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GENERALIZATIONS OF ALESANDROV PROBLEM AND

MAZUR-ULAM THEOREM FOR TWO-ISOMETRIES AND

TWO-EXPANSIVE MAPPINGS

Hamid Khodaei and Abdulqader Mohammadi

Abstract. We show that mappings preserving unit distance are close to
two-isometries. We also prove that a mapping f is a linear isometry up to

translation when f is a two-expansive surjective mapping preserving unit

distance. Then we apply these results to consider two-isometries between
normed spaces, strictly convex normed spaces and unital C∗-algebras.

Finally, we propose some remarks and problems about generalized two-
isometries on Banach spaces.

1. Introduction and preliminaries

Let X and Y be metric spaces. A mapping f : X → Y is called an isometry
if f satisfies dY (f(x), f(y)) = dX(x, y) for all x, y ∈ X, where dX(·, ·) and
dY (·, ·) denote the metrics in the spaces X and Y , respectively. For some fixed
number r > 0, we call r a conservative (or preserved) distance for the mapping
f if f preserves distance r; i.e., for all x, y ∈ X with dX(x, y) = r, we have
dY (f(x), f(y)) = r. In case of r = 1, especially, we call it a distance one
preserving property (DOPP). A mapping f : X → Y is said to have the strong
distance one preserving property (SDOPP) if it has (DOPP) and in addition,
if dY (f(x), f(y)) = 1 implies dX(x, y) = 1 for all x, y ∈ X.

The theory of isometric mappings had its beginning in the classical paper
[13] by S. Mazur and S. Ulam who proved that any surjective isometry between
real normed spaces is a linear mapping up to translation. The hypothesis of
surjectivity is essential. Without this assumption, Baker [3] proved that every
isometry from a normed space into a strictly convex normed space is linear up
to translation.

Aleksandrov [2] posed the following problem: Examine whether the existence
of a single conservative distance for some mapping f implies that f is an isom-
etry. This problem is of great significance for the Mazur-Ulam theorem [13].
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Rassias et al. [16–20] proved a series of results on the Aleksandrov problem on
normed spaces. Chu et al. [5–12], [15] in linear n-normed spaces, defined the
concept of an n-isometry that are suitable to represent the notion of a volume
preserving mapping, and generalized the Aleksandrov problem to n-normed
spaces.

An operator f on a Hilbert space H is a two-isometry if f∗2f2−2f∗f+Id =
0, where Id denotes the identity operator. This last condition can be equiva-
lently expressed as ‖f2x‖2−2‖fx‖2 +‖x‖2 = 0 for all x ∈ H. This formulation
allows for an extension of the two-isometry concept to the Banach space set-
ting. As noted by Richter, in [21], the notion of “two-isometry” generalizes,
in a natural way, the well-known definition of isometry. Moreover, these gen-
eralized isometries do not belong to well studied classes such as contractions
and subnormal operators and can be used as dilations for a class of expanding
operators. The class of two-isometries has been generalized by the authors in
[1]. A generalization of these operators to Banach spaces has been studied in
the paper of Sid Ahmed [22] and Bayart [4]. Recently, the concept of two-
expansive operators on a Banach space has introduced and studied in slightly
generalized form in [23,24].

Definition 1.1. Let X be a normed space and f : X → X be a mapping (not
necessarily linear). Then

(1) f is called a two-isometry if, for all x, y ∈ X ,

(1.1) ‖f2(x)− f2(y)‖2 − 2‖f(x)− f(y)‖2 + ‖x− y‖2 = 0.

(2) f is called a two-expansive mapping if, for all x, y ∈ X ,

(1.2) ‖f2(x)− f2(y)‖2 − 2‖f(x)− f(y)‖2 + ‖x− y‖2 ≤ 0.

