JORDAN ALGEBRAS ASSOCIATED TO T-ALGEBRAS

JANG. YOUNG HO

1. Introduction

Let $V \subset \mathbb{R}^n$ be a convex homogeneous cone which does not contain straight lines, so that the automorphism group

$$G = Aut(\mathbb{R}^n, V)^{\circ} = \{ g \in GL(\mathbb{R}^n) \mid gV = V \}^{\circ}$$

(\circ denoting the identity component) acts transitively on V. A convex cone V is called "self-dual" if V coincides with its dual

$$(1.1) V' = \{ x' \in \mathbb{R}^n \mid \langle x, x' \rangle > 0 \text{ for all } x \in \overline{V} - \{0\} \}$$

where \overline{V} denotes the closure of V.

A Jordan algebra \mathcal{A} over a field F of $char F \neq 2$ is a finite dimensional algebra with unite element e such that

- $(1) \ ab = ba,$
- (2) $a^2(ba) = (a^2b)a$ for all $a, b \in \mathcal{A}$.

A Jordan algebra \mathcal{A} over the field of real numbers \mathbb{R} is said to be formally real if the following condition is satisfied

(1.2)
$$x^2 + y^2 = 0 \ (x, y \in \mathcal{A}) \text{ implies } x = y = 0.$$

In 1957-58, M. Koecher made an observation that the category of self-dual convex homogeneous cones (\mathbb{R}^n, V) with a base point $x_0 \in V$ is equivalent to that of formally real Jordan algebras.

By virtue of this equivalence, the classification of self-dual convex homogeneous cones is reduced to that of formally real Jordan algebras, which was given as early as in 1934 ([JNW]). A self-dual convex homogeneous cone V is decomposed uniquely into the direct product of

Received December 16, 1993.

the "irreducible" ones. It is well-known that the irreducible self-dual convex homogeneous cones are classified into the following five types:

- $\mathcal{P}_1(\mathbb{R}) = \mathbb{R}_+, \quad \mathcal{P}_r(F) \quad (r \ge 2, F = \mathbb{R}, \mathbb{C}, \mathbb{H}),$
- $\mathcal{P}_3(\mathbb{O})$ (\mathbb{O} denotes the Cayley octonion algebra),
- $\mathcal{P}(1, n-1) = \{ (\xi_i) \in \mathbb{R}^n \mid \xi_1 > 0, \ \xi_1^2 \sum_{i=2}^n \xi_i^2 > 0 \} \ (n \geq 3),$ where $\mathcal{P}_r(F)$ denotes the cone of positive definite hermitian matrices of size r with entries in F.

A more general study of "convex homogeneous cones" was done by Vinberg [V] in the early 60's. He showed that there is a one-to-one correspondence between all the convex homogeneous cones and nonassociative algebra of a special form, called compact left-symmetric algebras, or clans and constructed the apparatus of generalized matrix algebras, called T-algebras, which will allow us to consider any convex homogeneous cone as a cone of positive definite hermitian matrices.

The characteristic function plays an essential role in convex cones. For any convex cone V, the characteristic function ϕ_V is defined by

(1.3)
$$\phi_V(x) = \int_{V'} e^{-\langle x, x' \rangle} dx' \quad \text{for every } x \in V.$$

We collect some properties of the characteristic function ϕ_V .

- (1) $\phi_V(x) > 0$,
- (2) $\phi_V(gx) = det(g)^{-1}\phi_V(x)$ for $x \in V, g \in G$,
- (3) ϕ_V tends to infinity when $x \in V$ converges to a boundary point of V.
- (4) If V_1 and V_2 are open convex cones in the space \mathbb{R}^n , $V_1 \cap V_2 \neq \emptyset$, and $\phi_{V_1} = \phi_{V_2}$ on $V_1 \cap V_2$, then $V_1 = V_2$.
- (5) The measure $\phi(x)dx$ is invariant under all $g \in G$.
- (6) $log \phi_V$ and ϕ_V are convex functions.

We regard the convex cone $V \subset \mathbb{R}^n$ as a differentiable manifold. If x_0 is any point of V and the tangent space to V at x_0 is identified with \mathbb{R}^n , the quadratic differential form $d^2 \log \phi_V$ provides a Riemannian structure g on V. The components of the Riemannian metric tensor g and the canonical torsion-free connectedness Γ of g are given as follows

:

$$(1.4) g_{ij} = \partial_{ij} log \phi_V$$

(1.5)
$$\Gamma^{i}_{jk} = \frac{1}{2} \sum_{j} g^{il} \partial_{jkl} log \phi_{V}.$$

where (g^{il}) is the tensor inverse of (g_{ij}) .

