1 |
C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math Soc. 88 (1958), 467-490
DOI
ScienceOn
|
2 |
J. Adamek and H. Herrlich, Abstract and Concrete Categories, John Wiley & Sons, Inc., 1990
|
3 |
L. P. Belluce, Semisimple algebras of infinite-valued logic and bold fuzzy set theory, Canad. J. Math. 38 (1986), 1356-1379
DOI
|
4 |
L. P. Belluce, -complete MV-algebras, Non-classi. log and their appl. to fuzzy subsets, Linz. 1992, 7-21
|
5 |
T. H. Choe, E. S. Kim, and Y. S. Park, Representations of semi-simple MV - algebra, Kyungpook Math. J. 45 (2005), to appear
|
6 |
L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand Princeton, NJ., 1960
|
7 |
S. S. Hong and L. D. Nel, Duality theorems for algebras in convenient categories, Math. Z. 166 (1979), 131-136
DOI
|
8 |
A. Di Nola and S. Sessa, On MV -algebras of continuous functions, Kluw, Acad. Pub. D. 1995, 23-32
|
9 |
C. S. Hoo, Topological MV -algebras, Topology Appl. 81 (1997), 103-121
DOI
ScienceOn
|
10 |
D. Mundici, Interpretation of AFC-algebras in Lukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15-63
DOI
|
11 |
H. E. Porst and M. B. Wischnewsky, Every topological category is convenient for Gelfand-Naimark duality, Manuscripta Math. 25 (1978), 169-204
DOI
|
12 |
T. H. Choe, A dual adjointness on partially ordered topological spaces, J. Pure Appl. Algebra 68 (1990), 87-93
DOI
ScienceOn
|