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ON MULTIPLIERS ON BOOLEAN ALGEBRAS

Kyung Ho Kiv*

ABSTRACT. In this paper, we introduced the notion of multiplier of
Boolean algebras and discuss related properties between multipliers
and special mappings, like dual closures, homomorphisms on B.
We introduce the notions of fixed set Fizy(X) and normal ideal
and obtain interconnection between multipliers and Fiz¢(B). Also,
we introduce the special multiplier o, and study some properties.
Finally, we show that if B is a Boolean algebra, then the set of all
multipliers of B is also a Boolean algebra.

1. Introduction

Boolean algebras play an important role in many fields such as in-
formation theory, information retrieval, information access controls and
cryptanalysis. In [4] a partial multiplier on a commutative semigroup
(A,-) has been introduced as a function F' from a nonvoid subset D of
A into A such that F(z) -y =z - F(y) for all 2,y € Dp. In this paper,
we introduced the notion of multiplier of Boolean algebras and discuss
related properties between multipliers and special mappings, like dual
closures, homomorphisms on B. We introduce the notions of fixed set
Fizy(X) and normal ideal and obtain interconnection between multi-
pliers and Fiz¢(B). Also, we introduce the special multiplier o, and
study some properties. Finally, we show that if B is a Boolean algebra,
then the set of all multipliers of B is also a Boolean algebra.
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2. Preliminaries

DEFINITION 2.1. Let B be a nonempty set endowed with operations A
and V. By a Boolean algebra (B, A,V,',0,1), we mean a set B satisfying
the following conditions, for all z,y, z € B,

DEFINITION 2.2. Let (B, A,V,",0,1) be a Boolean algebra. A binary
relation < is defined by < y if and only if t Ay =z and z Vy = y.

LEMMA 2.3. Let (B,A,V,,0,1) be a Boolean algebra. Define the
binary relation < as the Definition 2.2. Then (B, <) is a poset and for
any x,y € B, x Ay is the g.1.b. of {x,y} and =V y is the Lu.b. of {x,y}.

LEMMA 2.4. Let B be a Boolean algebra and x,y € B. If xt <y and
y < x, then z = y.

LEMMA 2.5. Let B be a Boolean algebra and x,y,z € B. Then the
following properties hold:
(1) Ifx <y,thenzANz<yAzandzxVz<yVz,
(2) z <y ifand only if y < a'.

THEOREM 2.6. Let B be a Boolean algebra and x,y € B. Then the
following conditions are equivalent:

Mz<y, (2)azry =0, 8)2'vy=1, @) azry==, (5)zVy=y.

THEOREM 2.7. Let B be a Boolean algebra and x,y,z € B. Then the
following conditions hold:
(1) x Vy =0 ifand only if t =0 and y = 0,
(2) xAy=1ifand only ifz =1 and y = 1.

DEFINITION 2.8. Let f : By — Bs be a function from a Boolean
algebra Bj to a Boolean algebra Bs. Then f is called a Boolean homo-
morphism (or homomorphism ) if

(1) f(zAy) = flz) A fly) and f(zVy) = fz)V fy),

(2) (') = (f(x))"

DEFINITION 2.9. Let B be a Boolean algebra and f : B — B be a
function. Then

(1) f is said to be regular if f(0) = 0.

(2) f isis said to be isotone if z <y implies f(x) < f(y).

THEOREM 2.10. Let f : By — Bs be a function from a Boolean
algebra Bi to a Boolean algebra By. If f is a Boolean homomorphism,
then
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(1) £(0) =0 and f(1) = 1,

(2) f is isotone.

DEFINITION 2.11. An ideal is a nonempty subset I of a Boolean
algebra B if

(1) f reland be B, thenx Abe I,

(2) f z,y eI, thenxVyel.

DEFINITION 2.12. A function f from a Boolean B into itself is a dual
closure if f is monotone, non-expansive(i.e., f(z) < z for all x € B)
and idempotent(i.e., fo f = f).

