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ON MULTIPLIERS ON BOOLEAN ALGEBRAS

Kyung Ho Kim*

Abstract. In this paper, we introduced the notion of multiplier of
Boolean algebras and discuss related properties between multipliers
and special mappings, like dual closures, homomorphisms on B.
We introduce the notions of fixed set Fixf (X) and normal ideal
and obtain interconnection between multipliers and Fixf (B). Also,
we introduce the special multiplier αp and study some properties.
Finally, we show that if B is a Boolean algebra, then the set of all
multipliers of B is also a Boolean algebra.

1. Introduction

Boolean algebras play an important role in many fields such as in-
formation theory, information retrieval, information access controls and
cryptanalysis. In [4] a partial multiplier on a commutative semigroup
(A, ·) has been introduced as a function F from a nonvoid subset DF of
A into A such that F (x) · y = x · F (y) for all x, y ∈ DF . In this paper,
we introduced the notion of multiplier of Boolean algebras and discuss
related properties between multipliers and special mappings, like dual
closures, homomorphisms on B. We introduce the notions of fixed set
Fixf (X) and normal ideal and obtain interconnection between multi-
pliers and Fixf (B). Also, we introduce the special multiplier αp and
study some properties. Finally, we show that if B is a Boolean algebra,
then the set of all multipliers of B is also a Boolean algebra.
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2. Preliminaries

Definition 2.1. Let B be a nonempty set endowed with operations ∧
and ∨ . By a Boolean algebra (B,∧,∨,′ , 0, 1), we mean a set B satisfying
the following conditions, for all x, y, z ∈ B,

Definition 2.2. Let (B,∧,∨,′ , 0, 1) be a Boolean algebra. A binary
relation ≤ is defined by x ≤ y if and only if x ∧ y = x and x ∨ y = y.

Lemma 2.3. Let (B,∧,∨,′ , 0, 1) be a Boolean algebra. Define the
binary relation ≤ as the Definition 2.2. Then (B,≤) is a poset and for
any x, y ∈ B, x∧ y is the g.l.b. of {x, y} and x∨ y is the l.u.b. of {x, y}.

Lemma 2.4. Let B be a Boolean algebra and x, y ∈ B. If x ≤ y and
y ≤ x, then x = y.

Lemma 2.5. Let B be a Boolean algebra and x, y, z ∈ B. Then the
following properties hold:

(1) If x ≤ y, then x ∧ z ≤ y ∧ z and x ∨ z ≤ y ∨ z′,
(2) x ≤ y if and only if y′ ≤ x′.

Theorem 2.6. Let B be a Boolean algebra and x, y ∈ B. Then the
following conditions are equivalent:

(1) x ≤ y, (2) x∧ y′ = 0, (3) x′ ∨ y = 1, (4) x∧ y = x, (5) x∨ y = y.

Theorem 2.7. Let B be a Boolean algebra and x, y, z ∈ B. Then the
following conditions hold:

(1) x ∨ y = 0 if and only if x = 0 and y = 0,
(2) x ∧ y = 1 if and only if x = 1 and y = 1.

Definition 2.8. Let f : B1 → B2 be a function from a Boolean
algebra B1 to a Boolean algebra B2. Then f is called a Boolean homo-
morphism (or homomorphism ) if

(1) f(x ∧ y) = f(x) ∧ f(y) and f(x ∨ y) = f(x) ∨ f(y),
(2) f(x′) = (f(x))′.

Definition 2.9. Let B be a Boolean algebra and f : B → B be a
function. Then

(1) f is said to be regular if f(0) = 0.
(2) f is is said to be isotone if x ≤ y implies f(x) ≤ f(y).

Theorem 2.10. Let f : B1 → B2 be a function from a Boolean
algebra B1 to a Boolean algebra B2. If f is a Boolean homomorphism,
then
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(1) f(0) = 0 and f(1) = 1,
(2) f is isotone.

Definition 2.11. An ideal is a nonempty subset I of a Boolean
algebra B if

(1) If x ∈ I and b ∈ B, then x ∧ b ∈ I,
(2) If x, y ∈ I, then x ∨ y ∈ I.

Definition 2.12. A function f from a Boolean B into itself is a dual
closure if f is monotone, non-expansive(i.e., f(x) ≤ x for all x ∈ B)
and idempotent(i.e., f ◦ f = f).

3. Multipliers on Boolean algebras

In what follows, let B denote a Boolean algebra unless otherwise
specified.

Definition 3.1. Let B be a Boolean algebra. A function f : B → B
is called a multiplier if it satisfies the following identity

f(x ∧ y) = f(x) ∧ y

for all x, y ∈ B.

