DUAL OPERATOR ALGEBRAS AND PROPERTIES $D_{\theta,\gamma}$

HAN SOO KIM AND HAE GYU KIM

1. Introduction

Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} . A dual algebra is a subalgebra of $\mathcal{L}(\mathcal{H})$ that contains the identity operator $1_{\mathcal{H}}$ and is closed in the ultraweak operator topology on $\mathcal{L}(\mathcal{H})$. For $T \in \mathcal{L}(\mathcal{H})$, let \mathcal{A}_T denote the smallest subalgebra of $\mathcal{L}(\mathcal{H})$ that cointains T and $1_{\mathcal{H}}$ and is closed in the ultraweak operator topology. Moreover, let $Q_{\mathcal{A}_T}$ denote the quotient space $C_1(\mathcal{H})/\perp_{\mathcal{A}_T}$, where $C_1(\mathcal{H})$ is the trace class ideal in $\mathcal{L}(\mathcal{H})$ under the trace norm, and $\perp_{\mathcal{A}_T}$ denotes the preannihilator of \mathcal{A}_T in $C_1(\mathcal{H})$. For a brief notation, we shall denote $Q_{\mathcal{A}_T}$ by Q_T . One knows that \mathcal{A}_T is the dual space of Q_T and that the duality is given by

(1)
$$\langle A, [L] \rangle = \operatorname{tr}(AL), \quad A \in \mathcal{A}_T, [L] \in Q_T.$$

The Banach space Q_T is called a predual of \mathcal{A}_T . For x and y in \mathcal{H} , we can write $x \otimes y$ for the rank one operator in $\mathcal{C}_1(\mathcal{H})$ defined by

(2)
$$(x \otimes y)(u) = (u, y)x$$
 for all $u \in \mathcal{H}$.

The theory of dual algebras is applied to the study of invariant subspaces, dilation theory, and reflexivity. The class $A_{m,n}$ were defined by Bercovici-Foias-Pearcy in [2]. Also these classes are closely related to the study of the theory of dual algebras. Especially, Apostol-Bercovici-Foias-Pearcy established property $X_{\theta,\gamma}$, and researched a relationship with the class A_{\aleph_0} in [1]. In this paper, we define a new property $D_{\theta,\gamma}$

Received October 4, 1995.

Supported by the Basic Science Research Institute Program, Ministry of Education, 1995, BSRI-95-1401.

which is the generalization of property $X_{\theta,\gamma}$ and obtain some results related to dual algebras.

2. Preliminaries and properties $D_{\theta,\gamma}$

The notation and terminology employed herein agree with those in [3], [4] and [8].

DEFINITION 2.1. Suppose $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ is a dual algebra and θ is a nonnegative real number. We denote by $\mathcal{D}_{\theta}(\mathcal{A})$ the set of all [L] in $Q_{\mathcal{A}}$ such that there exist sequences $\{x_i\}_{i=1}^{\infty}$ and $\{y_i\}_{i=1}^{\infty}$ of vectors from \mathcal{H} satisfying

(a) $\limsup_{i\to\infty} ||[x_i\otimes y_i]-[L]|| \le \theta$,

- (b) $||x_i|| \le 1, ||y_i|| \le 1, 1 \le i < \infty$, and
- (c) sequences $\{x_i\}_{i=1}^{\infty}$ and $\{y_i\}_{i=1}^{\infty}$ converge weakly to zero.

For $0 \leq \theta < \gamma < \infty$, the dual algebra \mathcal{A} is said to have property $D_{\theta,\gamma}$ if the closed absolutely convex hull of the set $\mathcal{D}_{\theta}(\mathcal{A})$ contains the closed ball $B_{0,\gamma}$ of radius γ centered at the origin in $Q_{\mathcal{A}}$:

(3)
$$\overline{aco}(\mathcal{D}_{\theta}(\mathcal{A})) \supset \{[L] \in Q_{\mathcal{A}} : ||[L]|| \leq \gamma\} = B_{0,\gamma}.$$

LEMMA 2.2 ([3], PROPOSITION 1.21). Let X be a complex Banach space, let M be a positive number, and let E be a subset of X. Then

(4)
$$\|\phi\| \le M \sup_{x \in E} |\phi(x)|, \quad \phi \in X^*$$

if and only if $\overline{aco}(E)$ contains the closed ball of radius 1/M about the origin in X.