3. Multipliers on Boolean algebras

In what follows, let B denote a Boolean algebra unless otherwise
specified.

DEFINITION 3.1. Let B be a Boolean algebra. A function f: B — B
is called a multiplier if it satisfies the following identity

fleny) = flz)ny
for all z,y € B.

EXAMPLE 3.2. Let B = {0,a,b,1} and A, V are two binary operations
defined as follows

x| 2 /\‘Oabl \/‘Oabl
01 00 0 0 O 0/0 a b 1
alb al0 a 0 a ala a b 1
bl a b0 0 b b blb 1 b 1
110 110 a b 1 111 1 1 1

Then (B, A, V,",0,1) is a Boolean algebra. Define a self-map f : B —

B by
0 ifx=0,a
f@y_{b iz =b1

Then it is easy to check that f is a multiplier of a Boolean algebra B.

ProprosIiTION 3.3. Let B be a Boolean algebra and let f be a multi-
plier on B. Then

flz) <z
for all x € B.
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Proof. Let f be a multiplier in B. For x € B, we have
f@) = f@) A f(z) =z N f(f(z)),

which implies f(z) < . O

ProrosiTION 3.4. If f is a multiplier on B, then for every x,y € B,

flany) = fl@)ny =z A [fy)

Proof. For any z,y € B, f(x ANy) < x Ay < x and f(z) < z, by

Proposition 3.3, hence
flany)=aAfleny)=flz)A(@Ay) = (flz)Az) Ay = fz) Ay,

and f(x Ay) =z A f(y) by commutativity of A. O

ProproOSITION 3.5. Let B be a Boolean algebra and let f be a multi-
plier on B. Then f(0) = 0.

Proof. For all x € B, we have
f(0) = flzn0)=flz) n0=0,
which implies f(0) = 0. This completes the proof. O

ProprosSITION 3.6. Let B be a Boolean algebra and let f be a multi-
plier on B. Then f is an idempotent on B, i.e., f?(x) = f(x).

Proof. For all x € B, we have

) = f(flenx) = f(fl@)nx) = flaAf(z) = f@)Af(z) = f(z),
which implies that f is an idempotent on B. This completes the proof.
O

ProprosITION 3.7. Let B be a Boolean algebra and let f be a multi-
plier on B. Then f is a meet-homomorphism on B.

Proof. Let f be a multiplier on B. Then by Proposition 3.6, we have
f?(x) = f(x) for all z € B. Now, let a,b € B. Then

fland) = f(flanb)) = f(f(a) ND))
= f(bA f(a) = F(b) A f(a)
= f(a) A f(b),

which implies that f is a meet-homomorphism on B. This completes the
proof. ]

ProproSITION 3.8. Let B be a Boolean algebra and let f be a multi-
plier on B. If f(1) =1, then f is an identity multiplier in B.
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Proof. Let B be a Boolean algebra and f(1) = 1. Then we have from
Proposition 3.4,

f@)=f@nl)=f@)Al=zAf(l)=zAl=az,
which implies that f is an identity multiplier in B. O

PROPOSITION 3.9. Let B be a Boolean algebra and let f be a multi-
plier on B. If f is a Boolean homomorphism on B and x < y, then

(1) flzny) =0,
(2) f(y) <o,
(3) fl@)Afy)=0
Proof. Let z,y € B be such that < y and let f be a multiplier on
B Then f is an isotone by Theorem 2.6 and f(0) =
(1) By Theorem 2.6, we have = Ay’ = 0. Thus, we have f(z Ay') =
f(0)=0.
(2) By Theorem 2.6, we obtain y < z’ since z < y, and so f(y') =

(fW) < (f(@) = ') <2’
(3) By theorem 2.6, we have

F@)nf) < f) A )
flunfly )) FPlyny)
flyny') =
which implies f(z) A f(y') =0 by (1). O

Let B be a Boolean algebra and fi, fo two self-maps. We define
fl ¢} f2 :B— B by

(fio fa)(@) = fr(fa(x))

for all z € B.

