problem in linear 2-normed spaces, J. Math. Anal. Appl. 289 (2004), no. 2, 666-672. https://doi.org/10.1016/j. jmaa. 2003.09.009
[9] D. H. Hyers and S. M. Ulam, On approximate isometries, Bull. Amer. Math. Soc. 51 (1945), 288-292. https://doi.org/10.1090/S0002-9904-1945-08337-2
[10] R. V. Kadison, Isometries of operator algebras, Ann. Of Math. (2) 54 (1951), 325-338. https://doi.org/10.2307/1969534
[11] Y. Ma, The Aleksandrov problem and the Mazur-Ulam theorem on linear n-normed spaces, Bull. Korean Math. Soc. 50 (2013), no. 5, 1631-1637. https://doi.org/10. 4134/BKMS.2013.50.5.1631
[12] $\qquad$ , The Aleksandrov-Benz-Rassias problem on linear n-normed spaces, Monatsh. Math. 180 (2016), no. 2, 305-316. https://doi.org/10.1007/s00605-015-0786-8
[13] S. Mazur and S. Ulam, Sur les transformations isométriques d'espaces vectoriels normes, C. R. Acad. Sci. Paris 194 (1932), 946-948.
[14] R. E. Megginson, An Introduction to Banach Space Theory, Graduate Texts in Mathematics, 183, Springer-Verlag, New York, 1998. https://doi.org/10.1007/ 978-1-4612-0603-3

15] C.-G. Park and T. M. Rassias, Isometries on linear n-normed spaces, JIPAM. J. Inequal. Pure Appl. Math. 7 (2006), no. 5, Article 168, 7 pp.
[16] T. M. Rassias, Unsolved problems: Is a distance one preserving mapping between metric spaces always an isometry?, Amer. Math. Monthly 90 (1983), no. 3, 200. https://doi. org/10.2307/2975550
[17] _, Properties of isometric mappings, J. Math. Anal. Appl. 235 (1999), no. 1, 108-121. https://doi.org/10.1006/jmaa.1999.6363
[18] , Isometries and approximate isometries, Int. J. Math. Math. Sci. 25 (2001), no. 2, 73-91. https://doi.org/10.1155/S0161171201004392
[19] T. M. Rassias and P. Semrl, On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mappings, Proc. Amer. Math. Soc. 118 (1993), no. 3, 919925. https://doi.org/10.2307/2160142
[20] T. M. Rassias and P. Wagner, Volume preserving mappings in the spirit of the MazurUlam theorem, Aequationes Math. 66 (2003), no. 1-2, 85-89. https://doi.org/10.1007/ s00010-003-2669-7
[21] S. Richter, A representation theorem for cyclic analytic two-isometries, Trans. Amer. Math. Soc. 328 (1991), no. 1, 325-349. https://doi.org/10.2307/2001885
[22] O. A. M. Sid Ahmed, m-isometric operators on Banach spaces, Asian-Eur. J. Math. 3 (2010), no. 1, 1-19. https://doi.org/10.1142/S1793557110000027
[23] , On $A(m, p)$-expansive and $A(m, p)$-hyperexpansive operators on Banach spaces$I$, Al Jouf Sci. Eng. J. 1 (2014), 23-43.
[24] ,On $A(m, p)$-expansive and $A(m, p)$-hyperexpansive operators on Banach spacesII, J. Math. Comput. Sci. 5 (2015), 123-148.

Hamid Khodaei
Faculty of Mathematical Sciences and Statistics
Malayer University
P. O. Box 65719-95863, Malayer, Iran

Email address: hkhodaei@malayeru.ac.ir; hkhodaei.math@gmail.com

## Abdulqader Mohammadi

Faculty of Mathematical Sciences and Statistics
Malayer University
P. O. Box 65719-95863, Malayer, Iran

Email address: amohammadi8566@gmail.com


[^0]:    Received May 8, 2018; Accepted April 9, 2019.
    2010 Mathematics Subject Classification. 46B04, 47A62, 47B99, 52A07.
    Key words and phrases. Alesandrov problem, $C^{*}$-algebra, Mazur-Ulam theorem, strictly convex, two-isometry, two-expansive mapping.

