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SPECTRAL DUALITIES OF MV-ALGEBRAS

TAE Ho CHOE, EUN Sup KIM, AND YOUNG SO0 PARK

ABSTRACT. Hong and Nel in [8] obtained a number of spectral
dualities between a cartesian closed topological category X and a
category of algebras of suitable type in X in accordance with the
original formalism of Porst and Wischnewsky[12]. In this paper,
there arises a dual adjointness S F C between the category X =
Lim of limit spaces and that A of MV -algebras in X. We firstly
show that the spectral duality: S(A)°? ~ C(X?) holds for the
dualizing object K = I = [{0,1] or K = 2 = {0,1}. Secondly, we
study a duality between the category of Tychonoff spaces and the
category of semi-simple MV -algebras. Furthermore, it is shown
that for any X € Lim (X # 0) C(X, I) is densely embedded into a
cube IlHl, where H is a set.

1. Introduction

MYV -algebras were originaly defined by C. C. Chang[4] as an algebraic
counterpart to the Lukasiewicz infinite valued propositional calculus. In
[11], Mundici established a categorical equivalence between the category
of MV-algebras and that of abelian {-groups with order unit.

The aim of this paper is to investigate the dual adjunction between
topological spaces (more generally limit spaces) and (topological) MV-
algebras. In [8], the authors studied spectral dualities between the cate-
gory X = Lim of limit spaces and that A of rings with unit in £im and
pointed vector spaces in Lim.

In general, one considers a cartesian closed topological category X, a

category A of universal algebras of suitable type in X and a basic object
KeA.
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Namely, A € A is an X-object and all A-structures of a set of oper-
ators are X-morphisms. In [12], they regarded a very general situations
in which A is defined by X-monad. But in this paper, we deal with A
as an alternative method of admissible categories based on methods of
universal algebras.

Let C : X? — A be the function algebra functor and S : A — X be
the spectral space functor: namely C(X) is the A-object of all X — K
and S(A) is the X-object of all A — K. ‘

For a suitable choice of X, A, K, it may happen that S(A)° and
C(X“P) are categorically equivalent. This dual equivalence is called a
spectral duality, which is then the largest duality in the (n,¢) : § - C.

In this paper, we first establish a spectral duality between X = Lim
and the category M, of MV-algebras in X while K is the unit inter-
val topological MV-algebra I, and subsequently the discrete two point
Boolean algebra 2 = {0,1}. This result reduced the classical Stone du-
ality.

In the second part of this paper, the dualities between the category
of Tychonoff spaces and that of semisimple MV-algebras were investi-
gated. We obtained useful characterization theorems that the counit &
is surjective i.e., an isomorphism. This criterion is a general result from
the case of Zdim of zero-dimensional spaces with K = 2 to the case of
Tychonoff spaces with K = I.

2. Spectral duality of MV-algebras

Let X = Lim, A = M, and K = I = [0, 1] with the usual topology.
In this section, we first prove that for these X, A and K, the spectral
duality holds.

We note that I is a topological MV -algebra so that I € A. Indeed, all
operations of I are continuous. The function algebra functor C' : X? —
A is defined by C(X) = homx (X, I) for X € X, thus C(X) € A. And
the spectral space functor S(A) = homa (4,1) for A € A, thus S(A) €
X. The unit 7 is defined by 14 : A — CS(A) with na(a)(u) = u(a) for
each a € A,u € S(A) and each A € A. And the counit ¢ is that for
X € XP ex: X — SC(X) with ex(z)(f) = f(z) for each x € X and
each f € C(X). Then it is a routine calculation that .S is a left adjoint
to C via n and ¢.

Let Fixn be the isomorphism closed subcategory of A determined
by objects A € A such that 54 is an isomorphism. Dually Fixe the
isomorphism closed subcategory of X determined by objects X € X
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such that ex is an isomorphism in X. Then generally we have the largest
duality (Fixe)°? ~Fixn in any (n,¢) : S 4 C.

