SPECTRAL DUALITIES OF MV-ALGEBRAS

TAE HO CHOE, EUN SUP KIM, AND YOUNG SOO PARK

ABSTRACT. Hong and Nel in [8] obtained a number of spectral dualities between a cartesian closed topological category \mathbf{X} and a category of algebras of suitable type in \mathbf{X} in accordance with the original formalism of Porst and Wischnewsky[12]. In this paper, there arises a dual adjointness $S \vdash C$ between the category $\mathbf{X} = \mathcal{L}im$ of limit spaces and that \mathbf{A} of MV-algebras in \mathbf{X} . We firstly show that the spectral duality: $S(\mathbf{A})^{op} \simeq C(\mathbf{X}^{op})$ holds for the dualizing object K = I = [0,1] or $K = 2 = \{0,1\}$. Secondly, we study a duality between the category of Tychonoff spaces and the category of semi-simple MV-algebras. Furthermore, it is shown that for any $X \in \mathcal{L}im$ $(X \neq \emptyset)$ C(X,I) is densely embedded into a cube $I^{|H|}$, where H is a set.

1. Introduction

MV-algebras were originally defined by C. C. Chang[4] as an algebraic counterpart to the Lukasiewicz infinite valued propositional calculus. In [11], Mundici established a categorical equivalence between the category of MV-algebras and that of abelian l-groups with order unit.

The aim of this paper is to investigate the dual adjunction between topological spaces (more generally limit spaces) and (topological) MV-algebras. In [8], the authors studied spectral dualities between the category $\mathbf{X} = \mathcal{L}im$ of limit spaces and that \mathbf{A} of rings with unit in $\mathcal{L}im$ and pointed vector spaces in $\mathcal{L}im$.

In general, one considers a cartesian closed topological category \mathbf{X} , a category \mathbf{A} of universal algebras of suitable type in \mathbf{X} and a basic object $K \in \mathbf{A}$.

Received March 23, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 03B50, 06D35.

Key words and phrases: MV-algebra, spectral duality, limit space, topological Boolean algebra, semi-simple MV-algebra, Tychonoff space, zero-dimensional space. This research was supported by Brain Pool Program by KOSEF(Korea).

Namely, $A \in \mathbf{A}$ is an X-object and all A-structures of a set of operators are X-morphisms. In [12], they regarded a very general situations in which \mathbf{A} is defined by X-monad. But in this paper, we deal with \mathbf{A} as an alternative method of admissible categories based on methods of universal algebras.

Let $C: \mathbf{X}^{op} \to \mathbf{A}$ be the function algebra functor and $S: \mathbf{A} \to \mathbf{X}^{op}$ be the spectral space functor: namely C(X) is the **A**-object of all $X \to K$ and S(A) is the **X**-object of all $A \to K$.

For a suitable choice of $\mathbf{X}, \mathbf{A}, K$, it may happen that $S(\mathbf{A})^{op}$ and $C(\mathbf{X}^{op})$ are categorically equivalent. This dual equivalence is called a spectral duality, which is then the largest duality in the $(\eta, \varepsilon): S \dashv C$.

In this paper, we first establish a spectral duality between $\mathbf{X} = \mathcal{L}im$ and the category \mathfrak{M}_v of MV-algebras in \mathbf{X} while K is the unit interval topological MV-algebra I, and subsequently the discrete two point Boolean algebra $2 = \{0, 1\}$. This result reduced the classical Stone duality.

In the second part of this paper, the dualities between the category of Tychonoff spaces and that of semisimple MV-algebras were investigated. We obtained useful characterization theorems that the counit ε is surjective i.e., an isomorphism. This criterion is a general result from the case of **Zdim** of zero-dimensional spaces with K=2 to the case of Tychonoff spaces with K=I.

2. Spectral duality of MV-algebras

Let $\mathbf{X} = \mathcal{L}im$, $A = \mathfrak{M}_v$ and K = I = [0, 1] with the usual topology. In this section, we first prove that for these \mathbf{X} , \mathbf{A} and K, the spectral duality holds.

