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JORDAN ALGEBRAS ASSOCIATED TO T-ALGEBRAS

JANG, YOUNG Ho

1. Introduction

Let V C R™ be a convex homogeneous cone which does not contain
straight lines, so that the automorphism group

G = Aut(R",V)° = {g € GL(R") | gV =V }°

(o denoting the identity component) acts transitively on V. A convex
cone V is called “self-dual” if V' coincides with its dual

(1.1) V' ={z'eR"| <z,2’>> 0 forallz €V - {0} }

where V denotes the closure of V.
A Jordan algebra A over a field F of char F # 2 is a finite dimen-
sional algebra with unite element e such that
(1) ab= ba,
(2) a%(ba) = (a®b)a for all a, b € A.
A Jordan algebra A over the field of real numbers R is said to be
formally real if the following condition is satisfied

(1.2) x? + y:» =0(x, y€ A) implies =y =0.

In 1957-58, M. Koecher made an observation that the category of
self-dual convex homogeneous cones (R, V') with a base point z9 € V
is equivalent to that of formally real Jordan algebras.

By virtue of this equivalence, the classification of self-dual convex
homogeneous cones is reduced to that of formally real Jordan algebras,
which was given as early as in 1934 ([JNW}). A self-dual convex ho-
mogeneous cone V' is decomposed uniquely into the direct product of
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the “irreducible” ones. It is well-known that the irreducible self-dual
convex homogeneous cones are classified into the following five types :

e Pi(R)=Ry, P(F) (r>22, F=R, C, H),

e P3(0) (O denotes the Cayley octonion algebra),

* P(l’ n_l) = {(51) € R" | & >0, 612 - 21;2612 >0} (n2 3))
where P,.(F) denotes the cone of positive definite hermitian matrices of
size r with entries in F.

A more general study of “convex homogeneous cones” was done by
Vinberg [V] in the early 60’s. He showed that there is a one-to-one
correspondence between all the convex homogeneous cones and nonas-
sociative algebra of a special form, called compact left-symmetric al-
gebras, or clans and constructed the apparatus of generalized matrix
algebras, called T-algebras, which will allow us to consider any convex
homogeneous cone as a cone of positive definite hermitian matrices.

The characteristic function plays an essential role in convex cones.
For any convex cone V, the characteristic function ¢y is defined by

(1.3) dviz) = / e~ <*%">qy' for every z € V.
Ve

We collect some properties of the characteristic function ¢y .

(1) dv(z) >0,

(2) ov(ga) =det(g) 'pv(x) fora eV, g € G,

(3) ¢v tends to infinity when o € V' converges to a boundary point
of V.

(4) If V; and V2 are open convex cones in the space R”, ViNV, # 0,
and ¢y, = ¢y, on V1 NV,, then V; = V5.

(5) The measure ¢(x)dz is invariant under all ¢ € G.

(6) logov and ¢v are convex functions.

We regard the convex cone V. C R" as a differentiable manifold.
If 2 is any point of V' and the tangent space to V at zg is identified
with R™, the quadratic differential form d*logéy provides a Riemannian
structure g on V. The components of the Riemanniar: metric tensor ¢
and the canonical torsion-free connectedness I' of g are given as follows
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(1.4) Gij = &’jlogqﬁv
. 1 .
(1.5) =5 g"ulogsy.

where (g¥') is the tensor inverse of (g;;).
We define a multiplicative operation [J in R™ by the formula

(1.6) (a Ob) =~ Tip(20)a’d* (a, beR™).

This multiplication is commutative, since the connection I' is torsion
free.

The space R™ with O by the formula (1.6) is called the algebra of
connectedness of V at zq.

The purpose of this article is to show that the algebra of connected-
ness of the convex cone V() corresponding to the T-algebra A at the
point e € V() is a formally real Jordan algebra.

Finally, I would like to thank Professor Jae-Hyun Yang for invaluable
advice and encouregement.

2. Results of T-algebra

In this section, we establish notations and summarize basic facts of
the T-algebra.
We consider the square matrices a = (a;;) whose elements belong to

arbitrary vector spaces :
a;; € Ai;.

A matrix algebra of rank m is an algebra A bigraded by subspaces
;5 (¢, j=1, --- ,m) such that

;%% C Uik, WAk =0 for j # 1.
We put M = 3. ;. Then the subspace M of A is a subalgebra of

2A. If we are given an involution a — a* in the algebra U, then we can
define the subspace

(2.1) H={aeUA|a"=a}
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of “hermitian matrices” and the subspace
(2.2) Hs={aecUA|a* =—a}

of “skew-hermitian matrices.” Clearly A = + Hs.