ProrosiTIiON 3.10. Let B be a Boolean algebra and let fi, fa, f3,- -

-, fn be multipliers on B. Then fy o foo f3o---o f, is also a multiplier
of B.

Proof. Let B be a Boolean algebra and fi, fo two multipliers on B.
Then we have for all a,b € B

(fro f2)(aAb) = fi(f2(a A b)) = fi(f2(a) VD)
= fi(f2(a)) Ab = (f1o f2)(a) Vb
This completes the proof. O
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Let B be a Boolean algebra and fi, fo two self-maps. We define
fiNfo:B— Bby
(fiAf2)(2) = fi(z) A fo(2)
for all z € B.

ProprosITION 3.11. Let B be a Boolean algebra and let fi, fo, -+, fn
be multipliers on B. Then fi A fo A--- A f, is also a multiplier of B.

Proof. Let B be a Boolean algebra and fi, fo two multipliers of B.
Then we have for all a,b € B

(fihf2)lanb) = fi(aAb)A fa(a AD)
)

This completes the proof. ]

Let B be a Boolean algebra and fi, fo two self-maps. We define
fiVfa:B— Bby

(frV fo)(@) = fi(z) V fa(z)
for all z € B.

ProprosITION 3.12. Let B be a Boolean algebra and let fi, fa, -, fn
be multipliers of B. Then fiV foV ---V f, is also a multiplier of B.

Proof. Let B be a Boolean algebra and fi, fo two multipliers of B.
Then we have for all a,b € B,

(fiVvf2a)and) = fi(aAb)V fa(a Ab)
)

= (fi(a) Ab) V (f2(a) AD)
= (f1(a) V fa(a)) Ab
= (f1V f2)(a) A\b.
This completes the proof. O

Let M(B) be a set of all multipliers on B and let f be a multiplier
on B. Since f(z) < z, we have f(z) < I(z) for all f € M(B) and
x € B, where I(z) = z for all x € B. Also, we obtain 0(z) < f(z) for all
f € M(B) and x € B, where 0(z) = 0.

THEOREM 3.13. Let B be a Boolean algebra and let M(B) be a
set of all multipliers on B. Then (M(B),A,V,0(z),I(z)) is a bounded
distributive lattice.
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Proof. From Proposition 3.11 and 3.12, A and V are binary opera-
tors on M (B). Define a binary relation “ < ” on M(B) by fi1 < fo
if and only if f1 A fo = fi. Then “ < 7 is a partial order relation

on M( ) and g.[. b{fl,fg} = fi1 A fo,lu. b{fl,fg} f1 V fa. There-
fore, (M(B),\,V,0(x),I(x)) is a bounded lattice. In addition, for any

f1, fo, f3 € M(B) and any x € B,

(fin(faV [3)(2)) = fi(z) A (fo(z) V f3(2)
= (fi(@) A fa(2)) V (fi(z) V f3(2))
= ((fi A f2)(@) vV ((fr A f3)(2))
= ((finf2)V(fi A f2))(z).

Therefore, fi A (f2V f3) = (/i A f2) V (fi A f3).
This shows that (M (B), A, V,0(x),I(x)) is a bounded distributive lat-

tice. ]

THEOREM 3.14. Let B be a Boolean algebra and f : B — B be a
multiplier of B. Then f is monotone.

Proof. Let f be a multiplier of B and let < y. Then Ay = x. Hence
flx) = f(zAy) = f(z)Ay, ie., f(x) <y. Since f is idempotent, we have
F(2) = F(F(@) = F(F@) Ay) = FOAF@) = F@)AL() = F) A F(y).
This implies f(z) < f(y). O

THEOREM 3.15. Let B be a Boolean algebra and f : B — B be a
multiplier of B. Then the following identities are equivalent,
(1) f is an isotone function,

(2) f(xANy) = f(x) A f(y) for all x,y € B.