If \mathcal{A} is a subalgebra of $\mathcal{L}(\mathcal{H})$, we denote by $\mathcal{M}_n(\mathcal{A})$ subalgebra of $\mathcal{L}(\mathcal{H}^{(n)})$ consisting of all $n \times n$ matrices with the entries from \mathcal{A} .

LEMMA 2.3 ([3], PROPOSITION 2.2). If n is a positive integer and $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ is a dual algebra, then $\mathcal{M}_n(\mathcal{A})$ is a dual subalgebra of $\mathcal{L}(\mathcal{H}^{(n)})$. The predual $Q_{\mathcal{M}_n(\mathcal{A})}$ can be identified, as a Banach space,

201

with the Banach space $\mathcal{M}_n(Q_{\mathcal{A}})$ consisting of all $n \times n$ matrices with entries from $Q_{\mathcal{A}}$. Under this identification the duality between $\mathcal{M}_n(\mathcal{A})$ and $\mathcal{M}_n(Q_{\mathcal{A}})$ is given by

(5)
$$\langle (T_{ij}), ([L_{ij}]) \rangle = \sum_{i,j=1}^{n} \langle T_{ij}, [L_{ij}] \rangle,$$

where $(T_{ij}) \in \mathcal{M}_n(\mathcal{A}), \quad ([L_{ij}]) \in \mathcal{M}_n(Q_{\mathcal{A}}),$

and the norm on $\mathcal{M}_n(Q_A)$ is the norm that accrues to it as a linear manifold in $\mathcal{M}_n(\mathcal{A})^*$. In particular, if $\tilde{x} = (x_1, \dots, x_n)$ and $\tilde{y} = (y_1, \dots, y_n)$ belong to $\mathcal{H}^{(n)}$, then $[\tilde{x} \otimes \tilde{y}]_{Q_{\mathcal{M}_n(\mathcal{A})}}$ is identified with the $n \times n$ matrix $([x_j \otimes y_j]_{Q_A})$.

For a dual algebra \mathcal{A} , we will denote by \mathcal{A}_1 the set $\{A \in \mathcal{A} : ||A|| \le 1\}$. For $x \in \mathcal{H}$, if we define the map $\rho_x : \mathcal{A} \to \mathcal{H}$ by $\rho_x(A) = Ax, A \in \mathcal{A}$, then $\mathcal{M}_c = \mathcal{M}_c(\mathcal{A})$ denote the set

$$\{x \in \mathcal{H} : \rho_x(\mathcal{A}_1) \text{ is norm compact}\}.$$

Of course \mathcal{M}_c might be (0) or \mathcal{H} . This motivates the following definition.

DEFINITION 2.4 ([7], DEFINITION 3.3). Let \mathcal{A} be a dual algebra. (a) $\mathcal{A} \in A_0.(\mathcal{H})$ if $\mathcal{M}_c = \mathcal{H}$. (b) $\mathcal{A} \in A_1.(\mathcal{H})$ if $\mathcal{M}_c = (0)$. (c) $\mathcal{A} \in A_{.\alpha}(\mathcal{H})$ if $\mathcal{A}^* \in A_{\alpha}., \alpha = 0, 1$. (d) $\mathcal{A} \in A_{\alpha\beta}(\mathcal{H})$ if $\mathcal{A} \in A_{\alpha} \cap A_{.\beta}, \alpha = 0, 1, \beta = 0, 1$.

We write $A_{\alpha\beta}$ for $A_{\alpha\beta}(\mathcal{H})$ when there is no possibility of confusion. The next result provides a link between \mathcal{M}_c and $Q_{\mathcal{A}}$.

LEMMA 2.5 ([7], PROPOSITION 3.4). Let \mathcal{A} be a dual algebra and $x \in \mathcal{H}$. The following are equivalent. (a) $x \in \mathcal{M}_c$. (b) $\rho_x : \mathcal{A} \to \mathcal{H}$ is a compact operator. (c) If $\{y_n\}$ is a sequence in \mathcal{H} with $y_n \to 0$ weakly, then $\|[x \otimes y_n]\| \to 0$.