NOTATIONS. For all a, b, ¢ € AU, we use the following notations :

[ab] = ab—ba , [abc] = a(be) — (ab)e, n;; = dim,;

A 1 1 -
a’ = 5 E aii + E Qij, Ay = 5 _S_ aip + E 'aij-
>3

1<)

Note that a” is an upper triangular matrix and a, is a lower tri-
angular matrix and so @ = a”™ + ay. Also we can easily check that
(a*)" = (av)*, (a™)* = (¢*)yv. In particular, for a hermitian matrix a,
ay = (a™)*. In a matrix algebra 2 with involution *, n;; = n;; and
each subspace 2;; is a subalgebra isomorphic to the algebra R of real
numbers. The unique isomorphism of 2;; onto R will be denoted by p

and we denote the unit element of 2A;; by ¢;.

DEFINITION 2.1. ([V]) A matrix algebra 2 with an involution * is

called a T-algebra if the following seven conditions are satisfied :
(1) the subalgbra 2,; is isomorphic to the algebra R ;
(2) for every a;; € Aij €iaij = aije; = aij ;
(3) tr([ad]) =0
(4) tr([abc]) =0 ;
(5) tr(aa*) >0ifa#0;
(6) for any a, b, ¢ € M, [abc] =0 or [a*b*c*] =0 ;
(7) for any a, b, c € M,

[abb*] =0 or [abc™| + [acd®] =0 or [ab*c*]+ [ba*c*] = 0.
We define a bilinear operation A in the space 2 by the formula

(2.3) alb = a™b + bay.
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The space $) of hermitian matrices is closed under the operation A. In
fact, for any hermitian matrices a, b € ),

(alb)* = (a™b+ bay)* = bay +a”b = alb.

Lemma 2.2.([V]) For any « € $, the operator

(2.4) L, : b—alAb (b€ DH)
in § has only real eigenvalues and
(2.5) tr(Ly) =tr{a) = f: niplaii)
i=1
where
(2.6) n; =1+ —;— zm:n,-s.
si

The axiom (6) in Definition of T-algebra shows that the set of all
triangular matrices of 2 forms an associative subalgebra of . For any
triangular matrix a with a;; # 0 for all 2, a is not a zero divisor in this
subalgebra 9. Then it is not hard to prove that

(2.7) T ={acM|a; >0 (i=1,---,m)}
is open in 9 and is a connected Lie group. Its Lie algebra p(2) can be
identified with 9, where the commutator operation [, ] is defined by
the formula
[a, b} = [ab].
We consider the mapping

(2.8) F:a—ad*€H (aeM).

Let ¢ be the identity of 9. Then the differential mapping dF. is of the
form
dF, : a — a+a*

and is an isomorphism of the linear space 9 onto ). Therefore the
image of T(2) under F contains the matrix F'(e) = € in .
Let

(2.9) V(Rl) = F(T(A) = {#" | t < T(A) }
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THEOREM 2.3. ([V], Theorem 4, p. 397)
{ convex homogeneous cones} = {T — algebras}.
V=V — 2
In the T-algebra 2 of rank m we consider the subspace

k
i,j=1
For every hermitian matrix a € f), we construct a sequence of matrices
a'® = (a(k)) €A® (k=1, --- ,m) as follows :

S B Z(P (k) _ (Db,

i,7=1
Let
(2.11) pr(a) = plaly) (k=1, - - ,m)

It is easy to see that py(a) is a homogeneous polynomial of degree 2™~
in the coordinates of the vector a € §).
We collect some properties of the polynomial pi(a).

(1) If a = bb*, where b € M, then

aly = (I] s <a»Zbub,,

s>k
(2) The cone V() is determined in $) by the inequalities
p(a) >0 (k="1, - ,m),

and every hermitian matrix a € V() can be written in exactly
one way in the form tt*, where t € T ().
(3) If ¢ is a characteristic function on V(2), then

m

= H(p,‘(a))111+-n.2+~-+n,-_1 —ni

=1

184



Jordan algebras associated to T-algebras
3. Main Theorem

In Introduction we get the value of the metric tensor g and the object

of connectedness at the base point g in the convex cone V. Now, we
apply these results to the convex cone V(2) corresponding to the T-
algebra 2. In this case the role of zo will be taken by the unit matrix
e. :
Let 2 be a T-algebra with operation A by (2.3) and V() the convex
cone corresponding to the T-algebra Y. Let ¢ be the characteristic
function of V(). We may assume that ¢(e) = 1. For any a € 9, we
can use the operator L, given by the formula (2.4) in Lemma 2.2. (V)
in the following facts.