Example 3.2. Let B = {0, a, b, 1} and ∧,∨ are two binary operations
defined as follows

x x′

0 1
a b
b a
1 0

∧ 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

∨ 0 a b 1
0 0 a b 1
a a a b 1
b b 1 b 1
1 1 1 1 1

Then (B,∧,∨,′ , 0, 1) is a Boolean algebra. Define a self-map f : B →
B by

f(x) =

{
0 if x = 0, a

b if x = b, 1

Then it is easy to check that f is a multiplier of a Boolean algebra B.

Proposition 3.3. Let B be a Boolean algebra and let f be a multi-
plier on B. Then

f(x) ≤ x

for all x ∈ B.
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Proof. Let f be a multiplier in B. For x ∈ B, we have

f(x) = f(x) ∧ f(x) = x ∧ f(f(x)),

which implies f(x) ≤ x.

Proposition 3.4. If f is a multiplier on B, then for every x, y ∈ B,

f(x ∧ y) = f(x) ∧ y = x ∧ f(y).

Proof. For any x, y ∈ B, f(x ∧ y) ≤ x ∧ y ≤ x and f(x) ≤ x, by
Proposition 3.3, hence

f(x ∧ y) = x ∧ f(x ∧ y) = f(x) ∧ (x ∧ y) = (f(x) ∧ x) ∧ y = f(x) ∧ y,

and f(x ∧ y) = x ∧ f(y) by commutativity of ∧.

Proposition 3.5. Let B be a Boolean algebra and let f be a multi-
plier on B. Then f(0) = 0.

Proof. For all x ∈ B, we have

f(0) = f(x ∧ 0) = f(x) ∧ 0 = 0,

which implies f(0) = 0. This completes the proof.

Proposition 3.6. Let B be a Boolean algebra and let f be a multi-
plier on B. Then f is an idempotent on B, i.e., f2(x) = f(x).

Proof. For all x ∈ B, we have

f2(x) = f(f(x∧x)) = f(f(x)∧x)) = f(x∧ f(x)) = f(x)∧ f(x) = f(x),

which implies that f is an idempotent on B. This completes the proof.

Proposition 3.7. Let B be a Boolean algebra and let f be a multi-
plier on B. Then f is a meet-homomorphism on B.

Proof. Let f be a multiplier on B. Then by Proposition 3.6, we have
f2(x) = f(x) for all x ∈ B. Now, let a, b ∈ B. Then

f(a ∧ b) = f(f(a ∧ b)) = f(f(a) ∧ b))

= f(b ∧ f(a)) = f(b) ∧ f(a)

= f(a) ∧ f(b),

which implies that f is a meet-homomorphism on B. This completes the
proof.

Proposition 3.8. Let B be a Boolean algebra and let f be a multi-
plier on B. If f(1) = 1, then f is an identity multiplier in B.
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Proof. Let B be a Boolean algebra and f(1) = 1. Then we have from
Proposition 3.4,

f(x) = f(x ∧ 1) = f(x) ∧ 1 = x ∧ f(1) = x ∧ 1 = x,

which implies that f is an identity multiplier in B.

Proposition 3.9. Let B be a Boolean algebra and let f be a multi-
plier on B. If f is a Boolean homomorphism on B and x ≤ y, then

(1) f(x ∧ y′) = 0,
(2) f(y′) ≤ x′,
(3) f(x) ∧ f(y′) = 0.

Proof. Let x, y ∈ B be such that x ≤ y and let f be a multiplier on
B Then f is an isotone by Theorem 2.6 and f(0) = 0.

(1) By Theorem 2.6, we have x ∧ y′ = 0. Thus, we have f(x ∧ y′) =
f(0) = 0.

(2) By Theorem 2.6, we obtain y ≤ x′ since x ≤ y, and so f(y′) =
(f(y))′ ≤ (f(x))′ = f(x′) ≤ x′.

(3) By theorem 2.6, we have

f(x) ∧ f(y′) ≤ f(y) ∧ f(y′)

= f(y ∧ f(y′)) = f2(y ∧ y′)

= f(y ∧ y′) = 0,

which implies f(x) ∧ f(y′) = 0 by (1).

Let B be a Boolean algebra and f1, f2 two self-maps. We define
f1 ◦ f2 : B → B by

(f1 ◦ f2)(x) = f1(f2(x))

for all x ∈ B.

Proposition 3.10. Let B be a Boolean algebra and let f1, f2, f3, · ·
·, fn be multipliers on B. Then f1 ◦ f2 ◦ f3 ◦ · · · ◦ fn is also a multiplier
of B.