We note that I is a topological MV-algebra so that $I \in A$. Indeed, all operations of I are continuous. The function algebra functor $C: \mathbf{X}^{op} \to \mathbf{A}$ is defined by $C(X) = \hom_{\mathbf{X}}(X, I)$ for $X \in \mathbf{X}$, thus $C(X) \in A$. And the spectral space functor $S(A) = \hom_{\mathbf{A}}(A, I)$ for $A \in \mathbf{A}$, thus $S(A) \in \mathbf{X}$. The unit η is defined by $\eta_A : A \to CS(A)$ with $\eta_A(a)(u) = u(a)$ for each $a \in A, u \in S(A)$ and each $A \in \mathbf{A}$. And the counit ε is that for $X \in \mathbf{X}^{op}$, $\varepsilon_X : X \to SC(X)$ with $\varepsilon_X(x)(f) = f(x)$ for each $x \in X$ and each $f \in C(X)$. Then it is a routine calculation that S is a left adjoint to C via η and ε .

Let Fix η be the isomorphism closed subcategory of **A** determined by objects $A \in \mathbf{A}$ such that η_A is an isomorphism. Dually Fix ε the isomorphism closed subcategory of **X** determined by objects $X \in \mathbf{X}$ such that ε_X is an isomorphism in **X**. Then generally we have the largest duality $(\operatorname{Fix}\varepsilon)^{op} \simeq \operatorname{Fix}\eta$ in any $(\eta, \varepsilon) : S \dashv C$.

Recall that a category **X** is called an (\mathbf{E}, \mathbf{M}) -category if for the class **E** of epimorphisms, the class **M** of monomorphism, and for any **X**-morphism $f, f = m \cdot e$ for some $m \in \mathbf{M}$ and some $e \in \mathbf{E}$. Moreover, for $e \in \mathbf{E}$, $m \in \mathbf{M}$, and $f, g \in \mathbf{X}$, if mf = ge, then there exists $h \in \mathbf{X}$ uniquely such that he = f and mh = g.

It is well known for an example that $\mathcal{L}im$ is an (Onto Embedding) category.

For $(\eta, \varepsilon): S \dashv C$, if $\varepsilon_X \in \mathbf{M}$ for $X \in \mathbf{X}$, then X is said to be M-embeddable. The class of all M-embeddable objects in \mathbf{X} is denoted by **Emb**. Then **Emb** is an **E**-reflective in \mathbf{X} . Furthermore, $S(A) \in \mathbf{Emb}$ for any $A \in \mathbf{A}$ [12].

By a completely regular filter on a Tychonoff space X, we mean a filter \mathcal{F} on X which have an open base \mathcal{B} such that for each $B \in \mathcal{B}$, there exists $C \in \mathcal{B}$ and $f \in C(X,I)$ such that $C \subset B$, $f(C) = \{0\}$ and $f(X-B) = \{1\}$. Recall that a completely regular filter \mathcal{F} is maximal iff for two open sets $D \subset C$ and for $f \in C(X,I)$ with $f(D) = \{0\}$ and $f(X-C) = \{1\}$, we have either $C \in \mathcal{F}$ or $C \notin \mathcal{F}$, and \mathcal{F} has a member B such that $B \cap D = \emptyset$.

Recall that the full subcategory **T** of Tychonoff spaces is a reflective hull of I in $\mathbf{X} = \mathcal{L}im$. Once again, consider $S \dashv C : \mathbf{X}^{op} \to \mathbf{A}$, where $\mathbf{X} = \mathcal{L}im$, $\mathbf{A} = \mathfrak{M}_v$, and K = I. Then we have the following lemma :

LEMMA 1. Let $X \in \mathbf{X}$ be a Tychonoff space. For any $h \in SC(X, I)$, there exists a maximal completely regular filter \mathcal{F} on X such that $h(f) = \lim f(\mathcal{F})$ for any $f \in C(X, I)$.