Proof. (1) = (2) Let f be an isotone function of B. Then z Ay < z
and x Ay < y for all z,y € L. Thus, we get f(z Ay) < f(x) and
f(a:/\y) f(y) for all z,y € B, which implies f(zAy) < f(x)Af(y). Also,

F(2)Afy) < F) Ay = f(zAy). Hence we have f(zAy) = f(z) A f(y).

():>(1)Leta:yEBbesuchthatx<y Then f(z) = f(x Ny) =
x A f(y) < f(y). Hence f is an isotone function. This completes the
proof. ]

THEOREM 3.16. Let B be a Boolean algebra and f : B — B be a
multiplier of B. Then the following identities are equivalent,

(1) f is isotone,

(2) flany) = f@) A fy),

(3) fl(xVvy) = f(z)V fy) for all x,y € B.
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Proof. (1) < (2) By Theorem 3.15, the identities (1) and (2) are
equivalent.
(1) = (3) Assume that f is isotone. Then f(z) < f(x V y) and

f(y) < f(z v y). Also, f(x) = f((xVy) Ax) = o A f(&V'y). Similarly,
we get f(y) =y A f(zVy). Hence we have for x,y € B,

f@) V)= @A flzvy) VA flzVvy)
=(zVy) A flzVy)
= flzVvy)
(3) = (1) Let x <y for all z,y € B. Then y = = V y. Hence we get
fly)=f(xVy) = f(x)V f(y) > f(z), which implies f is isotone. [

Let B; and By be two Boolean algebras. Then B; x By is also a
Boolean algebra with respect to the point-wise operation given by

(a,b) A (¢c,d) = (aNc,bAA)
for all a,c € By and b,d € Bs.

PRroPOSITION 3.17. Let By and By be two Boolean algebras. Define
amap f: By x By — By x By by f(z,y) = (0,y) for all (x,y) € By X Bs.
Then f is a multiplier of By x By with respect to the point-wise operation.

Proof. Let (x1,y1), (x2,y2) € B1 X Bs. The we have

(@, 01) A (22, 92)) = flor Az, 51 Aya)
= (0,1 A\ y2)
= (0Az2,51 A y2)
= (0,41) A (72,92)
= f(z1,y1) A (22, 2).
Therefore f is a multiplier of the direct product By x Bs. O

Let B be a Boolean algebra and let f be a multiplier on B. Define a set
Fiz¢(B) by
Fizy(B) ={z € B| f(z) = «}.

In the following results, we assume that Fiz;(B) is a nonempty
proper subset of B.

ProprosITION 3.18. Let B be a Boolean algebra and let f be a mul-
tiplier on B. If f : B — B is a join homomorphism, then Fixy(B) is a
Boolean subalgebra of B.
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Proof. Let z,y € Fixy(B). Then f(x) = « and f(y) = y. Then
fxAy) = f(z) Ny = x Ay, that is, s Ay € Fizy(B). Moreover, we have
flxVvy) = f(z)V f(y) = x Vy, which implies x V y € Fiz;(B). Hence
Fizy(L) is a Boolean subalgebra of B. O

PROPOSITION 3.19. Let B be a Boolean algebra and let f be a mul-
tiplier on B. If x <y and y € Fixs(B), we have x € Fixs(B).

Proof. Let x < y. Then we have

f@)=flynz)=fly) he =y =,
which implies = € Fixz¢(B). O

PRroOPOSITION 3.20. Let B be a Boolean algebra and let f be a mul-
tiplier of B. If x € Fixy(B) and y € B, we have x Ay € Fix(B) for all
z,y € B.

Proof. Let x € Fizy(B) and y € B. Then f(z) = x. Hence we have

flxny)=fl@) Ny =z Ny,
which implies x Ay € Fixz¢(B). O

ProPOSITION 3.21. Let B be a lattice and let f; and fs be isotone
multipliers of B. Then fi = fo if and only if Fixy (B) = Fixy,(B).