Since
¢((expLy)e) = (det expL,) 'é(e) = e~ trtla)
we get
logp((expLq)e) = —tr(Ly).
Note that

(expLo)e = e+ k};) i 1)!(1

1 1
:c—l—a+;Lua+ELaLaa+---

1 1 ,
=ec+a+ ;(I‘A(l + EGA((LAG) 4

We calculate the first few terms in the Taylor series expansion of log¢
in the neighborhood at e € V(2) as follows :

—tr(L,) =log¢({expLq)e)
=(d log¢(e))(e + a + %aAa + éaé.:(a&a))
+ é(dzlogé(e))(a + %aAa) + %(d”ogg’i(e)‘)(a) 4o
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Let g(e) be the symmetric bilinear form connected with the quadratic
form d*logé(e). Then

(d*logd(e))(a + %aAa) =g¢(e)(a + laAa, a+ éa&a)

2
=g(e)(a,a) + g(e)(a,ala)
+ 1g(e)(aAa,aAa)
=(d*logg(e))(a) + (d2109¢(6))(aﬁa)
+ g(e)a,al\a).

Thus
—tr(La)
~(d log())(a) + 5[(d logd(c))(atda) + (dloga(c))(a)]
+ 2[(d loga(e))(aad>a) + g(c)(a,ala) + (& loga(e))(a)]
o

By comparing terms of the first order, the second order and the third
order of smallness and Lemma 2.2.([V]), we obtain

(3.1) (d logg(e))(a) = —tr(Ly) = ~tr(a) ,

(3:2) (d’logg(e))(a) = —(d logg(e))(ala) = tr(Lasa) = tr(ala)
and

(3.3) (d*logg(e))(a) = —2tr(al(ala)) .

Since tr(aAb) = tr(a™b + bay) = tr((a” + av)b) = tr(abd), it follows
that

g(e)(a,b) = tr(ab).

136



Jordan algebras associated to T-algebras

The algebra of connectedness of the cone V() at e is defined by the
multiplicative operation O in $ as follows :

(@0 b)' ==Y Ti(e)a’dt’, a besH
where | ) A
Tix(e) = 3 Z g*(€)0jrilogs(e).
Thus we have
g(e)(alb,c) = Y gule)(allb)’
==Y g,-,(e)rjk(e)afb*‘c’.
~% Y gitle)g™(e)Dsuilogdle)a’bt e,

1 _—
-3 kilogd(e)a’ bt et

i

Let Q(a,b,c) = 9jxilogp(e)a?b*c!. Then Q is symmetric trilinear and
so

1
g(e)(aldb,¢) = —5Q(a,b.¢) ,

4

by (3.3), we get
Q(a,a,a) = (dPlogd(e))(a) = —2tr(al(ala)).

LEMMA 3.1. Let R(a,b,c) be the trilinear form and let Q(a, b, c) be
the symmetric trilinear form. If R(a,b,c) is symmetric and R(a, a,a) =
Q(a,a,a), then R(a,b,c) = Q(a,b,c) for all a. b, c € H.

Proof. It follows immediately from the polarization. O

MAIN THEOREM. Let 2 be a T-algebra and V() the corresponding
convex homogeneous cone in the space $) of hermitian matrices. Then
the algebra of connectedness of the cone V(2 at the point e € V() is
a formally real Jordan algebra.

Proof. Let R(a,b,c) = g(e)(ab+ ba,c). Then R(a.b,c) is symmetric
because

R(a,b.c) = R(b,a,c)
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and
R(a,c,b) = g(e)(ac + ca,b)
= tr((ac)b + (ca)b) = tr((ab+ ba)c) (by axiom (4))
= g(e)(ab + ba,c) = R(a,b,c) .
Moreover,
tr(aA(ala)) = tr(a(ala)) = tr(a(e”a + a,a))
=tr(a*(a” + ay)) = tr((az)a\,E
= g(e)(a® a) = %R(a,a,a)
Thus we get R(a,a,a) = ——Q(a a,a) and for all a, b, c € §, we have
g(e)(ab+ ba,c) = R{a,b,c) = —Q(a,d,c) = 2¢(e)(aldb, c)
by Lemma 3.1. Hence
aldb = —(ab + ba).

Since the algebra ($,0) is commutative, it suffices to show that (), D)
satisfies the Jordan identity and formally real. If a, b, c € §,

tr((a*0(b0a))c)
:i{t,@(az(vba)) + tr(a®(ab)) + tr((ba)a’®) + tr((ad)a®)}e

:%{tr((a?b)a) + tr((ba®)a) + tr(a(a®b)) + tr(a(ba®))}c
=tr(((a*0b)0a)c).
by axiom (3) and (4). Thus if a, b € §, we have
g(e)(&®0(b0a), ¢) = g(e)((a’0b)Da,c) for all c € H,

and so a*0(b0a) = («’0b)0a.
Suppose that aOa + b03b = 0. Since aOa + b0b = at+ 0 =0,

gle)a,a) + g(e)(b,b) = tr{a®) + tr(b?) = tr(a* + b*)
= g(e)(a® +b%e)=0.

By axiom (5), if a # 0, then tr(a®) > 0, and hence a = b = 0.
This completes the proofs. O
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