Proof. For $f \in h^{-1}(0)$ and $\varepsilon > 0$, let $w(f,\varepsilon) = \{x \in X | f(x) < \varepsilon\}$. Let $\mathcal{B} = \{w(f,\varepsilon) | f \in h^{-1}(0), \varepsilon > 0\}$. Then \mathcal{B} is a filter base on X. Indeed, $w(f,\varepsilon) \neq \emptyset$ for any $f \in h^{-1}(0)$ and any $\varepsilon > 0$. For, if it is empty, $f(x) \geq \varepsilon$ for all $x \in X$. Then $(nf)(x) \geq n \cdot \varepsilon = 1$ for a large $n \in Z^+$ in the MV-algebra C(X). Thus nf = 1 and hence $n \cdot h(f) = 1$. This is absurd. Since h preserves the join-operation : $f \vee g = f + f^*g$, it is easy to see that $w(f,\varepsilon) \cap w(g,\delta)$ contains $w(f \vee g,\varepsilon \wedge \delta)$. Let \mathcal{F} be the filter generated by \mathcal{B} on X. Show that \mathcal{F} is a complete regular filter. Indeed for $B = w(f,\varepsilon) \in \mathcal{B}$, choose $C = w(f,\varepsilon/2) \in \mathcal{B}$.

Now define a continuous map g from I into I as follows:

$$g(x) = \begin{cases} 0 & \text{if} \quad 0 \le x \le \varepsilon/2, \\ (2/\varepsilon)x - 1 & \text{if} \quad \varepsilon/2 \le x \le \varepsilon, \\ 1 & \text{if} \quad \varepsilon \le x \le 1. \end{cases}$$

Let $e = g \circ f$. Then $e \in C(X)$. Further $e(C) = \{0\}$, $e(X - B) = \{1\}$. Thus \mathcal{F} is completely regular.

Now we claim that \mathcal{F} is maximal. Consider two open subsets D and C of X with $D \subset C$ and $f \in C(X)$ such that $f(D) = \{0\}$ and $f(X-C) = \{1\}$. Suppose that $C \notin \mathcal{F}$. Then $h(f) \neq 0$. For, if h(f) = 0, then $w(f, \frac{1}{2}) \subset C$ because of $w(f, \frac{1}{2}) \cap (X-C) = \emptyset$. Thus $C \in \mathcal{F}$, a contradiction. If $h(f) = r \neq 0$, then for the constant function \mathbf{r} of r, $w(f^*\mathbf{r}, r/2) \in \mathcal{F}$ and it is disjoint from D because if $x \in w(f^*\mathbf{r}, r/2) \cap D$ then, since $h(\mathbf{r}) = r$ we have $(1 - f(x)) \cdot r < r/2$ and f(x) = 0, thus r < r/2. This is impossible. Hence by the criterion of maximality, \mathcal{F} is a maximal completely regular filter. Finally, we show that $h(f) = \lim f(\mathcal{F})$ for each $f \in C(X)$. Indeed, if $h(f) = r \in I$, then $h(f\mathbf{r}^*) = 0$ and $h(\mathbf{r} \cdot f^*) = 0$. Thus $w(f\mathbf{r}^*, \varepsilon)$ and $w(\mathbf{r}f^*, \varepsilon) \in \mathcal{B} \subset \mathcal{F}$. For any basic $\mathrm{nbd}(r - \varepsilon, r + \varepsilon)$ of r in I, we have $f(w(\mathbf{r}f^*, \varepsilon) \cap w(f\mathbf{r}^*, \varepsilon)) \subset (r - \varepsilon, r + \varepsilon)$. Hence $\lim f(\mathcal{F}) = r = h(f)$ for each $f \in C(X)$. The proof is complete.

Let $S(\mathbf{A})$ be the isomorphism closed full subcategory of \mathbf{X} determined by S(A) for all $A \in \mathbf{A}$, and let $C(\mathbf{X}^{op})$ be the isomorphism closed full subcategory of \mathbf{A} determined by C(X) for all $X \in \mathbf{X}$.

Then we have the spectral duality theorem:

THEOREM 2. For $\mathbf{X} = \mathcal{L}im$, $\mathbf{A} = \mathfrak{M}_v$ and K = I, we have that $S(\mathbf{A})^{op} \simeq C(\mathbf{X}^{op})$. Furthermore, $S(\mathbf{A}) \simeq \operatorname{Fix} \varepsilon$ and $C(\mathbf{X}^{op}) \simeq \operatorname{Fix} \eta$.

Proof. Since $\mathbf{X} = \mathcal{L}im$ is an (Onto, Embedding)-category, it is enough to show that ε_X is onto for every $X \in \mathbf{X}$.