Proof. Let B be a Boolean algebra and f1, f2 two multipliers on B.
Then we have for all a, b ∈ B

(f1 ◦ f2)(a ∧ b) = f1(f2(a ∧ b)) = f1(f2(a) ∨ b)

= f1(f2(a)) ∧ b = (f1 ◦ f2)(a) ∨ b.

This completes the proof.
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Let B be a Boolean algebra and f1, f2 two self-maps. We define
f1 ∧ f2 : B → B by

(f1 ∧ f2)(x) = f1(x) ∧ f2(x)

for all x ∈ B.

Proposition 3.11. Let B be a Boolean algebra and let f1, f2, · · ·, fn
be multipliers on B. Then f1 ∧ f2 ∧ · · · ∧ fn is also a multiplier of B.

Proof. Let B be a Boolean algebra and f1, f2 two multipliers of B.
Then we have for all a, b ∈ B

(f1 ∧ f2)(a ∧ b) = f1(a ∧ b) ∧ f2(a ∧ b)

= (f1(a) ∧ b) ∧ (f2(a) ∧ b)

= (f1(a) ∧ f2(a)) ∧ b

= (f1 ∧ f2)(a) ∧ b.

This completes the proof.

Let B be a Boolean algebra and f1, f2 two self-maps. We define
f1 ∨ f2 : B → B by

(f1 ∨ f2)(x) = f1(x) ∨ f2(x)

for all x ∈ B.

Proposition 3.12. Let B be a Boolean algebra and let f1, f2, · · ·, fn
be multipliers of B. Then f1 ∨ f2 ∨ · · · ∨ fn is also a multiplier of B.

Proof. Let B be a Boolean algebra and f1, f2 two multipliers of B.
Then we have for all a, b ∈ B,

(f1 ∨ f2)(a ∧ b) = f1(a ∧ b) ∨ f2(a ∧ b)

= (f1(a) ∧ b) ∨ (f2(a) ∧ b)

= (f1(a) ∨ f2(a)) ∧ b

= (f1 ∨ f2)(a) ∧ b.

This completes the proof.

Let M(B) be a set of all multipliers on B and let f be a multiplier
on B. Since f(x) ≤ x, we have f(x) ≤ I(x) for all f ∈ M(B) and
x ∈ B, where I(x) = x for all x ∈ B. Also, we obtain 0(x) ≤ f(x) for all
f ∈ M(B) and x ∈ B, where 0(x) = 0.

Theorem 3.13. Let B be a Boolean algebra and let M(B) be a
set of all multipliers on B. Then (M(B),∧,∨, 0(x), I(x)) is a bounded
distributive lattice.
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Proof. From Proposition 3.11 and 3.12, ∧ and ∨ are binary opera-
tors on M(B). Define a binary relation “ ≤ ” on M(B) by f1 ≤ f2
if and only if f1 ∧ f2 = f1. Then “ ≤ ” is a partial order relation
on M(B) and g.l.b{f1, f2} = f1 ∧ f2, l.u.b{f1, f2} = f1 ∨ f2. There-
fore, (M(B),∧,∨, 0(x), I(x)) is a bounded lattice. In addition, for any
f1, f2, f3 ∈ M(B) and any x ∈ B,

(f1 ∧ (f2 ∨ f3)(x)) = f1(x) ∧ (f2(x) ∨ f3(x)

= (f1(x) ∧ f2(x)) ∨ (f1(x) ∨ f3(x))

= ((f1 ∧ f2)(x)) ∨ ((f1 ∧ f3)(x))

= ((f1 ∧ f2) ∨ (f1 ∧ f2))(x).

Therefore, f1 ∧ (f2 ∨ f3) = (f1 ∧ f2) ∨ (f1 ∧ f3).
This shows that (M(B),∧,∨, 0(x), I(x)) is a bounded distributive lat-
tice.

Theorem 3.14. Let B be a Boolean algebra and f : B → B be a
multiplier of B. Then f is monotone.

Proof. Let f be a multiplier of B and let x ≤ y. Then x∧y = x. Hence
f(x) = f(x∧y) = f(x)∧y, i.e., f(x) ≤ y. Since f is idempotent, we have
f(x) = f(f(x)) = f(f(x)∧y) = f(y∧f(x)) = f(y)∧f(x) = f(x)∧f(y).
This implies f(x) ≤ f(y).

Theorem 3.15. Let B be a Boolean algebra and f : B → B be a
multiplier of B. Then the following identities are equivalent,

(1) f is an isotone function,
(2) f(x ∧ y) = f(x) ∧ f(y) for all x, y ∈ B.