Remark 1.2. Let X be a normed space and f : X → X be a mapping. From
Definition 1.1, it is clear that every isometry is a two-isometry, but there exists
an invertible two-isometry f which is not an isometry and there exists a con-
tinuous two-isometry f which is not linear (see [4, 22] and below in Examples
1.3 and 2.6). Also, it is easy to check that if f is an isometry, then it has
SDOPP. If f is surjective and has SDOPP, then f is bijective. Note that f is
injective. If not, then we could find x, y in X with x 6= y such that f(x) = f(y).
Choose z in X so that ‖x − z‖ = 1 and ‖z − y‖ 6= 1. Then we would have
‖f(x)− f(z)‖ = ‖f(y)− f(z)‖ = 1. But then ‖y − z‖ = 1, a contradiction, so
f is bijective.

Example 1.3. Let α ≥ 1 and f ∈ B(`2) (the algebra of bounded linear
operators f on `2) be a weighted right-shift operator with weight sequence
(αn)n∈N. That is, for x = (xk)k∈N ∈ `2

(fx)n =

{
0, if n = 0,

αnxn−1, if n ≥ 1,
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where (αn)n∈N is given by αn =
√

1+(n+1)(α2−1)
1+n(α2−1) . Note that for α ≥ 1, this

is well-defined. Then f is a two-isometry. This follows from the fact that
(αn+2αn+1)2 − 2(αn+1)2 = −1. Note that for α > 1 we have ‖fx‖ > ‖x‖, for
all non-zero x and, in particular, f is not an isometry for α > 1.

In this paper, we investigate the two-isometries and two-expansive mappings
between normed spaces, strictly convex normed spaces and unital C∗-algebras.
We propose some remarks and problems about generalized two-isometries on
Banach spaces.

2. Main results

Theorem 2.1. Let X be a normed space of dimension at least 2 and f be a
mapping having the SDOPP of X onto itself. Then:

(i) f satisfies the condition

(2.1) − (4n+ 2) < ‖f2(x)− f2(y)‖2 − 2‖f(x)− f(y)‖2 + ‖x− y‖2 < 4n+ 2

for all x, y ∈ X and n ∈ N. Also, f preserves distance n in both directions for
n ∈ N.

(ii) If f is a two-expansive mapping, then f is a linear isometry up to trans-
lation.

Proof. (i) From the SDOPP and the surjectivity of f , and Remark 1.2, we see
that f is bijective, and both f and f−1 preserve unit distance. In proving
inequality (2.1) we will use the following notations. With x in X and r > 0,
B(x, r) = {z : ‖z − x‖ ≤ r}, B◦(x, r) = {z : ‖z − x‖ < r} and Cx(n, n + 1] =
{z : n < ‖z − x‖ ≤ n+ 1}. Given x in X and n in N \ {1}, let z be an element
of B(x, n). Since dimX > 1, we can find a sequence x = x0, x1, . . . , xn = z
such that ‖xi+1 − xi‖ = 1 for i = 0, 1, . . . , n− 1. Thus

‖f(x)− f(z)‖ ≤
n−1∑
i=0

‖f(xi+1)− f(xi)‖ = n.

Similarly, we get

‖f2(x)− f2(z)‖ ≤ n.
Hence

f (B(x, n)) ⊂ B (f(x), n) , f (B(f(x), n)) ⊂ B
(
f2(x), n

)
.

The same argument applies to f−1 in place of f to obtain

f−1 (B(f(x), n)) ⊂ B (x, n) .

Thus, for all x ∈ X and n = 2, 3, . . ., we have

f (B(x, n)) = B (f(x), n) , f (B(f(x), n)) = B
(
f2(x), n

)
.

Now f is bijective, so for x ∈ X and n in N \ {1}, we have

(2.2) f (Cx(n, n+ 1]) = Cf(x)(n, n+1], f
(
Cf(x)(n, n+ 1]

)
= Cf2(x)(n, n+1].
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In order to show that (2.2) also holds for n = 1, we fix x ∈ X and choose any
z ∈ Cx(1, 2]. Then f(z) ∈ B(f(x), 2). If u = z + (z − x)/‖z − x‖, then

‖u− z‖ =

∥∥∥∥ z − x
‖z − x‖

∥∥∥∥ =
‖z − x‖
‖z − x‖

= 1.