Since **T** is epi-reflective in **Top**(=category of topological spaces) and **Top** is bireflective in $\mathcal{L}im$, **T** is epi-reflective in $\mathcal{L}im$.

Let $c: X \to cX$ be the **T**-reflective of $X \in \mathbf{X} = \mathcal{L}im$ and $cX \in \mathbf{T}$. For any $h \in SC(X)$ for any $X \in \mathbf{X}$, let $h_c = SC(c)h$. By lemma 1, for h_c there exists a maximal completely regular filter \mathcal{F} on cX such that $h_c(f) = \lim f(\mathcal{F})$ for each f in C(cX).

We claim \mathcal{F} is convergent on cX, which can be shown as in the proof of (theorem 1(a) in [8]). Note that since K = I, \mathcal{F} is not necessary to have the finite intersection property. Say \mathcal{F} converges $c(x) \in cX$, where $x \in X$. For each $f \in C(X)$ there exists f_c uniquely such that $f_c \cdot c = f$. Thus $h(f) = h(f_c \circ c) = h_c(f_c) = \lim_{c \to \infty} f_c(\mathcal{F}) = f_c(c(x)) = f(x) = \varepsilon_X(x)(f)$. Thus $h = \varepsilon_X(x)(x) \in X$. The proof is complete. \square

Next consider the same $\mathbf{X} = \mathcal{L}im$, $\mathbf{A} = \mathfrak{M}_v$ but $K = 2 = \{0, 1\}$ with 0 < 1 and the discrete topology. Clearly $2 \in \mathbf{A}$. Namely $C(X) = \text{hom}_{\mathbf{X}}(X, 2)$, $S(A) = \text{hom}_{\mathbf{A}}(A, 2)$.

THEOREM 3. For $\mathbf{X} = \mathcal{L}im$, $\mathbf{A} = \mathfrak{M}_v$ and K = 2, we have that $S(\mathbf{A})^{op} \simeq C(\mathbf{X}^{op})$. Furthermore, $S(\mathbf{A}) \simeq \operatorname{Fix} \varepsilon$ and $C(\mathbf{X}^{op}) \simeq \operatorname{Fix} \eta$.

Proof. It is enough to show that for $X \in \mathbf{X}, \varepsilon_X$ is surjective. For each $h \in SC(X), h^{-1}(0)$ is a maximal ideal in C(X). Consider $\mathcal{F} = \{f^{-1}(0)|f \in h^{-1}(0)\}$. One can easily show that \mathcal{F} is a maximal clopen filter (base) on X. The proof is virtually the same as the ring case.

Now we claim that $h(f) = \lim f(\mathcal{F})$ for all $f \in C(X)$. Indeed, suppose that h(f) = 0. Then since $f^{-1}(0) \in \mathcal{F}$ we have $\lim f(\mathcal{F}) = 0$. Now suppose that h(f) = 1. Let g be the characteristic function of the set $f^{-1}(0)$. Then $g \in C(X)$ and $f \cdot g = \mathbf{0}$ in C(X). For, $(fg)(x) = f(x) \cdot g(x) = \max\{0, f(x) + g(x) - 1\} = 0$ for all $x \in X$. Thus $fg = \mathbf{0}$. Hence h(g) = 0, thus $g^{-1}(0) \in \mathcal{F}$. We have $f(g^{-1}(0)) = \{1\}$. Hence $\lim f(\mathcal{F}) = h(f)$.

Now let **Zdim** be the full subcategory of zero-dimensional spaces. It is well known that **Zdim** is an epi-reflective in **X**. Let $d: X \to dX$ be the **Zdim**-reflection of $X \in \mathbf{X}$, and let $SC(d)(h) = h_d$ for each $h \in SC(X)$. Then for any $f \in C(X)$, there exists $\overline{f} \in C(dX)$ with $\overline{f}d = f$ uniquely. Moreover $h(f) = h(\overline{f}d) = h(C(d)\overline{f}) = SC(d)(h)(\overline{f}) = h_d(\overline{f})$.