Proof. (1) ⇒ (2) Let f be an isotone function of B. Then x ∧ y ≤ x
and x ∧ y ≤ y for all x, y ∈ L. Thus, we get f(x ∧ y) ≤ f(x) and
f(x∧y) ≤ f(y) for all x, y ∈ B, which implies f(x∧y) ≤ f(x)∧f(y). Also,
f(x)∧f(y) ≤ f(x)∧y = f(x∧y). Hence we have f(x∧y) = f(x)∧f(y).

(2) ⇒ (1) Let x, y ∈ B be such that x ≤ y. Then f(x) = f(x ∧ y) =
x ∧ f(y) ≤ f(y). Hence f is an isotone function. This completes the
proof.

Theorem 3.16. Let B be a Boolean algebra and f : B → B be a
multiplier of B. Then the following identities are equivalent,

(1) f is isotone,
(2) f(x ∧ y) = f(x) ∧ f(y),
(3) f(x ∨ y) = f(x) ∨ f(y) for all x, y ∈ B.
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Proof. (1) ⇔ (2) By Theorem 3.15, the identities (1) and (2) are
equivalent.

(1) ⇒ (3) Assume that f is isotone. Then f(x) ≤ f(x ∨ y) and
f(y) ≤ f(x ∨ y). Also, f(x) = f((x ∨ y) ∧ x) = x ∧ f(x ∨ y). Similarly,
we get f(y) = y ∧ f(x ∨ y). Hence we have for x, y ∈ B,

f(x) ∨ f(y) = (x ∧ f(x ∨ y)) ∨ (y ∧ (y ∧ f(x ∨ y)))

= (x ∨ y) ∧ f(x ∨ y)

= f(x ∨ y)

(3) ⇒ (1) Let x ≤ y for all x, y ∈ B. Then y = x ∨ y. Hence we get
f(y) = f(x ∨ y) = f(x) ∨ f(y) ≥ f(x), which implies f is isotone.

Let B1 and B2 be two Boolean algebras. Then B1 × B2 is also a
Boolean algebra with respect to the point-wise operation given by

(a, b) ∧ (c, d) = (a ∧ c, b ∧ d)

for all a, c ∈ B1 and b, d ∈ B2.

Proposition 3.17. Let B1 and B2 be two Boolean algebras. Define
a map f : B1×B2 → B1×B2 by f(x, y) = (0, y) for all (x, y) ∈ B1×B2.
Then f is a multiplier ofB1×B2 with respect to the point-wise operation.

Proof. Let (x1, y1), (x2, y2) ∈ B1 ×B2. The we have

f((x1, y1) ∧ (x2, y2)) = f(x1 ∧ x2, y1 ∧ y2)

= (0, y1 ∧ y2)

= (0 ∧ x2, y1 ∧ y2)

= (0, y1) ∧ (x2, y2)

= f(x1, y1) ∧ (x2, y2).

Therefore f is a multiplier of the direct product B1 ×B2.

Let B be a Boolean algebra and let f be a multiplier on B. Define a set
Fixf (B) by

Fixf (B) = {x ∈ B | f(x) = x}.

In the following results, we assume that Fixf (B) is a nonempty
proper subset of B.

Proposition 3.18. Let B be a Boolean algebra and let f be a mul-
tiplier on B. If f : B → B is a join homomorphism, then Fixf (B) is a
Boolean subalgebra of B.
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Proof. Let x, y ∈ Fixf (B). Then f(x) = x and f(y) = y. Then
f(x∧y) = f(x)∧y = x∧y, that is, x∧y ∈ Fixf (B). Moreover, we have
f(x ∨ y) = f(x) ∨ f(y) = x ∨ y, which implies x ∨ y ∈ Fixf (B). Hence
Fixf (L) is a Boolean subalgebra of B.

Proposition 3.19. Let B be a Boolean algebra and let f be a mul-
tiplier on B. If x ≤ y and y ∈ Fixf (B), we have x ∈ Fixf (B).

Proof. Let x ≤ y. Then we have

f(x) = f(y ∧ x) = f(y) ∧ x = y ∧ x = x,

which implies x ∈ Fixf (B).

Proposition 3.20. Let B be a Boolean algebra and let f be a mul-
tiplier of B. If x ∈ Fixf (B) and y ∈ B, we have x∧ y ∈ Fixf (B) for all
x, y ∈ B.

Proof. Let x ∈ Fixf (B) and y ∈ B. Then f(x) = x. Hence we have

f(x ∧ y) = f(x) ∧ y = x ∧ y,

which implies x ∧ y ∈ Fixf (B).