Recall that a category X is called an (E, M)-category if for the class
E of epimorphisms, the class M of monomorphism, and for any X-
morphism f, f = m - e for some m € M and some ¢ € E. Moreover,
fore e E,m € M, and f,g € X, if mf = ge, then there exists h € X
uniquely such that he = f and mh = g.

It is well known for an example that Lim is an (Onto Embedding)
category.

For (n,e) : S H4C,ifex € M for X € X, then X is said to be M-
embeddable. The class of all M-embeddable objects in X is denoted by
Emb. Then Emb is an E-reflective in X. Furthermore, S(4) €Emb
for any A € A [12].

By a completely regular filter on a Tychonoff space X, we mean a
filter 7 on X which have an open base B such that for each B € B,
there exists C € B and f € C(X,I) such that C C B, f(C) = {0} and
f(X — B) = {1}. Recall that a completely regular filter F is maximal
iff for two open sets D C C and for f € C(X,I) with f(D) = {0} and
f(X —C) = {1}, we have either C € F or C' ¢ F, and F has a member
B such that BN D = 0.

Recall that the full subcategory T of Tychonoff spaces is a reflective
hull of I in X = Lim. Once again, consider S 4 C : X°? — A, where
X = Lim, A =9M,,, and K = I. Then we have the following lemma :

LEMMA 1. Let X € X be a Tychonoff space. For any h € SC(X,I),
there exists a maximal completely regular filter F on X such that h(f) =
lim f(F) for any f € C(X,I).

Proof. For f € h™Y(0) and ¢ > 0, let w(f,e) = {z € X|f(z) < €}.
Let B = {w(f,e)|f € h71(0),e > 0}. Then B is a filter base on X.
Indeed, w(f,e) # 0 for any f € h~1(0) and any € > 0. For, if it is empty,
f(x) > e for all x € X. Then (nf)(z) > n-c =1 for a large n € Z+
in the MV-algebra C(X). Thus nf = 1 and hence n - h(f) = 1. This is
absurd. Since h preserves the join-operation : fV g = f+ f*g, it is easy
to see that w(f,e) Nw(g,d) contains w(f V g, A§). Let F be the filter
generated by B on X. Show that F is a complete regular filter. Indeed
for B = w(f,e) € B, choose C = w(f,c/2) € B.

Now define a continuous map g from I into I as follows :

0 if 0<xz<eg/2,
glxy=< (2/e)x—-1 if e/2<z<g¢,
1 if e<z<1.
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Let e = go f. Then e € C(X). Further e(C) = {0}, e(X — B) = {1}.
Thus F is completely regular.

Now we claim that F is maximal. Consider two open subsets D
and C of X with D C C and f € C(X) such that f(D) = {0} and
f(X — C) ={1}. Suppose that C ¢ F. Then A(f) # 0. For, if h(f) =0,
then w(f,3) C C because of w(f, DN(X-C)=0.Thus C € F, a
contradiction. If h(f) = r # 0, then for the constant function r of r,
w(f*r,r/2) € F and it is disjoint from D because if x € w(f*r,r/2)ND
then, since h(r) = r we have (1 — f(z)) -r < r/2 and f(z) = 0, thus
r < r/2. This is impossible. Hence by the criterion of maximality, F
is a maximal completely regular filter. Finally, we show that h(f) =
lim f(F) for each f € C(X). Indeed, if h(f) = r € I, then h{fr*) =0
and h(r - f*) = 0. Thus w(fr*,¢) and w(rf* ) € B C F. For any
basic nbd(r — €, + €) of r in I, we have f(w(rf*, ) Nw(fr*e)) C
(r—e,r+¢). Hence lim f(F) = r = h(f) for each f € C(X). The proof
is complete. O

Let S(A) be the isomorphism closed full subcategory of X determined
by S(A) for all A € A, and let C(X) be the isomorphism closed full
subcategory of A determined by C(X) for all X € X.

Then we have the spectral duality theorem :

THEOREM 2. For X = Lim,A = M, and K = I, we have that
S(A)P ~ C(X°P). Furthermore, S(A) ~Fixe and C(X) ~Fixn.