So, by SDOPP, we have ‖f(u)−f(z)‖ = 1 and also ‖f2(u)−f2(z)‖ = 1. Since

‖u− x‖ ≤ ‖u− z‖+ ‖z − x‖ ≤ 3.

Hence u = z + (z − x)/‖z − x‖ is contained in Cx(2, 3]. By (2.2), we get
f(u) ∈ Cf(x)(2, 3], so that

(2.3) ‖f(x)− f(u)‖ > 2.

If ‖f(z)− f(x)‖ ≤ 1, then

‖f(x)− f(u)‖ ≤ ‖f(x)− f(z)‖+ ‖f(z)− f(u)‖ ≤ 2

which contradicts (2.3). Thus we have f (Cx(1, 2]) ⊂ Cf(x)(1, 2]. Similarly, we

obtain f(Cf(x)(1, 2]) ⊂ Cf2(x)(1, 2]. Since the similar result will hold for f−1,
it follows that

(2.4) f (Cx(1, 2]) = Cf(x)(1, 2], f
(
Cf(x)(1, 2]

)
= Cf2(x)(1, 2],

and we conclude that (2.2) is true for all n in N. Now we will prove that

(2.5) f (B◦(x, 1)) = B◦ (f(x), 1) , f (B◦(f(x), 1)) = B◦
(
f2(x), 1

)
.

As above, it is sufficient to prove

(2.6) f (B◦(x, 1)) ⊂ B◦ (f(x), 1) , f (B◦(f(x), 1)) ⊂ B◦
(
f2(x), 1

)
,

since the similar result will then hold for f−1. If (2.6) is not true, then for
some integer n ≥ 1 we would have f(z) ∈ Cf(x)(n, n+1] for some z in B◦(x, 1).
Since Cf(x)(n, n + 1] = f (Cx(n, n+ 1]), then f(z) ∈ f (Cx(n, n+ 1]) and z ∈
Cx(n, n+ 1] for some n ≥ 1, which is a contradiction. Thus (2.6) holds and we
have (2.5).

The fact that (2.2) holds for all positive integers n, together with (2.5)
implies that (2.1) is true. Indeed, given x and y in X, let n+ 1 be the integral
part of ‖x − y‖, so that y ∈ Cx(n, n + 1] if n ≥ 1, while if n = 0, then either
y ∈ B◦(x, 1) or else ‖x − y‖ = 1 and (2.1) becomes trivial. In the non-trivial
cases we find by (2.2) or (2.5) that

n2 < ‖f2(x)− f2(y)‖2 ≤ (n+ 1)2, n2 < ‖x− y‖2 ≤ (n+ 1)2,

−2(n+ 1)2 ≤ −2‖f(x)− f(y)‖2 < −2n2,

from which (2.1) follows.
It remains to prove that f and f−1 both preserve the distance n for each

n ∈ N. Make the induction assumption that f preserves the distance n. For
n = 1 this is true by hypothesis. Let x and z satisfy ‖x− z‖ = n+ 1, so that
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z ∈ Cx(n, n+ 1]. Hence, f(z) ∈ Cf(x)(n, n+ 1] so that ‖f(x)− f(z)‖ ≤ n+ 1.
Put

u = f(x) +
f(z)− f(x)

‖f(z)− f(x)‖
, v = f−1(u).