Proof. 1t is obvious that fi = fo implies Flixy (B) = Fixy,(B). Con-
versely, let Fizy (B) = Fizys,(B) and © € B. By Proposition 3.19,
fi(z) € Fizy (B) = Fizy,(B) and fa(fi(z)) = fi(x). Similarly, we have
fi(f2(x)) = fa(x). Since f; and fo are isotone, we have fo(fi(x)) <
fo(z) = f1(fa(2)), and so fo(f1(x)) < fi(f2(x)). Symmetrically, we can
also get fi(fa(z)) < fo(fi(x)), which implies fi(f2(z)) = f2(fi(2)).
Thus, it follows that fi(z) = fa(fi(z)) = fi(f2(z)) = fo(z), that is,
fi=fe. O

Let us denote the image of B under the multiplier f by Im(f).

PROPOSITION 3.22. Let f be a multiplier of a lattice B. Then Im(f) =
Fizy(B).

Proof. Let x € Fixy(B). Then v = f(x) € Im(f). Hence Fixz;(B) C
Im(f). Now let a € Im(f). Then we get a = f(b) for some b € B. Thus
f(a) = f(f(b)) = f(b) = a, which implies Im(f) C Fix¢(B). Therefore,
Im(f) = Fixy(B). This completes the proof. O
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THEOREM 3.23. Let f and g be two multipliers of B such that fog =
g o f. Then the following conditions are equivalent.

(1) =g

(2) f(B) = g(B)

(3) Fizy(B) = Fizy(B).

Proof. (1)= (2): It is obvious.

(2) = (3): Assume that f(B) = g(B) and let € Fizs(B). Then
x = f(x) € f(B) = g(B). Hence x = ¢g(y) for some y € B. Now

g(x) = g(g(y)) = ¢*(y) = g(y) = x. Thus = € Fiz,(B). Therefore,
Fizy(B) C Fixg(B). Similarly, we can obtain Fiz,(B) C Firs(B).
Thus ancf( ) = Fizy(B).

(3) = (1): Assume that Fixy(B) = Fizy(B). Let x € B. Since
f(z) € Fixy(B) = Fizy(B), we have g(f(x)) = f(x). Also, we obtain
g(x) € Fmg(B) Fizy(B). Hence we get f(g(z)) = g(z). Thus we have

f(@) = g(f(x)) = (g0 f)(x) = (fog)(x) = f(g(x)) = g().

Therefore, f and g are equal in the sense of mappings. O

THEOREM 3.24. Let f be a multiplier of a lattice B. Then Fixy(B)
is an ideal of B.

Proof. By Proposition 3.22, we can see that € Fizy(B) and y < x
imply y € Fixzy(B). This means that Fixz(B) satisfies the condition (1)
of Definition 2.11. we need only to show that x,y € Fixs(B) implies
xVy € Fixg(B). Let x,y € Fixs(B). Then we have x Vy = f(x) Vy =
f(xVy),ie., xVy e Fixy(B), which implies that Fixz¢(B) satisfies the
Definition 2.11. It follows that Fiiz(B) is an ideal of B. O

THEOREM 3.25. Let B be a Boolean algebra. Then the following are
equivalent,

(1) B is a chain,

(2) For every isotone multiplier f, Fix(B)is a prime ideal of B.

Proof. (1) = (2). Let B be a chain and let f be an isotone multiplier
on B. Then Fiz;(B) is an ideal of B by Theorem 3.24. Now, let z Ay €
Fizy(B). Since B is chain, we have <y or < x. Assume that x <.
Then f(z) < f(y), and so f(z) = f(z) A f(y) = f(x Ay) =x Ay =a by
Theorem 3.15. It follows that x € Fiz;(B), which means that Fiz¢(B)
is a prime ideal of B.