Proposition 3.21. Let B be a lattice and let f1 and f2 be isotone
multipliers of B. Then f1 = f2 if and only if Fixf1(B) = Fixf2(B).

Proof. It is obvious that f1 = f2 implies Fixf1(B) = Fixf2(B). Con-
versely, let Fixf1(B) = Fixf2(B) and x ∈ B. By Proposition 3.19,
f1(x) ∈ Fixf1(B) = Fixf2(B) and f2(f1(x)) = f1(x). Similarly, we have
f1(f2(x)) = f2(x). Since f1 and f2 are isotone, we have f2(f1(x)) ≤
f2(x) = f1(f2(x)), and so f2(f1(x)) ≤ f1(f2(x)). Symmetrically, we can
also get f1(f2(x)) ≤ f2(f1(x)), which implies f1(f2(x)) = f2(f1(x)).
Thus, it follows that f1(x) = f2(f1(x)) = f1(f2(x)) = f2(x), that is,
f1 = f2.

Let us denote the image of B under the multiplier f by Im(f).

Proposition 3.22. Let f be a multiplier of a latticeB. Then Im(f) =
Fixf (B).

Proof. Let x ∈ Fixf (B). Then x = f(x) ∈ Im(f). Hence Fixf (B) ⊆
Im(f). Now let a ∈ Im(f). Then we get a = f(b) for some b ∈ B. Thus
f(a) = f(f(b)) = f(b) = a, which implies Im(f) ⊆ Fixf (B). Therefore,
Im(f) = Fixf (B). This completes the proof.
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Theorem 3.23. Let f and g be two multipliers of B such that f ◦g =
g ◦ f. Then the following conditions are equivalent.

(1) f = g.
(2) f(B) = g(B).
(3) Fixf (B) = Fixg(B).

Proof. (1)⇒ (2): It is obvious.
(2) ⇒ (3): Assume that f(B) = g(B) and let x ∈ Fixf (B). Then

x = f(x) ∈ f(B) = g(B). Hence x = g(y) for some y ∈ B. Now
g(x) = g(g(y)) = g2(y) = g(y) = x. Thus x ∈ Fixg(B). Therefore,
Fixf (B) ⊆ Fixg(B). Similarly, we can obtain Fixg(B) ⊆ Fixf (B).
Thus Fixf (B) = Fixg(B).

(3) ⇒ (1): Assume that Fixf (B) = Fixg(B). Let x ∈ B. Since
f(x) ∈ Fixf (B) = Fixg(B), we have g(f(x)) = f(x). Also, we obtain
g(x) ∈ Fixg(B) = Fixf (B). Hence we get f(g(x)) = g(x). Thus we have

f(x) = g(f(x)) = (g ◦ f)(x) = (f ◦ g)(x) = f(g(x)) = g(x).

Therefore, f and g are equal in the sense of mappings.

Theorem 3.24. Let f be a multiplier of a lattice B. Then Fixf (B)
is an ideal of B.

Proof. By Proposition 3.22, we can see that x ∈ Fixf (B) and y ≤ x
imply y ∈ Fixf (B). This means that Fixf (B) satisfies the condition (1)
of Definition 2.11. we need only to show that x, y ∈ Fixf (B) implies
x ∨ y ∈ Fixf (B). Let x, y ∈ Fixf (B). Then we have x ∨ y = f(x) ∨ y =
f(x∨ y), i.e., x∨ y ∈ Fixf (B), which implies that Fixf (B) satisfies the
Definition 2.11. It follows that Fixf (B) is an ideal of B.

Theorem 3.25. Let B be a Boolean algebra. Then the following are
equivalent,

(1) B is a chain,
(2) For every isotone multiplier f, F ixf (B)is a prime ideal of B.

Proof. (1) ⇒ (2). Let B be a chain and let f be an isotone multiplier
on B. Then Fixf (B) is an ideal of B by Theorem 3.24. Now, let x∧y ∈
Fixf (B). Since B is chain, we have x ≤ y or x ≤ x. Assume that x ≤ y.
Then f(x) ≤ f(y), and so f(x) = f(x)∧ f(y) = f(x∧ y) = x∧ y = x by
Theorem 3.15. It follows that x ∈ Fixf (B), which means that Fixf (B)
is a prime ideal of B.