For any $h \in SC(X)$, i.e., $h_d \in SC(dX)$, there exists a clopen filter \mathcal{F} on dX such that $h_d(\overline{f}) = \lim \overline{f}(\mathcal{F})$ for all $\overline{f} \in C(dX)$. The proof that \mathcal{F} is convergent, and the remaining proofs are virtually the same as in the proof of Theorem 2.

Let **TBoo** be the full subcategory of \mathfrak{M}_v of topological Boolean algebras. Then we obtain the classical Stone duality in the following corollary:

COROLLARY. $(\mathbf{Zdim})^{op} \simeq \mathbf{TBoo}$.

Proof. One can easily see that $S(\mathbf{TBoo}) \simeq \mathbf{Zdim}$ and $C((\mathbf{Zdim})^{op}) \simeq \mathbf{TBoo}$.

3. Dualities between Tychonoff spaces and semi-simple MV-algebras

Remark 1. In [3], Belluce showed that for an MV-algebra A the following statements are equivalent.

- (i) A is isomorphic to the set of all fuzzy subsets of some nonempty set X, i.e., $A \cong I^X$ (cube).
- (ii) A is complete and sub-atomic.

It is easy to that these statements are equivalent to

(iii) A is complete, B(A) is atomic and A is atomless.

REMARK 2. In [6], it is shown that for each semi-simple MV-algebra A, A is embedded into I^H , say the embedding e, where H = |S(A, I)|. But I^H is a topological MV-algebra which is compact Hausdorff.

We have $A \hookrightarrow e(A) \subset \delta(A) = \Gamma(e(A))$ in I^H , where Γ is the closure operation of the product topology of I^H . Then $\delta(A)$ is a compact topological MV-algebra which is complete and $B(\delta(A))$ is complete atomic. Let X be the set of all atoms of $B(\delta(A))$. Then $A \cong e(A) \subset \delta(A) \cong I^{|H_0|} \times \Pi\{A(m)|m \in \Lambda \subset Z^+\}$, where $|H_0| \cup |\Lambda| = |X|$ (disjoint). This $\delta(A)$ is called the δ -completion of A.

For $a \in X$, we have $a \in H_0$ when $\downarrow a = Aa$ is atomless and we have $a \in \Lambda$ when $\downarrow a = Aa \cong A(m)$ for some $m \in Z^+$, where $\downarrow a = \{x | x \leq a\}$. Hence if A is atomless then $\delta(A) \cong I^{|X|}$. We would say that any semi-simple MV-algebra that is atomless is densely embedded into a cube $I^{|X|}$. Of course, A itself is not necessary to be a topological MV-algebra but e(A) has the relative topology under which it is regarded as a topological MV-algebra.

Remark 3. In [6], it is also shown that for $e:A\hookrightarrow \delta(A)$ (embedding) e is I-extensive. This reduces that if B is complete and its idempotents are atomic then for a homomorphism $f:A\to B$, there exists a unique homomorphism $F:\delta(A)\to B$ such that $F\circ e=f$.

LEMMA 4. Let $X \in \mathbf{X} = \mathcal{L}im$, and let |X| be the underlying set of X with the discrete structure. Then |X| and |SC(|X|)| are equipotent.

Proof. Consider C(|X|). Clearly, it is isomorphic to $I^{|X|}$. Now we find the all maximal ideals of $I^{|X|}$. Clearly $B(I^{|X|})$ is a complete Boolean algebra whose atoms are $\{\overline{e}_x|x\in X\}$, where \overline{e}_x has all zero components but the x^{th} -component is 1 for each $x\in X$. Since $I^{|X|}$ is a compact MV-algebra, $B(I^{|X|})$ is a power set Boolean algebra with atoms $\{\overline{e}_x|x\in X\}$. Every maximal ideal M of $I^{|X|}$ is compact because it is closed. There exists an \overline{e}_x^* such that $M=\bigcup \overline{e}_x^*$, where \overline{e}_x^* are the coatoms of $B(I^{|X|})$. Hence |X| and $|\mathfrak{M}(I^{|X|})|$ are equivalent under the map $x\longmapsto \overline{e}_x^*$. On the other hand $\mathfrak{M}(I^{|X|})$ and $S(I^{|X|})$ are also equipotent and |X| and |SI(|X|)| are equipotent.