We define a multiplicative operation \square in \mathbb{R}^n by the formula

$$(1.6) (a \square b)^i = -\sum_{j \in \mathcal{A}} \Gamma^i_{jk}(x_0) a^j b^k (a, b \in \mathbb{R}^n).$$

This multiplication is commutative, since the connection Γ is torsion free.

The space \mathbb{R}^n with \square by the formula (1.6) is called the algebra of connectedness of V at x_0 .

The purpose of this article is to show that the algebra of connectedness of the convex cone $V(\mathfrak{A})$ corresponding to the T-algebra \mathfrak{A} at the point $e \in V(\mathfrak{A})$ is a formally real Jordan algebra.

Finally, I would like to thank Professor Jae-Hyun Yang for invaluable advice and encouragement.

2. Results of T-algebra

In this section, we establish notations and summarize basic facts of the T-algebra.

We consider the square matrices $a = (a_{ij})$ whose elements belong to arbitrary vector spaces:

$$a_{ij} \in \mathfrak{A}_{ij}$$
.

A matrix algebra of rank m is an algebra \mathfrak{A} bigraded by subspaces \mathfrak{A}_{ij} $(i, j = 1, \dots, m)$ such that

$$\mathfrak{A}_{ij}\mathfrak{A}_{jk}\subset\mathfrak{A}_{ik}$$
, $\mathfrak{A}_{ij}\mathfrak{A}_{lk}=0$ for $j\neq l$.

We put $\mathfrak{M} = \sum_{i \leq j} \mathfrak{A}_{ij}$. Then the subspace \mathfrak{M} of \mathfrak{A} is a subalgebra of \mathfrak{A} . If we are given an involution $a \to a^*$ in the algebra \mathfrak{A} , then we can define the subspace

$$\mathfrak{H} = \{ a \in \mathfrak{A} \mid a^* = a \}$$

of "hermitian matrices" and the subspace

$$\mathfrak{H}_S = \{ a \in \mathfrak{A} \mid a^* = -a \}$$

of "skew-hermitian matrices." Clearly $\mathfrak{A} = \mathfrak{H} + \mathfrak{H}_S$.

NOTATIONS. For all $a, b, c \in \mathfrak{A}$, we use the following notations:

$$[ab] = ab - ba$$
, $[abc] = a(bc) - (ab)c$, $n_{ij} = \dim \mathfrak{A}_{ij}$

$$a^{\wedge} = \frac{1}{2} \sum a_{ii} + \sum_{i < j} a_{ij}, \quad a_{\vee} = \frac{1}{2} \sum a_{ii} + \sum_{i > j} a_{ij}.$$

Note that a^{\wedge} is an upper triangular matrix and a_{\vee} is a lower triangular matrix and so $a = a^{\wedge} + a_{\vee}$. Also we can easily check that $(a^*)^{\wedge} = (a_{\vee})^*$, $(a^{\wedge})^* = (a^*)_{\vee}$. In particular, for a hermitian matrix a, $a_{\vee} = (a^{\wedge})^*$. In a matrix algebra \mathfrak{A} with involution *, $n_{ij} = n_{ji}$ and each subspace \mathfrak{A}_{ii} is a subalgebra isomorphic to the algebra \mathbb{R} of real numbers. The unique isomorphism of \mathfrak{A}_{ii} onto \mathbb{R} will be denoted by ρ and we denote the unit element of \mathfrak{A}_{ii} by ϵ_i .

DEFINITION 2.1. ([V]) A matrix algebra $\mathfrak A$ with an involution * is called a T-algebra if the following seven conditions are satisfied:

- (1) the subalgbra \mathfrak{A}_{ii} is isomorphic to the algebra \mathbb{R} ;
- (2) for every $a_{ij} \in \mathfrak{A}_{ij}$ $e_i a_{ij} = a_{ij} e_j = a_{ij}$;
- (3) tr([ab]) = 0;
- (4) tr([abc]) = 0;
- (5) $tr(aa^*) > 0$ if $a \neq 0$;
- (6) for any $a, b, c \in \mathfrak{M}, [abc] = 0 \text{ or } [a^*b^*c^*] = 0$;
- (7) for any $a, b, c \in \mathfrak{M}$,

$$[abb^*] = 0$$
 or $[abc^*] + [acb^*] = 0$ or $[ab^*c^*] + [ba^*c^*] = 0$.