(2) ⇒ (1). Let Fixf (B) be a prime ideal of B for every isotone
multiplier of B. For every x, y ∈ B, consider the simple multiplier
fx∧y, which is induced by x ∧ y. Then Fixfx∧y(B) is a prime ideal by
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hypothesis. Note that x ∧ y ∈ Fixfx∧y(B). Hence x ∈ Fixfx∧y(B) or
y ∈ Fixfx∧y(B). Assume that x ∈ Fixfx∧y(B). Then x = fx∧y(x) =
x ∧ (x ∧ y) = x ∧ y. So x ≤ y. This means that B is a chain.

Proposition 3.26. For p ∈ B, the mapping αp(a) = a ∧ p is a
multiplier of B.

Proof. Let p ∈ B. Then we have

αp(a ∧ b) = (a ∧ b) ∧ p = (a ∧ p) ∧ b = αp(a) ∧ b.

This completes the proof.

Proposition 3.27. For p ∈ B, the mapping βp(a) = (a ∧ p) ∧ p is a
multiplier of B.

Proof. Let p ∈ B. Then we have

βp(a ∧ b) = ((a ∧ b) ∧ p) ∧ p

= ((a ∧ p) ∧ b) ∧ p

= ((a ∧ p) ∧ p) ∧ b

= βp(a) ∧ b.

for all a, b ∈ B. This completes the proof.

Proposition 3.28. For p ∈ B, the multiplier αp(a) = a ∧ p is a
meet-homomorphism on B.

Proof. Let p ∈ B. Then we have

αp(a ∧ b) = (a ∧ b) ∧ p

= (a ∧ p) ∧ (b ∧ p)

= αp(a) ∧ αp(b).

for all a, b ∈ B. This completes the proof.

Proposition 3.29. Let B be a Boolean algebra. Then αp is an
isotone multiplier on B.

Proof. Let a, b ∈ B be such that a ≤ b. Then a = a∧ b. Thus we have

αp(a) = αp(a ∧ b)

= αp(a) ∧ b = (a ∧ p) ∧ b

= (a ∧ p) ∧ (b ∧ p)

= αp(a) ∧ αp(b),

which implies αp(a) ≤ αp(b). This completes the proof.
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We call the multiplier αp(a) = a ∧ p of Proposition 3.29 as simple
multiplier. Let us denote SM(B) by the set of all simple multiplier on
B. Now we define

(αp ∧ αq)(x) = αp(x) ∧ αq(x), (αp ∨ αq)(x) = αp(x) ∨ αq(x)

Proposition 3.30. Let B be a Boolean algebra. If p ̸= q, then
αp ̸= αq.

Proof. Let αp = αq. Then αp(x) = αq(x) for all x ∈ B. This implies
x ∧ p = x ∧ q for all x ∈ B. Now, if x = p, then we get p = p ∧ q. Hence
p ≤ q. Next, if x = q, then q ∧ p = q, which means q ≤ p, and so we
get p = q, which is a contradiction. Therefore if p ̸= q, then we have
αp ̸= αq.

Lemma 3.31. Let B be a Boolean algebra and let αp, αq ∈ SM(B).
Then if p ≤ q, we have αp ≤ αq.

Proof. Let p ≤ q. Then x ∧ q ≤ y ∧ q, i.e., αp ≤ αq.

Lemma 3.32. Let B be a Boolean algebra and let αp, αq ∈ SM(B).
Then we have αp ∧ αq ∈ SM(B) and αp ∨ αq ∈ SM(B).

Proof. Let αp, αq ∈ SM(B). Then

(αp ∧ αq)(x) = αp(x) ∧ αq(x)

= (p ∧ x) ∧ (q ∧ x)

= (p ∧ q) ∧ x

= α(p∧q)(x).

Since p∧q ∈ B, α(p∧q) ∈ SM(B), which implies αp∧αq ∈ SM(B). Also,
we have

(αp ∨ αq)(x) = αp(x) ∨ αq(x)

= (p ∧ x) ∨ (q ∧ x)

= (p ∨ q) ∧ x

= α(p∨q)(x).

Since p ∨ q ∈ B, α(p∨q) ∈ SM(B), which implies αp ∨ αq ∈ SM(B).

Theorem 3.33. Let B be a Boolean algebra and let αp, αq ∈ SM(B).
Then we have, for everyx, y ∈ B,

(1) αp(x ∧ y) = αp(x) ∧ αp(y),

(2) αp(x ∨ y) = αp(x) ∨ αp(y),
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(3) αp(x ⊔ y) = αp(x) ⊔ αp(y), where x ⊔ y = y ∨ (y ∨ x).

Proof. (1) Let αp ∈ SM(B). Then we have

αp(x ∧ y) = αp(x) ∧ αp(y)

= (p ∧ x) ∧ (p ∧ y)

= αp(x) ∧ αp(y).