THEOREM 5. Let $X \in \mathcal{L}im$, $(X \neq \emptyset)$. Then the δ -completion of the semi-simple MV-algebra C(X) is isomorphic to a cube $I^{|SC(X)|}$.

Proof. Firstly we have to show that for any non void $X \in \mathcal{L}im$, C(X) is a semi-simple MV-algebra that is atomless. Clearly C(X) is embedded into $I^{|X|}$. Thus it is semi-simple. Now show that C(X) is atomless. For any $f \in C(X)$ with $f \neq 0$, we claim that $\frac{1}{2}f < f$ in C(X). Indeed, setting $g = \frac{1}{2}f$, we have $g \leq g \vee f = f + f^*g$ in C(X), $g(x) \leq g(x) \vee f(x) = f(x) + f^*(x)g(x) = f(x)$ in I for each $x \in X$. Show that $gf^* = 0$, i.e., $g \leq f$. Since $g(x) \leq f(x)$, $(gf^*)(x) = 0$ for any $x \in X$. Thus $gf^* = 0$. Obviously, $g \neq f$, and hence g < f. Hence C(X) has no atom. By Remark 2, $\delta(C(X)) \cong I^{S(C(X))}$.

LEMMA 6. For $X \in \mathbf{T}$, the maximal space $(\mathfrak{M}(I^{|X|}), \tau_z)$ of $I^{|X|}$ with the Zarski topology is the discrete space.

Proof. For each $M \in \mathfrak{M}(I^{|X|})$ we have $M = \downarrow \overline{e}_x^*$ for some $x \in |X|$. For any non void subfamily $\{M_x | x \in \Gamma\}$ of $\mathfrak{M}(I^{|X|})$, let $a = \inf\{\overline{e}_x^* | x \in \Gamma\}$ and let $b = \inf\{\overline{e}_y^* | y \notin \Gamma\}$. Since $I^{|X|}$ is semi-simple, we have $a \wedge b = 0$.

Furthermore, $a^* = \sup\{\overline{e}_x | x \in \Gamma\}$ and $b^* = \sup\{\overline{e}_y | y \notin \Gamma\}$. Claim that $\hat{b} = \{M_x | x \in \Gamma\}$. Indeed, if $b \in M_x = \downarrow \overline{e}_x^*$, then $\overline{e}_x \leq b^*$. This is impossible. Thus $M_x \in \hat{b}$ for all $x \in \Gamma$. Hence τ_z is discrete topology. Hence |X| and $\mathfrak{M}(I^{|X|}, \tau_z)$ are homeomorphic as the discrete spaces. \square

LEMMA 7. For $X \in \mathbf{T}, \varepsilon_{|X|} : |X| \to S(I^{|X|}, \tau_p)$ is surjective.

Proof. By [6], $\Phi: S(I^{|X|}, \tau_p) \to \mathfrak{M}(I^{|X|}, \tau_z)$ defined by $\Phi(u) = u^{-1}(0)$ for $u \in S(I^{|X|})$ is a continuous bijection. Let $\Psi: |X| \to \mathfrak{M}(I^{|X|}, \tau_z)$ be the homeomorphism by $\Phi(x) = \downarrow \overline{e}_x^*$ for each $x \in |X|$. Thus $\Phi \cdot \varepsilon_{|X|} = \Psi$. It follows that $\varepsilon_{|X|}$ is surjective.

The following criterion whether ε_X for $X \in \mathbf{T}$ is surjective is a generalized result from the case of **Zdim** with k=2 to the case **T** with K=I.

Lemma 8. For $(\eta, \varepsilon): S \dashv C$, ε_X is onto for $X \in \mathbf{T}$ iff $\bigcap_{r \in I} \mathcal{U}_h^{(r)} \neq \emptyset$, where $\mathcal{U}_h^{(r)} = \bigcap \{u^{-1}(r) | u \in h^{-1}(r)\}$ for each $r \in I$.

Proof. Assume that ε_X is onto. Then for each $h \in SC(X)$ there exists $x \in X$ such that $h = \varepsilon_X(x)$. For each $r \in I$ and for each $u \in h^{-1}(r)$, $h(u) = \varepsilon_X(x)u = u(x) = r$.