3. Dual operator algebras and properties $\mathcal{D}_{\theta,\gamma}$

LEMMA 3.1. $[L] \in \overline{aco}\mathcal{D}_0(\mathcal{A})$ if and only if given $\epsilon > 0$, there exist a set $\{\alpha_k\}_{k=1}^n$ of positive scalars and $\{[L_k]\}_{k=1}^n \subset \mathcal{D}_0(\mathcal{A})$ such that $\sum_{k=1}^n \alpha_k = 1$, and $\|[L] - \sum_{k=1}^n \alpha_k[L_k]\| < \epsilon$.

LEMMA 3.2. If a dual algebra $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ has property $D_{0,\gamma-\theta}, 0 \leq \theta < \gamma$, then \mathcal{A} has property $D_{\theta,\gamma}$.

LEMMA 3.3. Suppose $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ is a dual algebra that has property $D_{\theta,\gamma}$ for some $0 \leq \theta < \gamma$. Then for every positive integer *n*, the dual algebra $\mathcal{M}_n(\mathcal{A})$ has property $D_{\theta,\frac{\gamma}{22}}$.

Let n be a cardinal number satisfying $1 \leq n \leq \aleph_0$. We denote by $\tilde{\mathcal{H}}_n$ the Hilbert space consisting of the direct sum of n copies of \mathcal{H} and by $T^{(n)}$ the n-fold ampliation of T acting on $\tilde{\mathcal{H}}_n$ defined by

(6)
$$T^{(n)}(x_1 \oplus \cdots \oplus x_n) = Tx_1 \oplus \cdots \oplus Tx_n.$$

Let $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ be a dual algebra. We define $\mathcal{A}^{(n)} = \{ \overbrace{A \oplus \cdots \oplus A}^{n} : A \in \mathcal{A} \}$. Then $\mathcal{A}^{(n)}$ is indeed a dual algebra on \mathcal{H}_n . For each T in $\mathcal{L}(\mathcal{H})$, it is clear that $(\mathcal{A}_T)^{(n)} = \mathcal{A}_{T^{(n)}}$.

ncopies

LEMMA 3.4 ([3], PROPOSITION 2.5). If $1 \le n \le \aleph_0$ and $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ is a dual algebra, then $\mathcal{A}^{(n)}$ is a dual algebra which is isometrically isomorphic to \mathcal{A} via the linear transformation $\Phi : \mathcal{A} \to \mathcal{A}^{(n)}$. Moreover $\Phi = \phi^*$, where $\phi : Q_{\mathcal{A}^{(n)}} \to Q_{\mathcal{A}}$ is also an isometric isomorphism (onto $Q_{\mathcal{A}}$), and if $\tilde{x} = (x_0, x_1, \cdots)$ and $\tilde{y} = (y_0, y_1, \cdots)$ are vectors in $\mathcal{H}^{(n)}$, then $\phi([\tilde{x} \otimes \tilde{y}]_{Q_{\mathcal{A}^{(n)}}}) = \sum_{0 \le i \le n} [x_i \otimes y_i]_{Q_{\mathcal{A}}}$. THEOREM 3.5. Suppose that $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ is a dual algebra and *n* is a positive integer such that $\mathcal{A}^{(n)}$ has property $D_{\theta,\gamma}$ for some $\gamma > \theta \ge 0$. Also suppose that $\mathcal{A}^{(n)}$ is in $A_{\cdot 0}$, then \mathcal{A} has property $D_{\theta+\frac{n-1}{2},\gamma-\theta}$.