(2) Let αp ∈ SM(B). Then we have

αp(x ∨ y) = αp(x) ∨ αp(y)

= (p ∧ x) ∨ (p ∧ y)

= αp(x) ∨ αp(y).

(3) Let αp ∈ SM(B). Then we have

αp(x ⊔ y) = αp(y ∨ (y ∨ x))

= αp(y) ∨ αp(y ∨ x)

= αp(y) ∨ (αp(y) ∨ αp(x))

= αp(x) ⊔ αp(y).

Theorem 3.34. LetB be a Boolean algebra and let αp, αp′ ∈ SM(B).
Then we have

(1) (αp ∨ αp′) = α0,

(2) (αp ∧ αp′) = α1.

Proof. (1) Let B be a Boolean algebra. For every p ∈ B, we have

(αp ∨ αp′)(x) = (x ∧ p) ∨ (x ∧ p′)

= x ∧ (p ∨ p′)

= x ∧ 1 = α1(x).

(2)

(αp ∧ αp′)(x) = (x ∧ p) ∧ (x ∧ p′)

= x ∧ (p ∧ p′)

= x ∧ 0 = α0(x).
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Theorem 3.35. Let B be a Boolean algebra. Then SM(B) is a
Boolean algebra with top element α1 and bottom element α0.

Proposition 3.36. Let B be a Boolean algebra. Then the simple
multiplier α1 is an identity function of B.

Proof. For every a ∈ B,α1(a) = a∧ 1 = a. This completes the proof.

Proposition 3.37. Let B be a Boolean algebra. Then, for each
x ∈ B, we have αp(x ∧ p) = αp(x).

Proof. For each x ∈ B, we have

αp(x ∧ p) = αp(x) ∧ p = (x ∧ p) ∧ p

= x ∧ p = αp(x)

This completes the proof.

Theorem 3.38. Let B be a Boolean algebra and let B ̸= {0}. Then
there is no nilpotent multiplier onB.

Proof. For every multiplier f, we have

fn(x) ≥ fn−1 ≥ · · · ≥ f(x) ≥ x,

for every x ∈ B. If there exists a natural number n such that fn = 0,
then we get fn(x) = 0, for all x ∈ B. Thus x = 0, for all x ∈ B, which
is a contradiction. Hence there is no nilpotent multiplier on B. This
completes the proof.

Lemma 3.39. If B has n element, then it has at least n multipliers
on B.

Proof. Since αp is a multiplier, for every p ∈ B, and so B has at least
n multipliers.

Theorem 3.40. Let B be a Boolean algebra. If θ : B → M(B) is
a map defined by θ(x) = αx for each x ∈ B, then θ is one-to-one and
isotone map.

Proof. Let θ(x) = θ(y). Then αx = αy, and it implies that x ∧ y =
αy(x) = αx(x) = x ∧ x = x and y ∧ x = αx(y) = αy(y) = y ∧ y = y.
Hence x ≤ y and y ≤ x imply x = y. Let a ≤ b in B. Then a∧x ≤ b∧x,
that is, θ(a) = αa ≤ αb = θ(b).

Theorem 3.41. Let f : B → B is an isotone multiplier of B, then f
is a dual closure on B.
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Proof. By Proposition 3.3 and Proposition 3.6, f is non-expensive
and idempotent, and so f is a dural closure on B.

Let B be a Boolean algebra and I be a principal ideal of B generalized
by a ∈ B that is, I = (a).

Theorem 3.42. Let B be a Boolean algebra. If f is a simple multi-
plier of B, then Fixf (B) is a principal ideal of B.

Proof. Assume that f is a principal multiplier of B, that is, f(x) =
x ∧ a, for some a ∈ B. We claim that Fixf (B) = ⟨a⟩. In fact, for
any x ∈ Fixf (B), we have x = f(x) = x ∧ a, and hence x ≤ a. This
means that x ∈ ⟨a⟩. Conversely, let x ∈ ⟨a⟩, that is, x ≤ a. Then
f(x) = x ∧ a = x, and hence x ∈ Fixf (B). By the above arguments,
we have Fixf (B) = ⟨a⟩, and so Fixf (B) is a principal ideal of B. This
completes the proof.

Definition 3.43. Let B be a Boolean algebra. A non-empty set I
of B is called a normal ideal if x ∈ B and y ∈ I imply x ∧ y ∈ I.

Example 3.44. In Example 3.2, let I = {0, a}. Then it is easy to see
that I is a normal ideal on B.

Proposition 3.45. Let f be a multiplier of a Boolean algebra B.
For any normal ideal I of B, both f(I) and f−1(I) are normal ideals of
B.