We define a bilinear operation \triangle in the space \mathfrak{A} by the formula

$$(2.3) a\triangle b = a^b + ba_{\vee}.$$

The space \mathfrak{H} of hermitian matrices is closed under the operation \triangle . In fact, for any hermitian matrices $a, b \in \mathfrak{H}$,

$$(a\triangle b)^* = (a^b + ba_v)^* = ba_v + a^b = a\triangle b.$$

Lemma 2.2.([V]) For any $a \in \mathfrak{H}$, the operator

$$(2.4) L_a : b \longrightarrow a \triangle b \quad (b \in \mathfrak{H})$$

in 5 has only real eigenvalues and

(2.5)
$$tr(L_a) = tr(a) = \sum_{i=1}^{m} n_i \rho(a_{ii})$$

where

(2.6)
$$n_i = 1 + \frac{1}{2} \sum_{s \neq i}^m n_{is}.$$

The axiom (6) in Definition of T-algebra shows that the set of all triangular matrices of \mathfrak{A} forms an associative subalgebra of \mathfrak{A} . For any triangular matrix a with $a_{ii} \neq 0$ for all i, a is not a zero divisor in this subalgebra \mathfrak{M} . Then it is not hard to prove that

(2.7)
$$T(\mathfrak{A}) = \{ a \in \mathfrak{M} \mid a_{ii} > 0 \ (i = 1, \dots, m) \}$$

is open in $\mathfrak M$ and is a connected Lie group. Its Lie algebra $\mathfrak p(\mathfrak A)$ can be identified with $\mathfrak M$, where the commutator operation $[\ ,\]$ is defined by the formula

$$[a, b] = [ab].$$

We consider the mapping

$$(2.8) F: a \longrightarrow aa^* \in \mathfrak{H} \quad (a \in \mathfrak{M}).$$

Let e be the identity of \mathfrak{M} . Then the differential mapping dF_e is of the form

$$dF_e : a \longrightarrow a + a^*$$

and is an isomorphism of the linear space \mathfrak{M} onto \mathfrak{H} . Therefore the image of $T(\mathfrak{A})$ under F contains the matrix F(e) = e in \mathfrak{H} .

Let

$$(2.9) V(\mathfrak{A}) = F(T(\mathfrak{A})) = \{ tt^* \mid t \in T(\mathfrak{A}) \}$$

THEOREM 2.3. ([V], Theorem 4, p. 397)

 $\{ convex \ homogeneous \ cones \} \cong \{ T - algebras \}.$

$$V \cong V(\mathfrak{A}) \longleftrightarrow \mathfrak{A}$$

In the T-algebra \mathfrak{A} of rank m we consider the subspace

(2.10)
$$\mathfrak{A}^{(k)} = \sum_{i,j=1}^{k} \mathfrak{A}_{ij} \quad (k = 1, \dots, m).$$

For every hermitian matrix $a \in \mathfrak{H}$, we construct a sequence of matrices $a^{(k)} = (a_{ij}^{(k)}) \in \mathfrak{A}^{(k)} \quad (k = 1, \dots, m)$ as follows:

$$a^{(m)} = a$$
, $a^{(k-1)} = \sum_{i,j=1}^{k-1} (\rho(a_{kk}^{(k)})a_{ij}^{(k)} - a_{ik}^{(k)}a_{kj}^{(k)})$.

Let

(2.11)
$$p_k(a) = \rho(a_{kk}^{(k)}) \quad (k = 1, \dots, m)$$

It is easy to see that $p_k(a)$ is a homogeneous polynomial of degree 2^{m-k} in the coordinates of the vector $a \in \mathfrak{H}$.

We collect some properties of the polynomial $p_k(a)$.

(1) If $a = bb^*$, where $b \in \mathfrak{M}$, then

$$a_{ij}^{(k)} = (\prod_{s>k} p_s(a)) \sum_{l=1}^k b_{il} b_{jl}^*.$$

(2) The cone $V(\mathfrak{A})$ is determined in \mathfrak{H} by the inequalities

$$p_k(a) > 0 \ (k = 1, \dots, m),$$

and every hermitian matrix $a \in V(\mathfrak{A})$ can be written in exactly one way in the form tt^* , where $t \in T(\mathfrak{A})$.