Proof. We have seen that $\mathcal{A}^{(n)}$ is a dual algebra. It suffices to prove that $\mathcal{D}_{\theta+\frac{n-1}{n}}(\mathcal{A})$ contains the open ball in $Q_{\mathcal{A}}$ of radius $\gamma - \theta$ centered at the origin. Thus let $[L] \in Q_{\mathcal{A}}$ satisfy $||[L]|| < \gamma - \theta$, and write $[\widetilde{L}] = \phi^{-1}([L])$, so $||[\widetilde{L}]|| < \gamma - \theta < \gamma$. Since $\mathcal{A}^{(n)}$ has property $\mathcal{D}_{\theta,\gamma}$, by definition, there exist sequences $\{\widetilde{x}^{(i)}\}_{i=1}^{\infty}$ and $\{\widetilde{y}^{(i)}\}_{i=1}^{\infty}$ in $\mathcal{H}^{(n)}$ which converge weakly to zero such that

(7)
$$\limsup_{i} \left\| \left[\tilde{L} \right] - \left[\tilde{x}^{(i)} \otimes \tilde{y}^{(i)} \right] \right\| \leq \theta$$

(8)
$$\|\tilde{x}^{(i)}\| \leq 1, \|\tilde{y}^{(i)}\| \leq 1, \quad i = 1, 2, \cdots$$

For each $i \in \mathbb{N}$ we write $\tilde{x}^{(i)} = (x_1^{(i)}, \cdots, x_n^{(i)}), \tilde{y}^{(i)} = (y_1^{(i)}, \cdots, y_n^{(i)}),$ and from (7) and lemma 3.4 we have

(9)
$$\limsup_{i} \|[L] - \sum_{j=1}^{n} [x_{j}^{(i)} \otimes y_{j}^{(i)}]\| \leq \theta.$$

Since $||[x \otimes y]|| \le ||x|| \cdot ||y||$, the Schwarz inequality and (8) yield

(10)
$$\sum_{j=1}^{n} \| [x_{j}^{(i)} \otimes y_{j}^{(i)}] \| \leq \sum_{j=1}^{n} \| x_{j}^{(i)} \| \cdot \| y_{j}^{(i)} \| \\ \leq \| \tilde{x}^{(i)} \| \cdot \| \tilde{y}^{(i)} \| \leq 1,$$

for each $i \in \mathbb{N}$.

Next we choose j_i to satisfy $1 \le j_i \le n$ and

(11)
$$||[x_{j_{i}}^{(i)} \otimes y_{j_{i}}^{(i)}]|| = \max_{1 \le j \le n} ||[x_{j}^{(i)} \otimes y_{j}^{(i)}]||, \quad i = 1, 2, \cdots.$$

Considering the two cases $||[x_{j_i}^{(i)} \otimes y_{j_i}^{(i)}]|| \le \frac{1}{n}$ and $||[x_{j_i}^{(i)} \otimes y_{j_i}^{(i)}]|| > \frac{1}{n}$ separately, we see easily from (9), (10) and (11) in both cases that

$$\limsup \left\| [L] - [x_{j_i}^{(i)} \otimes y_{j_i}^{(i)}] \right\| \le \theta + \frac{n-1}{n}, \qquad i = 1, 2, \cdots.$$

Since for each $i \in \mathbb{N}, 1 \leq j_i \leq n$, it follows that there exists an integer j_0 such that $j_i = j_0$ for infinitely many values of i. Thus we may drop down to a subsequence $\{[x_{j_0}^{(i_k)} \otimes y_{j_0}^{(i_k)}]\}_{k=1}^{\infty}$ such that $\limsup_k \|[L] - [x_{j_0}^{(i_k)} \otimes y_{j_0}^{(i_k)}]\|$ exists and is less than or equal to $\theta + \frac{n-1}{n}$. Furthermore, it is immediate from (8) that $\|x_{j_0}^{(i_k)}\| \leq 1$ and $\|y_{j_0}^{(i_k)}\| \leq 1$ for all k. Finally, suppose $z \in \mathcal{H}$, and let \tilde{z} in $\mathcal{H}^{(n)}$ be the vector with z as its only nonzero component, sitting in the j_0 th slot. Then it follows easily from $\mathcal{A}^{(n)} \in A_{\cdot 0}$ and the fact that $\phi([\tilde{x}^{(i_k)} \otimes \tilde{z}]) = [x_{j_0}^{(i_k)} \otimes z]$ that $\|[x_{j_0}^{(i_k)} \otimes z]\| \to 0$. Hence it follows from $\|[x_{j_0}^{(i_k)} \otimes z]\| \to 0$, $\|\langle 1, [L] \rangle\| \leq \|[L]\|$ and \mathcal{A} is a dual algebra that the sequences $\{x_{j_0}^{(i_k)}\}_{k=1}^{\infty}$ must converge weakly to zero in \mathcal{H} . Since the weak convergence to zero of $y_{j_0}^{(i_k)}$ follows similarly, we have shown that $[L] \in \mathcal{D}_{\theta + \frac{n-1}{2}}(\mathcal{A})$, so \mathcal{A} has property $\mathcal{D}_{\theta + \frac{n-1}{2}}, \gamma - \theta$.