Since ‖u− f(x)‖ = 1, we have ‖v − x‖ = 1. Now if ‖u− f(z)‖ < n, we would
have ‖v − z‖ < n, and since ‖v − x‖ = 1 it would follow that ‖x− z‖ < n+ 1,
which is a contradiction. Hence,‖u− f(z)‖ ≥ n, so that

n ≤ ‖u− f(z)‖ =

∥∥∥∥f(x)− f(z) +
f(z)− f(x)

‖f(z)− f(x)‖

∥∥∥∥
= ‖f(z)− f(x)‖

(
1− ‖f(z)− f(x)‖−1

)
= ‖f(z)− f(x)‖ − 1.

Note that ‖f(z)− f(x)‖ > 1, for otherwise, since f (B(x, 1)) = B (f(x), 1) we
would have ‖x− z‖ ≤ 1, a contradiction. Therefore ‖f(x)− f(z)‖ ≥ n+ 1, and
it follows that ‖f(x)− f(z)‖ = n+ 1. This completes the induction proof. The
case for f−1 is proved similarly.

(ii) First we show that f is a two-isometry. From the above, f is bijective
and both f and f−1 preserve the distance n for all positive integers n. Let

‖f2(x)− f2(y)‖2 − 2‖f(x)− f(y)‖2 + ‖x− y‖2 6= 0.

Then, since f is a two-expansive mapping, we have by (1.2) that

(2.7) ‖f2(x)− f2(y)‖2 − 2‖f(x)− f(y)‖2 + ‖x− y‖2 < 0.

Since f is bijective, it follows that

(2.8) ‖f−2(x)− f−2(y)‖2 < 2‖f−1(x)− f−1(y)‖2 − ‖x− y‖2.
Replacing x and y in (2.8) by f−1(x) and f−1(y), respectively, and then using
(2.8), we obtain

‖f−3(x)− f−3(y)‖2 < 3‖f−1(x)− f−1(y)‖2 − 2‖x− y‖2.
By adopting the method used above, we have

‖f−k(x)− f−k(y)‖2 < k‖f−1(x)− f−1(y)‖2 − (k − 1)‖x− y‖2,
where k ∈ N \ {1}. Therefore,

k − 1

k
‖x− y‖2 < ‖f−1(x)− f−1(y)‖2.

Allowing k tending to infinity, it is easy to see that

‖x− y‖ < ‖f−1(x)− f−1(y)‖.
Hence we obtain

(2.9) ‖x− y‖ > ‖f(x)− f(y)‖.
Given two distinct x and y in X, take m ∈ N with ‖x − y‖ < m. Set z =
x+m(y− x)/‖y− x‖, so that ‖z − x‖ = m and ‖z − y‖ = m− ‖y− x‖. Hence

‖f(z)− f(x)‖ = m,
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and by (2.9) we have

‖f(z)− f(y)‖ < ‖z − y‖ = m− ‖y − x‖.

But again using (2.9),

‖f(z)− f(x)‖ ≤ ‖f(z)− f(y)‖+ ‖f(y)− f(x)‖
< m− ‖y − x‖+ ‖y − x‖ = m,

which is a contradiction. Thus, (2.7) is false and we have (1.1). Therefore, f
is a two-isometry.

Next we show that f is an isometry. From the above, f is a bijective two-
isometry. Then we see that f ` (` = 1,−1) satisfy (1.1). Thus, by (1.1), we
get

(2.10) ‖f2`(x)− f2`(y)‖2 − ‖f `(x)− f `(y)‖2 = ‖f `(x)− f `(y)‖2 − ‖x− y‖2.

Setting x = f `(x) and y = f `(y) in (2.10), and using (2.10), we get

‖f3`(x)− f3`(y)‖2 − ‖f2`(x)− f2`(y)‖2 = ‖f `(x)− f `(y)‖2 − ‖x− y‖2.

Then, for any integer j ∈ N,

‖f `j(x)− f `j(y)‖2 − ‖f `(j−1)(x)− f `(j−1)(y)‖2 = ‖f `(x)− f `(y)‖2 − ‖x− y‖2.