Thus $x \in u^{-1}(r)$, i.e., $x \in \mathcal{U}_h^{(r)}$ and $x \in \bigcap_{r \in I} \mathcal{U}_h^{(r)}$.

Conversely, $\bigcap_{r\in I} \mathcal{U}_h^{(r)} \neq \emptyset$. Then $\bigcap \mathcal{U}_h^{(r)} = \{x\}$, for some $x \in X$. For, if $x,y \in \bigcap \mathcal{U}_h^{(r)}$ and $x \neq y$, then there exists $u \in C(X)$ such that

 $u(x) \neq u(y)$, say u(x) = r and u(y) = s. Let h(u) = t. Then $x \in \mathcal{U}_h^{(t)} \cap \mathcal{U}_h^{(r)}$, $x \in u^{-1}(t)$ and $x \in u^{-1}(r)$, $u \in h^{-1}(t)$ and $u \in h^{-1}(r)$. Thus t = r = h(u). Similarly t = s, a contradiction. Now show that $\varepsilon_X(x) = h$. For each $u \in C(X)$, let h(u) = r. Then $u \in h^{-1}(r)$. Since $x \in \bigcap \mathcal{U}_h^{(r)}$, $x \in u^{-1}(r)$, i.e., u(x) = r. i.e., $\varepsilon_X(x)(u) = h(u)$. Thus $h = \varepsilon_X(x)$.

For $A \in \mathbf{A}$, a family $\{A_r | r \in I\}$ are said to be *completely separated* if there exists $h \in S(A)$ such that $A_r \subset h^{-1}(r)$ for each $r \in I$. For any object $X \in \mathbf{X}$, the underlying set |X| of X with discrete topology is also an object of \mathbf{X} . For the identity $\mathrm{id}_X : |X| \to X$ in \mathbf{X} , $C(\mathrm{id}_X) : C(X) \to C(|X|) = I^X$ is an embedding.

Theorem 9. For an object $X \in \mathbf{T}$, the following statements are equivalent:

- (1) ε_X is an epimorphism, i.e., an isomorphism.
- (2) For each $h \in SC(X)$ $\bigcap_{r \in I} \mathcal{U}_h^{(r)} = \{x\}$ for some $x \in X$, where $\mathcal{U}_h^{(r)}$ is the same as in lemma 6.
- (3) Any completely separated family $\{A_r|r\in I\}$ in C(X) is also completely separated in $I^{|X|}$.
- (4) For each $h \in SC(X)$, $\{\Gamma(h^{-1}(r))|r \in I\}$ are mutually disjoint in $I^{|X|}$, where Γ is the closure operation.
- (5) $SC(i_x)$ is surjective.

Proof. (1) \iff (2) We have proved in lemma 6.

- (2) \Longrightarrow (3) Let $\{A_r|r\in I\}$ be a completely separated family in C(X), i.e., there exists a $h\in SC(X)$ such that $A_r\subset h^{-1}(r)$ for each $r\in I$. If $u\in A_r\subset h^{-1}(r)$, then $\mathcal{U}_h^{(r)}\subset u^{-1}(r)$ for each $r\in I$. Since $x\in \cap \mathcal{U}_h^{(r)}$, u(x)=r. $u\in pr_x^{-1}(r)$ for each r, and hence $A_r\subset pr_x^{-1}(r)$, where pr_x is the x^{th} -projection C(|X|) onto I. But on the other hand, $pr_x\in SC(|X|)=S(I^{|X|})$. Thus $\{A_r|r\in I\}$ is completely separated in $I^{|X|}$
- (3) \Longrightarrow (4) Since $\{h^{-1}(r)|r\in I\}$ is complete separated in C(X), by (3) it is completely separated in $I^{|X|}$. Thus there exists a $\overline{h}\in S(I^{|X|})$ such that $h^{-1}(r)\subset \overline{h}^{-1}(r)$. But $Cl(h^{-1}(r))\subset \overline{h}^{-1}(r)$. Hence (4) holds.
- $(4) \Longrightarrow (5)$ To show this end, we prove firstly that (4) implies (1) as follows: for each $h \in SC(X)$, $\{h^{-1}(r)|r \in I\}$ is complete separated. By (4), they are complete separated in $I^{|X|}$. It follows that there exists

 $\overline{h} \in S(I^{|X|})$ such that $h^{-1}(r) \subset \overline{h}^{-1}(r)$ for each $r \in I$. But by lemma 8, $\varepsilon_{|X|}$ is surjective. Hence there exists $x \in |X|$ such that $\overline{h} = \varepsilon_{|X|}(x)$.