(3) If ϕ is a characteristic function on $V(\mathfrak{A})$, then

$$\phi(a) = \prod_{i=1}^{m} (p_i(a))^{n_1 + n_2 + \dots + n_{i-1} - n_i}.$$

3. Main Theorem

In Introduction we get the value of the metric tensor g and the object of connectedness at the base point x_0 in the convex cone V. Now, we apply these results to the convex cone $V(\mathfrak{A})$ corresponding to the Talgebra \mathfrak{A} . In this case the role of x_0 will be taken by the unit matrix e.

Let \mathfrak{A} be a T-algebra with operation Δ by (2.3) and $V(\mathfrak{A})$ the convex cone corresponding to the T-algebra \mathfrak{A} . Let ϕ be the characteristic function of $V(\mathfrak{A})$. We may assume that $\phi(e) = 1$. For any $a \in \mathfrak{H}$, we can use the operator L_a given by the formula (2.4) in Lemma 2.2.([V]) in the following facts.

Since

$$\phi((expL_a)\epsilon) = (\det expL_a)^{-1}\phi(\epsilon) = e^{-tr(L_a)},$$

we get

$$\log\phi((expL_a)e) = -tr(L_a).$$

Note that

$$(expL_a)e = e + \sum_{k=0}^{\infty} \frac{L_a^k}{(k+1)!} a$$

$$= e + a + \frac{1}{2} L_a a + \frac{1}{6} L_a L_a a + \cdots$$

$$= e + a + \frac{1}{2} a \triangle a + \frac{1}{6} a \triangle (a \triangle a) + \cdots$$

We calculate the first few terms in the Taylor series expansion of $log \phi$ in the neighborhood at $e \in V(\mathfrak{A})$ as follows:

$$\begin{split} -tr(L_a) = &log\phi((expL_a)e) \\ = &(d \ log\phi(e))(e+a+\frac{1}{2}a\triangle a+\frac{1}{6}a\triangle(a\triangle a)) \\ &+\frac{1}{2}(d^2log\phi(e))(a+\frac{1}{2}a\triangle a)+\frac{1}{6}(d^3log\phi(e))(a)+\cdots . \end{split}$$

Let g(e) be the symmetric bilinear form connected with the quadratic form $d^2 \log \phi(e)$. Then

$$(d^{2}log\phi(e))(a + \frac{1}{2}a\triangle a) = g(e)(a + \frac{1}{2}a\triangle a, a + \frac{1}{2}a\triangle a)$$

$$= g(e)(a, a) + g(e)(a, a\triangle a)$$

$$+ \frac{1}{4}g(e)(a\triangle a, a\triangle a)$$

$$= (d^{2}log\phi(e))(a) + \frac{1}{4}(d^{2}log\phi(e))(a\triangle a)$$

$$+ g(e)(a, a\triangle a).$$

Thus

$$\begin{split} -tr(L_a) \\ &= (d \log \phi(e))(a) + \frac{1}{2}[(d \log \phi(e))(a\triangle a) + (d^2 \log \phi(e))(a)] \\ &+ \frac{1}{6}[(d \log \phi(e))(a\triangle(a\triangle a)) + 3g(e)(a, a\triangle a) + (d^3 \log \phi(e))(a)] \\ &+ \cdots \quad . \end{split}$$

By comparing terms of the first order, the second order and the third order of smallness and Lemma 2.2.([V]), we obtain

$$(3.1) \qquad (d \log \phi(e))(a) = -tr(L_a) = -tr(a) ,$$

$$(3.2) \quad (d^2log\phi(e))(a) = -(d\ log\phi(e))(a\triangle a) = tr(L_{a\triangle a}) = tr(a\triangle a)$$

and

$$(3.3) (d^3log\phi(e))(a) = -2tr(a\triangle(a\triangle a)).$$

Since $tr(a\triangle b) = tr(a^b + ba_v) = tr((a^b + a_v)b) = tr(ab)$, it follows that

$$g(e)(a,b) = tr(ab).$$

The algebra of connectedness of the cone $V(\mathfrak{A})$ at e is defined by the multiplicative operation \square in \mathfrak{H} as follows:

$$(a \square b)^i = -\sum \Gamma^i_{jk}(e)a^jb^k \ , \quad a, \ b \in \mathfrak{H}$$

where

$$\Gamma^{i}_{jk}(e) = \frac{1}{2} \sum_{i} g^{il}(e) \partial_{jkl} log \phi(e).$$