(2) = (1). Let Fixy(B) be a prime ideal of B for every isotone
multiplier of B. For every x,y € B, consider the simple multiplier
frny, which is induced by = A y. Then Fizy,, (B) is a prime ideal by
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hypothesis. Note that z Ay € Fixy,, (B). Hence x € Fizy,, (B) or
y € Fivy,, (B). Assume that x € Fizy,, (B). Then x = finy(z) =
xA(xANy)=xAy.Sox <y. This means that B is a chain. O

PROPOSITION 3.26. For p € B, the mapping op(a) = a Ap is a
multiplier of B.

Proof. Let p € B. Then we have
ap(aNb)=(aANb)Ap=(aAp)Nb=ap(a) \b.
This completes the proof. O

PROPOSITION 3.27. For p € B, the mapping fBp(a) = (a Ap) Ap is a
multiplier of B.

Proof. Let p € B. Then we have
Bpla Ab) = ((a AB) Ap) A
=((anp)ND)Ap
=((anp)Ap)AD
= Bp(a) \b.
for all a,b € B. This completes the proof. O

PROPOSITION 3.28. For p € B, the multiplier op,(a) = a A p is a
meet-homomorphism on B.

Proof. Let p € B. Then we have
ap(aNb)=(aANb)Ap
= (aAp) A (bAp)
= ap(a) A ap(b).
for all a,b € B. This completes the proof. O

PROPOSITION 3.29. Let B be a Boolean algebra. Then «, is an
isotone multiplier on B.
Proof. Let a,b € B be such that a < b. Then a = a Ab. Thus we have
ap(a) = ap(a A D)
=ap(a) N\b=(aAp)AD
= (anp)A(bAP)
= ap(a) A ap(b),
which implies a;(a) < ap(b). This completes the proof. O
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We call the multiplier a,(a) = a A p of Proposition 3.29 as simple
multiplier. Let us denote SM (B) by the set of all simple multiplier on
B. Now we define

(ap A ag)(x) = ap(x) A ag(z), (o Vag)(z) = ap(x) V ag(z)
ProrosiTION 3.30. Let B be a Boolean algebra. If p # q, then
ap # oy

Proof. Let oy, = a. Then ay(x) = () for all 2 € B. This implies
xAp=u1xAgqforall z € B. Now, if x = p, then we get p = p A q. Hence
p < q. Next, if £ = ¢, then ¢ A p = ¢, which means ¢ < p, and so we
get p = ¢, which is a contradiction. Therefore if p # ¢, then we have
ap # oy O

LEMMA 3.31. Let B be a Boolean algebra and let o, g € SM(B).
Then if p < q, we have o), < ay.

Proof. Let p < q. Then x Aqg <yAgq,ie., ap < ay. ]

LEMMA 3.32. Let B be a Boolean algebra and let o, oy € SM(B).
Then we have a, A og € SM(B) and o, V g € SM(B).

Proof. Let ap, o € SM(B). Then
(ap A ag) () = ap(z) A ag(z)
=(pAz)A(qgAx)
=(@Ag Nz
= Aprg) (7)-
Since pAq € B, appqg) € SM(B), which implies a, Aoy € SM(B). Also,

we have
(ap V ag)(w) = ap(w) V aq(w)

=(pAz)V(gAx)
=V Az
= Q(pv) (7).

Since pV q € B, apyq) € SM(B), which implies o, V oy € SM(B). O

THEOREM 3.33. Let B be a Boolean algebra and let o, oo € SM(B).
Then we have, for everyz,y € B,

(1) ap(x Ay) = ap(z) A ap(y),

(2) ap(x Vy) = ap(x) V ap(y),
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(3) ap(zUy) = ap(z) Uay(y), wherez Uy =y V (y V x).

Proof. (1) Let a, € SM(B). Then we have
ap(x ANy) = ap(x) A ap(y)
={@Az)A(pAY)
= ap(z) N oy(y).
(2) Let oy, € SM(B). Then we have
ap(x Vy) = ap(x) V ap(y)
=(Az)V(pAy)
= () V o).
(3) Let oy, € SM(B). Then we have
aﬂwuy%zaAyV@VwD
y) Vay(y V)

ap(
Zap(y) (p(y) V ap(z))
(

= ap(z) U ap(y).

