• 제목/요약/키워드: dual algebras

검색결과 42건 처리시간 0.03초

SPECTRAL DUALITIES OF MV-ALGEBRAS

  • Choe, Tae-Ho;Kim, Eun-Sup;Park, Young-Soo
    • 대한수학회지
    • /
    • 제42권6호
    • /
    • pp.1111-1120
    • /
    • 2005
  • Hong and Nel in [8] obtained a number of spectral dualities between a cartesian closed topological category X and a category of algebras of suitable type in X in accordance with the original formalism of Porst and Wischnewsky[12]. In this paper, there arises a dual adjointness S $\vdash$ C between the category X = Lim of limit spaces and that A of MV-algebras in X. We firstly show that the spectral duality: $S(A)^{op}{\simeq}C(X^{op})$ holds for the dualizing object K = I = [0,1] or K = 2 = {0, 1}. Secondly, we study a duality between the category of Tychonoff spaces and the category of semi-simple MV-algebras. Furthermore, it is shown that for any $X\;\in\;Lim\;(X\;{\neq}\;{\emptyset})\;C(X,\;I)$ is densely embedded into a cube $I^/H/$, where H is a set.

ON ACTION OF LAU ALGEBRAS ON VON NEUMANN ALGEBRAS

  • Mohammad, Ramezanpour
    • 대한수학회보
    • /
    • 제52권2호
    • /
    • pp.557-570
    • /
    • 2015
  • Let $\mathbb{G}$ be a von Neumann algebraic locally compact quantum group, in the sense of Kustermans and Vaes. In this paper, as a consequence of a notion of amenability for actions of Lau algebras, we show that $\hat{\mathbb{G}}$, the dual of $\mathbb{G}$, is co-amenable if and only if there is a state $m{\in}L^{\infty}(\hat{\mathbb{G}})^*$ which is invariant under a left module action of $L^1(\mathbb{G})$ on $L^{\infty}(\hat{\mathbb{G}})^*$. This is the quantum group version of a result by Stokke [17]. We also characterize amenable action of Lau algebras by several properties such as fixed point property. This yields in particular, a fixed point characterization of amenable groups and H-amenable representation of groups.

ON MULTIPLIERS ON BOOLEAN ALGEBRAS

  • Kim, Kyung Ho
    • 충청수학회지
    • /
    • 제29권4호
    • /
    • pp.613-629
    • /
    • 2016
  • In this paper, we introduced the notion of multiplier of Boolean algebras and discuss related properties between multipliers and special mappings, like dual closures, homomorphisms on B. We introduce the notions of xed set $Fix_f(X)$ and normal ideal and obtain interconnection between multipliers and $Fix_f(B)$. Also, we introduce the special multiplier ${\alpha}_p$a nd study some properties. Finally, we show that if B is a Boolean algebra, then the set of all multipliers of B is also a Boolean algebra.

DIRECT SUM, SEPARATING SET AND SYSTEMS OF SIMULTANEOUS EQUATIONS IN THE PREDUAL OF AN OPERATOR ALGEBRA

  • Lee, Mi-Young;Lee, Sang-Hun
    • 대한수학회보
    • /
    • 제31권2호
    • /
    • pp.173-180
    • /
    • 1994
  • Let H be a separable, infinite dimensional, compled Hilbert space and let L(H) be the algebra of all bounded linear operators on H. A dual algebra is a subalgebra of L(H) that contains the identity operator $I_{H}$ and is closed in the ultraweak topology on L(H). Note that the ultraweak operator topology coincides with the wea $k^{*}$ topology on L(H)(see [3]). Bercovici-Foias-Pearcy [3] studied the problem of solving systems of simultaneous equations in the predual of a dual algebra. The theory of dual algebras has been applied to the topics of invariant subspaces, dilation theory and reflexibity (see [1],[2],[3],[5],[6]), and is deeply related with properties ( $A_{m,n}$). Jung-Lee-Lee [7] introduced n-separating sets for subalgebras and proved the relationship between n-separating sets and properties ( $A_{m,n}$). In this paper we will study the relationship between direct sum and properties ( $A_{m,n}$). In particular, using some results of [7] we obtain relationship between n-separating sets and direct sum of von Neumann algebras.ras.s.ras.

  • PDF

JORDAN ALGEBRAS ASSOCIATED TO T-ALGEBARS

  • Jang, Young-Ho
    • 대한수학회보
    • /
    • 제32권2호
    • /
    • pp.179-189
    • /
    • 1995
  • Let $V \subset R^n$ be a convex homogeneous cone which does not contain straight lines, so that the automorphism group $$ G = Aut(R^n, V)^\circ = { g \in GL(R^n) $\mid$ gV = V}^\circ $$ ($\circ$ denoting the identity component) acts transitively on V. A convex cone V is called "self-dual" if V coincides with its dual $$ (1.1) V' = { x' \in R^n $\mid$ < x, x' > > 0 for all x \in \bar{V} - {0}} $$ where $\bar{V}$ denotes the closure of V.sure of V.

  • PDF

Department of Mathematics, Dongeui University

  • Yoon, Suk-Bong
    • 대한수학회보
    • /
    • 제38권3호
    • /
    • pp.527-541
    • /
    • 2001
  • We find the necessary and sufficient conditions for the smash product algebra structure and the crossed coproduct coalgebra structure with th dual cocycle $\alpha$ to afford a Hopf algebra (A equation,※See Full-text). If B and H are finite algebra and Hopf algebra, respectively, then the linear dual (※See Full-text) is also a Hopf algebra. We show that the weak coaction admissible mapping system characterizes the new Hopf algebras (※See Full-text).

  • PDF