PROPOSITION 3.6. Suppose $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ is a dual algebra. Then $\mathcal{A}^{(\aleph_0)}$ is a dual algebra with property $D_{0,1}$.

Proof. Since \mathcal{A} is a dual algebra, by [5, Proposition 3.9], $\mathcal{A}^{(\aleph_0)}$ is a dual algebra with $X_{0,1}$. Hence, clearly $\mathcal{A}^{(\aleph_0)}$ is a dual algebra with property $D_{0,1}$, by [5,Definition 2.7].

THEOREM 3.7. Suppose that $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ is a dual algebra and *n* is a positive integer such that $\mathcal{A}^{(n)}$ has property $D_{0,\gamma-\theta}$ for some $0 \leq \theta < \gamma$. Also suppose that $\mathcal{A}^{(n)}$ is in class $A_{\cdot 0}$, then \mathcal{A} has property $D_{\theta+\frac{n-1}{n},\gamma-\theta}$.

Proof. Since $\mathcal{A}^{(n)}$ is a dual algebra, by lemma 3.2, $\mathcal{A}^{(n)}$ has property $D_{\theta,\gamma}$. Hence \mathcal{A} has property $D_{\theta+\frac{n-1}{2},\gamma-\theta}$, by theorem 3.5.

COROLLARY 3.8. Under the hypotheses of theorem 3.7 with $\gamma - 2\theta > \frac{n-1}{n}$, the dual algebra $\mathcal{M}_n(\mathcal{A})$ has property $D_{\theta + \frac{n-1}{n}, \frac{(\gamma - \theta)}{n^2}}$.

Proof. It is clear from lemma 3.3 and theorem 3.7.

REMARK 3.9. Suppose that $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ is a dual algebra. Then \mathcal{A} does not have property (\mathcal{A}_1) though it has properties $D_{\theta,\gamma}$ for some $0 \leq \theta < \gamma$.

ACKNOWLEDGEMENT. The authors wish to thank Professor II Bong Jung for helpful discussions.

References

- 1. C. Apostol, H. Bercovici, C Foias and C Pearcy, Invariant subspaces, dilation theory, and structure of the predual of a dual algebra. I, Funct. Anal 63 (1985), 369-404
- H Bercovici, B. Chevreau, C. Foias and C. Pearcy, Dilation theory and systems of simultaneous equations in the predual of an operator algebra. I, Michigan Math. J. 30 (1983), 335-354.
- 3 _____, Dual algebras with applications to invariant subspaces and dilation theory, C.B M S. Regional Conference Series, no. 56, A M S., Providence, R. I.
- 4. A. Brown and C. Pearcy, Introduction to operator theory. I, Elements of functional analysis, Springer-Verlag, New York, 1977.
- 5. I.B. Jung, Dual operator algebras and the classes $\mathbb{A}_{m,n}I$, J. Operator Theory, 27, (1992), 309-323.
- I.B. Jung and C.Y. Park, A note on operators in the classes A_{m,n}, Kyungpook Math. J. 28 (1988), 173-176.
- M. Marsalli, A classification of operator algebras, J. Operator Theory, 24 (1990), 155-163
- 8. B. Sz-Nagy and C. Foias, Harmonic analysis of operators on Hilbert spaces, North Holland Akademiai Kiado, Amsterdam/Budapest, 1970.

Department of Mathematics College of Natural Science Kyungpook National University Taegu, 702-701, Korea

Department of Mathematics Korea Naval Academy Chinhae Kvungnam.645-797