Hence

0 ≤ ‖f `k(x)− f `k(y)‖2

=

k∑
j=1

(
‖f `j(x)− f `j(y)‖2 − ‖f `(j−1)(x)− f `(j−1)(y)‖2

)
+ ‖x− y‖2

= k
(
‖f `(x)− f `(y)‖2 − ‖x− y‖2

)
+ ‖x− y‖2

= k‖f `(x)− f `(y)‖2 − (k − 1)‖x− y‖2,

which yields
k − 1

k
‖x− y‖2 ≤ ‖f `(x)− f `(y)‖2.

Allowing k tending to infinity, it is easy to see that

‖x− y‖ ≤ ‖f `(x)− f `(y)‖,

which proves f is an isometry. Finally, applying Mazur-Ulam theorem, we
conclude that f is a linear isometry up to translation. �

Corollary 2.2. Let X be a normed space and f be a surjective two-isometry
of X onto itself. Then:

(i) f−1 is a two-isometry.
(ii) f is an isometry.
(iii) f is a linear mapping up to translation.
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Now, we consider the Mazur-Ulam theorem for two-isometries without the
surjectivity condition.

The notion of rotundity plays an important role in the studies of the geom-
etry of Banach spaces [14]. A normed space X is said to be rotund or strictly
convex if in its closed unit ball BX every boundary point in BX is an extreme
point, i.e., any one of the following equivalent conditions holds [14, pp. 425–
441]:

(a) The unit sphere SX contains no line segments;
(b) Every supporting hyperplane intersects SX in at most one point;
(c) Distinct boundary points have distinct supporting planes;
(d) If ‖x‖ = ‖y‖ = 1 and x 6= y, then

∥∥x+y
2

∥∥ < 1;
(e) If ‖x+ y‖ = ‖x‖+ ‖y‖ and y 6= 0, then x = λy for some λ ≥ 0;
(f) If x, y in X are linearly independent, then ‖x+ y‖ < ‖x‖+ ‖y‖.
The main result of [3] asserts that if f is an isometry from a normed space X

into a rotund normed space Y (not necessarily onto), then f is a linear mapping
up to translation. The proof was based on the following lemma [3].

Lemma 2.3. If X is a strictly convex normed space, x, y, z ∈ X and ‖z−x‖ =
‖z − y‖ = 1

2‖x− y‖, then z = x+y
2 .

Theorem 2.4. Suppose X is a strictly convex normed space. Let f : X → X
be a mapping satisfying

(2.11)

∥∥∥∥f2(x+ y

2

)
− f2(x)

∥∥∥∥ =
1

2

∥∥f2(x)− f2(y)
∥∥

for all x, y ∈ X . Then
(i) f2 − f2(0) is additive.
(ii) If f is a continuous two-isometry satisfying (2.11), then f is a linear

mapping up to translation.

Proof. (i) Interchanging x and y in (2.11), we get

(2.12)

∥∥∥∥f2(x+ y

2

)
− f2(y)

∥∥∥∥ =
1

2

∥∥f2(x)− f2(y)
∥∥

for all x, y ∈ X . It follows from (2.11), (2.12) and Lemma 2.3 that

(2.13) f2
(
x+ y

2

)
=
f2(x) + f2(y)

2

for all x, y ∈ X . Setting y = 0 in (2.13), we obtain f2
(
x
2

)
= 1

2 (f2(x)+f2(0)) for

all x ∈ X . Combining the last equation with (2.13) yields 1
2 (f2(x+y)+f2(0)) =

1
2 (f2(x) + f2(y)), which is

(2.14) f2(x+ y) + f2(0) = f2(x) + f2(y)

for all x, y ∈ X . Define F : X → X by F (x) = f2(x) − f2(0). Hence from
(2.14), we see that F (x+ y) = F (x) + F (y) for all x, y ∈ X ; i.e., F is additive.
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(ii) Since f is a two-isometry, it follows from (1.1) that

2

∥∥∥∥f (x+ y

2

)
− f(x)