Thus we have

$$\begin{split} g(e)(a \Box b, c) &= \sum g_{il}(e)(a \Box b)^i c^l. \\ &= -\sum g_{il}(e) \Gamma^i_{jk}(e) a^j b^k c^l. \\ &= -\frac{1}{2} \sum g_{il}(e) g^{il}(e) \partial_{jkt} log \phi(e) a^j b^k c^l. \\ &= -\frac{1}{2} \partial_{jkl} log \phi(e) a^j b^k c^l. \end{split}$$

Let $Q(a,b,c) = \partial_{jkl} log \phi(e) a^j b^k c^l$. Then Q is symmetric trilinear and SO

$$g(e)(a\Box b,c) = -\frac{1}{2}Q(a,b,c) ,$$

by (3.3), we get

$$Q(a, a, a) = (d^3 log \phi(e))(a) = -2tr(a\triangle(a\triangle a)).$$

LEMMA 3.1. Let R(a,b,c) be the trilinear form and let Q(a,b,c) be

the symmetric trilinear form. If R(a, b, c) is symmetric and R(a, a, a) =Q(a,a,a), then R(a,b,c) = Q(a,b,c) for all $a,b,c \in \mathfrak{H}$.

Proof. It follows immediately from the polarization.

MAIN THEOREM. Let \mathfrak{A} be a T-algebra and $V(\mathfrak{A})$ the corresponding convex homogeneous cone in the space $\mathfrak H$ of hermitian matrices. Then the algebra of connectedness of the cone $V(\mathfrak{A})$ at the point $e \in V(\mathfrak{A})$ is a formally real Jordan algebra.

Proof. Let R(a,b,c) = g(e)(ab+ba,c). Then R(a,b,c) is symmetric because

$$R(a, b, c) = R(b, a, c)$$

and

$$R(a, c, b) = g(e)(ac + ca, b)$$

= $tr((ac)b + (ca)b) = tr((ab + ba)c)$ (by axiom (4))
= $g(e)(ab + ba, c) = R(a, b, c)$.

Moreover,

$$tr(a\triangle(a\triangle a)) = tr(a(a\triangle a)) = tr(a(a^a + a_{\lor}a))$$
$$= tr(a^2(a^a + a_{\lor})) = tr((a^2)a)$$
$$= g(e)(a^2, a) = \frac{1}{2}R(a, a, a)$$

Thus we get R(a,a,a) = -Q(a,a,a) and for all $a, b, c \in \mathfrak{H}$, we have $q(e)(ab+ba,c) = R(a,b,c) = -Q(a,b,c) = 2g(e)(a\square b,c)$

by Lemma 3.1. Hence

$$a\Box b = \frac{1}{2}(ab + ba).$$

Since the algebra (\mathfrak{H}, \square) is commutative, it suffices to show that (\mathfrak{H}, \square) satisfies the Jordan identity and formally real. If $a, b, c \in \mathfrak{H}$,

$$\begin{split} tr((a^2\Box(b\Box a))c) \\ &= \frac{1}{4}\{tr(a^2(ba)) + tr(a^2(ab)) + tr((ba)a^2) + tr((ab)a^2)\}c \\ &= \frac{1}{4}\{tr((a^2b)a) + tr((ba^2)a) + tr(a(a^2b)) + tr(a(ba^2))\}c \\ &= tr(((a^2\Box b)\Box a)c). \end{split}$$

by axiom (3) and (4). Thus if $a, b \in \mathfrak{H}$, we have

$$g(e)(a^2 \square (b \square a), c) = g(e)((a^2 \square b) \square a, c)$$
 for all $c \in \mathfrak{H}$,

and so $a^2 \square (b \square a) = (a^2 \square b) \square a$.

Suppose that $a\Box a + b\Box b = 0$. Since $a\Box a + b\Box b = a^2 + b^2 = 0$.

$$g(e)(a,a) + g(e)(b,b) = tr(a^2) + tr(b^2) = tr(a^2 + b^2)$$
$$= g(e)(a^2 + b^2, e) = 0.$$

By axiom (5), if $a \neq 0$, then $tr(a^2) > 0$, and hence a = b = 0. This completes the proofs.

Jordan algebras associated to T-algebras

References

- [JNW] P. Jordan, J. von Neumann and E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Ann. of Math. 35 (1934), 29-64.
- [V] E. B. Vinberg, The theory of convex homogeneous cones, Trans. Moscow Math. Soc. (1963), 340-403.

DEPARTMENT OF MATHEMATICS, INHA UNIVERSITY, INCHEON 402-751, KOREA