THEOREM 3.34. Let B be a Boolean algebra and let oy, oy € SM (
Then we have

(1) (O‘p \ ap’) = Qp,

(2) (ap A oy) = o0,

Proof. (1) Let B be a Boolean algebra. For every p € B, we have
(ap V a)(z) = (2 AD)V (& A D)

=zA(pVp)
=z A1l=a(z).

(p A ayy) (@) = (2 Ap) A (z AP)
=z A (pAP)
=z A0 = ap(z).

625

O]

B).
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THEOREM 3.35. Let B be a Boolean algebra. Then SM(B) is a
Boolean algebra with top element oy and bottom element «y.

PropPOSITION 3.36. Let B be a Boolean algebra. Then the simple
multiplier o is an identity function of B.

Proof. For every a € B,aj(a) = a A1l = a. This completes the proof.
]

ProprosiTION 3.37. Let B be a Boolean algebra. Then, for each
x € B, we have ap(z A p) = ap(x).

Proof. For each x € B, we have
ap(z Ap) = ap(z) Ap=(zAp)Ap
=2 Ap=op(z)
This completes the proof. O

THEOREM 3.38. Let B be a Boolean algebra and let B # {0}. Then
there is no nilpotent multiplier onB.

Proof. For every multiplier f, we have
)= frr = > fla) 2,
for every x € B. If there exists a natural number n such that f* = 0,
then we get f"(x) = 0, for all € B. Thus = = 0, for all x € B, which

is a contradiction. Hence there is no nilpotent multiplier on B. This
completes the proof. O

LEMMA 3.39. If B has n element, then it has at least n multipliers
on B.

Proof. Since «, is a multiplier, for every p € B, and so B has at least
n multipliers. ]

THEOREM 3.40. Let B be a Boolean algebra. If  : B — M(B) is
a map defined by 6(z) = «, for each x € B, then 0 is one-to-one and
isotone map.

Proof. Let 6(x) = 6(y). Then o, = oy, and it implies that z Ay =
ay(x) =az(z) =zAz=cand yAz = a,(y) = o(y) =y ANy =y.
Hencex <yand y <ximplyz =y. Let a < bin B. ThenaAz < bAx,
that is, 0(a) = a, < ap = 0(b). O

THEOREM 3.41. Let f : B — B is an isotone multiplier of B, then f
is a dual closure on B.
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Proof. By Proposition 3.3 and Proposition 3.6, f is non-expensive
and idempotent, and so f is a dural closure on B. O

Let B be a Boolean algebra and I be a principal ideal of B generalized
by a € B that is, I = (a).

THEOREM 3.42. Let B be a Boolean algebra. If f is a simple multi-
plier of B, then Fix¢(B) is a principal ideal of B.

Proof. Assume that f is a principal multiplier of B, that is, f(x) =
x A a, for some a € B. We claim that Fixy(B) = (a). In fact, for
any © € Fizy(B), we have x = f(x) = « A a, and hence z < a. This
means that x € (a). Conversely, let * € (a), that is, x < a. Then
f(x) = x ANa = x, and hence v € Fixy(B). By the above arguments,
we have Fiiz(B) = (a), and so Fixs(B) is a principal ideal of B. This
completes the proof. O

DEFINITION 3.43. Let B be a Boolean algebra. A non-empty set [
of B is called a normal ideal if x € B and y € I imply x Ay € I.

EXAMPLE 3.44. In Example 3.2, let I = {0,a}. Then it is easy to see
that I is a normal ideal on B.

PROPOSITION 3.45. Let f be a multiplier of a Boolean algebra B.
For any normal ideal I of B, both f(I) and f~'(I) are normal ideals of
B.