Proof. Let x ∈ B and a ∈ f(I). Then a = f(s) for some s ∈ I. Now
x ∧ a = x ∧ f(s) = f(x ∧ s) ∈ f(I) because x ∧ s ∈ I. Therefore f(I) is
a normal ideal of L. Let x ∈ B and a ∈ f−1(I). Then f(a) ∈ I. Since I
is a normal ideal, we get f(x∧ a) = x∧ f(a) ∈ I. Hence x∧ a ∈ f−1(I).
Therefore f−1(I) is a normal ideal of B.

Proposition 3.46. Let f be a multiplier of a Boolean algebra B.
Then we have

(1) Fixf (B) is a normal ideal of B.
(2) Im(f) is a normal ideal of B.

Proof. (1) Let x ∈ B and a ∈ Fixf (B). Then f(a) = a. Now f(x ∧
a) = x ∧ f(a) = x ∧ a. Hence x ∧ a ∈ Fixf (B). Therefore, Fixf (B) is a
normal ideal of B.

(2) Let x ∈ B and a ∈ Im(f). Then a = f(b) for some b ∈ B. Now
x ∧ a = x ∧ f(b) = f(x ∧ b) ∈ f(B). Therefore, Im(f) is a normal ideal
of B.
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Let B be a Boolean algebra and let f : B → B is a function. Define a
set Kerf by

Kerf = {x ∈ L | f(x) = 0}.

Proposition 3.47. Let f be a multiplier of a Boolean algebra B. If
f is a join-homomorphism, Kerf is a Boolean subalgebra on B.

Proof. Let x, y ∈ Kerf. Then f(x) = f(y) = 0, and so f(x ∧ y) =
f(x) ∧ y = 0 ∧ y = 0, which implies x ∧ y ∈ Kerf. Now, we have
f(x ∨ y) = f(x) ∨ f(y) = 0 ∨ 0 = 0. This implies x ∨ y ∈ Kerf. This
completes the proof.

Proposition 3.48. Let f be a multiplier of a Boolean algebra B.
Then Kerf is a normal ideal of B.

Proof. Clearly, 0 ∈ Kerf. Let a ∈ Kerf and x ∈ L. Then f(x∧ a) =
x ∧ f(a) = x ∧ 0 = 0. Hence x ∧ a ∈ Kerf, which implies that Kerf is
a normal ideal of B.

Proposition 3.49. Let f be a multiplier of a Boolean algebra B and
x ≤ y. If y ∈ Kerf, then we have x ∈ Kerf.

Proof. Let y ∈ Kerf and x ≤ y. Then f(x) = f(x ∧ y) = x ∧ f(y) =
x ∧ 0 = 0. Hence x ∈ Kerf. This completes the proof.

Proposition 3.50. Let f be a multiplier of a Boolean algebra B.
Then we have Kerf ∩ Fixf (B) = {0}.

Proof. Let x ∈ Kerf ∩ Fixf (B). Then f(x) = 0 and f(x) = x,
which implies x = 0. Hence Kerf ∩ Fixf (B) = {0}. This completes the
proof.

Proposition 3.51. Let f be a multiplier of a Boolean algebra B.
Then Fixf (L) = {0} implies Kerf = B.

Proof. Let f be a multiplier of a Boolean algebra B. Then we have
f(x) ∈ Fixf (B) for all x ∈ B from Proposition 3.22. Thus, Fixf (B) =
{0} implies that f(x) = 0 for each x ∈ B. This completes the proof.

Definition 3.52. Let B be a Boolean algebra and f : B → B be
a function. A nonempty subset I of B is said to be a f -invariant if
f(I) ⊆ I where f(I) = {y ∈ B | y = f(x) for some x ∈ I}.

Theorem 3.53. Let B be a Boolean algebra and f a multiplier on
B. Then every ideal I is a f -invariant.
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Proof. Let I be an ideal of B and let y ∈ f(I). Then there exists
x ∈ I such that y = f(x) ≤ x. Since I is an ideal, we get y ∈ I. Thus
f(I) ⊆ I.

Theorem 3.54. Let f : B → B is a dual closure. Then f is a
multiplier on B.

Proof. Let f : B → B be a dual closure and let f be a homomorphism.
Then we have, for every x, y ∈ B,

f(x ∧ y) = f(x) ∧ f(y)

≤ f(x) ∧ y,

and
f(x) ∧ y ≤ f(f(x) ∧ y)

= f2(x) ∧ f(y)

= f(x) ∧ f(y).

This implies f(x ∧ y) = f(x) ∧ y, that is, f is a multiplier on B.
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