Claim that for the same $x \in X, h = \varepsilon_X(x)$. Indeed for any $u \in C(X)$, h(u) = r iff $u \in h^{-1}(r)$ implies $u \in \overline{h}^{-1}(r)$ iff $\overline{h}(u) = r$ iff $\varepsilon_{|X|}(x)(u) = r$ iff u(x) = r. Thus $h(u) = u(x) = \varepsilon_X(x)(u)$, which says that $h = \varepsilon_X(x)$ for $x \in X$. Hence $X \in \text{Fix}\varepsilon$.

On the other hand, the δ -completion $\delta(C(X))$ of C(X) is isomorphic to a cube $I^{|SC(X)|}$ by theorem 5 which is isomorphic to $I^{|X|}$ because $SC(X) \cong X$ by ε_X . By the universal property of δ , for a homomorphism $h: C(X) \to I$, there exists an extension $\overline{h}: \delta(C(X)) \to I$ such that $\overline{he} = h$, where e is the embedding of C(X) into $\delta(C(X))$. Let $i_X: |X| \to X$ be the identity function. Then i_X is a X-morphism. Thus $C(i_X): C(X) \to C(|X|) (\cong I^{|X|})$. Further, $\overline{h} \cdot C(i_X) = h$ because $C(i_X)$ and e are identified since $\delta C(X) \cong C(|X|)$. Namely $SC(i_X)(\overline{h}) = h$. Hence $SC(i_X)$ is surjective.

(5) \Longrightarrow (1) By $(\eta, \varepsilon)S \dashv C$ we have that for $X \in \mathbf{X}$, and let $i_X : |X| \to X$, $\varepsilon_X i_X = SC(i_X)\varepsilon_{|X|}$. Since $\varepsilon_{|X|}$ and $SC(i_X)$ are surjective, ε_X is also surjective. Thus ε_X is an isomorphism. The proof is complete.

References

- J. Adamek and H. Herrlich, Abstract and Concrete Categories, John Wiley & Sons. Inc., 1990.
- [2] L. P. Belluce, Semisimple algebras of infinite-valued logic and bold fuzzy set theory, Canad. J. Math. 38 (1986), 1356-1379.
- [3] _____, α-complete MV-algebras, Non-classi. log and their appl. to fuzzy subsets, Linz. 1992, 7–21.
- [4] C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467–490.
- [5] T. H. Choe, A dual adjointness on partially ordered topological spaces, J. Pure Appl. Algebra 68 (1990), 87–93.
- [6] T. H. Choe, E. S. Kim, and Y. S. Park, Representations of semi-simple MV-algebra, Kyungpook Math. J. 45 (2005), to appear.
- [7] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand Princeton, NJ., 1960.
- [8] S. S. Hong and L. D. Nel, Duality theorems for algebras in convenient categories, Math. Z. 166 (1979), 131-136.
- [9] A. Di Nola and S. Sessa, On MV-algebras of continuous functions, Kluw, Acad. Pub. D. 1995, 23–32.
- [10] C. S. Hoo, Topological MV-algebras, Topology Appl. 81 (1997), 103–121.
- [11] D. Mundici, Interpretation of AFC*-algebras in Lukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15–63.

[12] H. E. Porst and M. B. Wischnewsky, Every topological category is convenient for Gelfand-Naimark duality, Manuscripta Math. 25 (1978), 169–204.

Tae Ho Choe
Department of Mathematics & Statistics
McMaster University
Hamilton, Ont, Canada
E-mail: choe@mcmaster.ca

Eun Sup Kim and Young Soo Park Department of Mathematics College of Natural Sciences Kyungpook National University Taegu 702-701, Korea E-mail: eskim@knu.ac.kr yngspark@knu.ac.kr