∥∥∥∥2 − ∥∥∥∥f2(x+ y

2

)
− f2(x)

∥∥∥∥2
=

∥∥∥∥x+ y

2
− x
∥∥∥∥2

=
1

4
‖x− y‖2

=
1

4

(
2‖f(x)− f(y)‖2 −

∥∥f2(x)− f2(y)
∥∥2)

(2.15)

for all x, y ∈ X . Similarly,

2‖f
(
x+ y

2

)
− f(y)‖2 − ‖f2

(
x+ y

2

)
− f2(y)‖2

=
1

4

(
2‖f(x)− f(y)‖2 −

∥∥f2(x)− f2(y)
∥∥2)(2.16)

for all x, y ∈ X . It follows from (2.11), (2.12), (2.15) and (2.16) that

‖f
(
x+ y

2

)
− f(x)‖ = ‖f

(
x+ y

2

)
− f(y)‖ =

1

2
‖f(x)− f(y)‖

for all x, y ∈ X . Using Lemma 2.3, we have

f

(
x+ y

2

)
=
f(x) + f(y)

2

for all x, y ∈ X . The argument above implies that f − f(0) is additive. By the
continuity of f , we obtain that f is a linear two-isometry up to translation. �

In the next example we show that there exists a continuous surjective map-
ping having the SDOPP which is not a two-isometry.

Example 2.5. Suppose that f :
(
R2, ‖ · ‖∞

)
−→

(
R2, ‖ · ‖∞

)
is a mapping

defined by f(x, y) =
(
[x] + (x− [x])2, y

)
. Then it is easy to see that f is

a continuous surjective mapping satisfying the SDOPP, but f is not a two-
isometry.

The following example shows that the surjectivity condition of Corollary 2.2
and the hypothesis (2.11) of Theorem 2.4 cannot be omitted in general.

Example 2.6. Let f : `2 → `2 be defined by

f(x1, x2, x3, . . .) :=

(
cx1x2,

1

c
, x1, x2, x3, . . .

)
,

where x1 6= 0 and c is a nonzero real constant. Then

f2(x1, x2, x3, . . .) :=

(
cx1x2,

1

c
, cx1x2,

1

c
, x1, x2, x3, . . .

)
,
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and we obtain

‖f2
(
x+ y

2

)
− f2(x)‖2

=
1

4

(
2 |c(x1 + y1)(x2 + y2)− cx1x2|2 +

∞∑
n=1

|xn − yn|2
)

6= 1

4

(
2|cx1x2 − cy1y2|2 +

∞∑
n=1

|xn − yn|2
)

=
1

4

∥∥f2(x)− f2(y)
∥∥2 ,

and ∥∥f2(x)− f2(y)
∥∥2 − 2‖f(x)− f(y)‖2 + ‖x− y‖2

=

(
2|cx1x2−cy1y2|2+

∞∑
n=1

|xn−yn|2
)
−2

(
|cx1x2−cy1y2|2+

∞∑
n=1

|xn−yn|2
)

+

∞∑
n=1

|xn − yn|2 = 0

for all x, y ∈ `2. Thus, f is a two-isometry. It is clear that f is continuous but
f is not linear mapping up to translation.

Theorem 2.7. Let X be an unital C∗-algebra and U(X ) be the set of unitary
elements in X . If f : X → X is a surjective two-isometry with f() = , where
 ∈ {0, i} and

(2.17) f(uv) = f(u)f(v)

for all u, v ∈ U(X ), then f is a C∗-isomorphism.