Proof. Let x € B and a € f(I). Then a = f(s) for some s € I. Now
xNa=zA f(s)= f(xNs)e f(I) because x A s € I. Therefore f(I) is
a normal ideal of L. Let € B and a € f~(I). Then f(a) € I. Since I
is a normal ideal, we get f(x Aa) =z A f(a) € I. Hence x Aa € f~1(I).
Therefore f~1(I) is a normal ideal of B. O

PrOPOSITION 3.46. Let f be a multiplier of a Boolean algebra B.
Then we have

(1) Fizy(B) is a normal ideal of B.

(2) Im(f) is a normal ideal of B.

Proof. (1) Let x € B and a € Fixz¢(B). Then f(a) = a. Now f(x A
a) =z A f(a) =2 ANa. Hence x A a € Fixg(B). Therefore, Fizy(B) is a
normal ideal of B.

(2) Let x € B and a € Im(f). Then a = f(b) for some b € B. Now
xANa=xA f(b) = f(x Ab) € f(B). Therefore, Im(f) is a normal ideal
of B. O
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Let B be a Boolean algebra and let f : B — B is a function. Define a
set Kerf by

Kerf={xeL| f(z)=0}.

PRrOPOSITION 3.47. Let f be a multiplier of a Boolean algebra B. If
f is a join-homomorphism, Kerf is a Boolean subalgebra on B.

Proof. Let z,y € Kerf. Then f(z) = f(y) =0, and so f(z Ay) =
fx) Ny = 0 Ay = 0, which implies x Ay € Kerf. Now, we have
flxvy) = f(x)V fly) =0V 0 = 0. This implies  V y € Kerf. This
completes the proof. O

PRrROPOSITION 3.48. Let f be a multiplier of a Boolean algebra B.
Then Kerf is a normal ideal of B.

Proof. Clearly, 0 € Kerf. Let a € Kerf and x € L. Then f(zAa) =
x A f(a) =2 A0 =0. Hence = A a € Kerf, which implies that Kerf is
a normal ideal of B. O

PROPOSITION 3.49. Let f be a multiplier of a Boolean algebra B and
x <vy.Ifye Kerf, then we have x € Kerf.

Proof. Let y € Kerf and z <wy. Then f(z) = f(x Ay) =z A f(y) =
x A0 =0. Hence x € Kerf. This completes the proof. O

ProrosiTION 3.50. Let f be a multiplier of a Boolean algebra B.
Then we have Kerf N Fixy(B) = {0}.

Proof. Let © € Kerf N Fizy(B). Then f(r) = 0 and f(z) = =,
which implies © = 0. Hence Kerf N Fixy(B) = {0}. This completes the
proof. O

ProrosiTION 3.51. Let f be a multiplier of a Boolean algebra B.
Then Fizs(L) = {0} implies Kerf = B.

Proof. Let f be a multiplier of a Boolean algebra B. Then we have
f(z) € Fixzy(B) for all z € B from Proposition 3.22. Thus, Fiz¢(B) =
{0} implies that f(z) = 0 for each x € B. This completes the proof. [

DEFINITION 3.52. Let B be a Boolean algebra and f : B — B be
a function. A nonempty subset I of B is said to be a f-invariant if
f(I) C I where f(I)={y € B|y= f(z) for some x € I}.

THEOREM 3.53. Let B be a Boolean algebra and f a multiplier on
B. Then every ideal I is a f-invariant.
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Proof. Let I be an ideal of B and let y € f(I). Then there exists
x € I such that y = f(x) < x. Since [ is an ideal, we get y € I. Thus
f(I)CI. 0

THEOREM 3.54. Let f : B — B is a dual closure. Then f is a
multiplier on B.

Proof. Let f : B — B be a dual closure and let f be a homomorphism.
Then we have, for every z,y € B,

flzny) = f(z) A fy)
< f(z) Ny,

and

f@)ny < f(f(@) Ay)
= f2(z) A f(y)
= f(@) A f(y)-

This implies f(x Ay) = f(z) Ay, that is, f is a multiplier on B.
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