Proof. From Corollary 2.2 and Kadison [10], it follows that if f : X → X is a
surjective two-isometry and u ∈ U(X ) (i.e., uu∗ = u∗u = 1), then f(u) is not
a zero divisor and f(u) ∈ U(X ). Thus

(2.18) f(u)f(u)∗ = 1

for all u ∈ U(X ). It follows from (2.17) that f(u) = f(1)f(u), and so f(1) = 1.
Replacing v by u∗ in (2.17) and using f(1) = 1, we obtain

(2.19) 1 = f (uu∗) = f(u)f (u∗)

for all u ∈ U(X ). Now it follows from (2.18) and (2.19) that

(2.20) f (u∗) = f(u)∗

for all u ∈ U(X ). Again applying the equality (2.17) and using f(i) = i, we
have

(2.21) f(iu) = if(u)

for all u ∈ U(X ). Using Corollary 2.2 and f(0) = 0, We observe that f is
R-linear. Since for every c ∈ C we can find α, β ∈ R such that c = α + iβ,
we can conclude from (2.21) and the R-linearity of f that f(cu) = cf(u) for
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all c ∈ C and all u ∈ U(X ). Also, since for every x ∈ X we can find a finite
linear combination of unitary elements

∑n
k=1 ckuk such that x =

∑n
k=1 ckuk

where ck ∈ C and uk ∈ U(X ), we can conclude from f(cu) = cf(u) and the
R-linearity of f that f(cx) = cf(x) for all c ∈ C and all x ∈ X . Thus f is
C-linear. Utilizing (2.20) and the C-linearity of f , we get

f(x∗) = f

(
n∑
k=1

c̄ku
∗
k

)
=

n∑
k=1

c̄kf (u∗k)

=

n∑
k=1

c̄kf (uk)
∗

= f

(
n∑
k=1

ckuk

)∗
= f(x)∗

for all x ∈ X . Furthermore, if y ∈ X , then there exists a finite linear combina-
tion of unitary elements

∑m
`=1 d`v` such that y =

∑m
`=1 d`v` where d` ∈ C and

v` ∈ U(X ). Hence, we have

f(xy) = f

(
m∑
`=1

d`xv`

)
=

m∑
`=1

d`f (xv`)

=

m∑
`=1

d`f

(
n∑
k=1

ckukv`

)
=

m∑
`=1

d`

n∑
k=1

ckf (ukv`)

=

m∑
`=1

d`

n∑
k=1

ckf (uk) f (v`) =

m∑
`=1

d`f

(
n∑
k=1

ckuk

)
f (v`)

=

m∑
`=1

d`f (x) f (v`) = f (x) f

(
m∑
`=1

d`v`

)
= f(x)f(y)

for all x, y ∈ X . That is, f is multiplicative. Therefore, f is a C∗-isomorphism.
�

3. Final remarks

The results above raise the following remarks and problems about general-
ized two-isometries.

Remark 3.1. A mapping f (not necessarily linear) on a normed space X is an
(m, p)-isometry (m ≥ 1 integer and p > 0 real) if, for all x, y ∈ X ,

m∑
i=0

(−1)i
(
m
i

)∥∥fm−i(x)− fm−i(y)
∥∥p = 0

(see [4, 22]). In case of m, p = 2, especially, we call it a two-isometry (see
Definition 1.1).

Problem 3.2. Let X be a normed space (or a strictly convex normed space).
Under what conditions is a mapping preserving a distance r > 0 an (m, p)-
isometry?
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Problem 3.3. Let f on a normed space X be a surjective (m, p)-isometry. Is
then f necessarily a linear mapping up to translation?

Another related subject is the study of ε-(m, p)-isometries on Banach spaces
(see [9, 17,18]).

Remark 3.4. Given ε > 0, a mapping f on a Banach space X is called an
ε-(m, p)-isometry if, for all x, y ∈ X ,∣∣∣∣∣

m∑
i=0

(−1)i
(
m
i

)∥∥fm−i(x)− fm−i(y)
∥∥p∣∣∣∣∣ ≤ ε.

Problem 3.5. Let f on a Banach space X be an ε-(m, p)-isometry. Under
what assumptions are there a constant γ and an (m, p)-isometry T on X such
that ‖f(x)− T (x)‖ ≤ γε for all x ∈ X ?
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