Proof. Since X = Lim is an (Onto, Embedding)-category, it is
enough to show that ex is onto for every X € X.

Since T is epi-reflective in Top(=category of topological spaces) and
Top is bireflective in Lim, T is epi-reflective in Lim.

Let ¢ : X — cX be the T-reflective of X € X = Lim and cX € T.
For any h € SC(X) for any X € X, let h, = SC(c)h. By lemma 1, for
he there exists a maximal completely regular filter F on cX such that
he(f) =1lim f(F) for each f in C(cX).

We claim F is convergent on ¢X, which can be shown as in the proof
of (theorem 1(a) in [8]). Note that since K = I, F is not necessary
to have the finite intersection property. Say F converges c(z) € cX,
where z € X. For each f € C(X) there exists f, uniquely such that
fe-c = f. Thus h(f) = h(feoc) = he(fc) = lim fo(F) = fe(c(z)) =
f(x) =ex(x)(f). Thus h = ex(z) (z € X). The proof is complete. [

Next consider the same X = Lim, A = M, but K = 2 = {0,1}
with 0 < 1 and the discrete topology. Clearly 2 € A. Namely C(X) =
homx (X, 2), S(A) =homa (A, 2).
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THEOREM 3. For X = Lim,A = M, and K = 2, we have that
S(A)P ~ C(X°P). Furthermore, S(A) ~Fixe and C(X) ~Fix1.

Proof. 1t is enough to show that for X € X,ex is surjective. For
each h € SC(X),h™1(0) is a maximal ideal in C(X). Consider F =
{f~1(0)|f € h~1(0)}. One can easily show that F is a maximal clopen
filter (base) on X. The proof is virtually the same as the ring case.

Now we claim that h(f) = lim f(F) for all f € C(X). Indeed, suppose
that A(f) = 0. Then since f~'(0) € F we have lim f(F) = 0. Now
suppose that h(f) = 1. Let g be the characteristic function of the set
f71(0). Then g € C(X) and f - g = 0 in C(X). For, (fg)(x) = f(z) -
g(z) = max{0, f(z) + g(x) — 1} =0 for all z € X. Thus fg=0.

Hence h(g) = 0, thus ¢g~'(0) € F. We have f(g~*(0)) = {1}. Hence
lim £(F) = h(f).

Now let Zdim be the full subcategory of zero-dimensional spaces. It
is well known that Zdim is an epi-reflective in X. Let d : X — dX be the
Zdim-reflection of X € X, and let SC(d)(h) = hy for each h € SC(X).
Then for any f € C(X), there exists f € C(dX) with fd = f uniquely.
Moreover h(f) = h(fd) = h(C(d)F) = SC(d)(B)(F) = ha(F).

For any h € SC(X), i.e., hy € SC(dX), there exists a clopen filter F
on dX such that hy(f) = lim f(F) for all f € C(dX). The proof that F
is convergent, and the remaining proofs are virtually the same as in the
proof of Theorem 2. (Il

Let TBoo be the full subcategory of M, of topological Boolean al-
gebras. Then we obtain the classical Stone duality in the following
corollary :

COROLLARY. (Zdim)° ~ TBoo.

Proof. One can easily see that S(TBoo) ~ Zdim and C((Zdim)) ~
TBoo. d

3. Dualities between Tychonoff spaces and semi-simple MV -
algebras

REMARK 1. In [3], Belluce showed that for an MV-algebra A the
following statements are equivalent.

(i) A is isomorphic to the set of all fuzzy subsets of some nonempty
set X, i.e., A2 X (cube).
(ii) A is complete and sub-atomic.
It is easy to that these statements are equivalent to
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(iii) A is complete, B(A) is atomic and A is atomless.

REMARK 2. In [6], it is shown that for each semi-simple MV -algebra
A, A is embedded into I, say the embedding e, where H = |S(A, I)|.
But I¥ is a topological MV-algebra which is compact Hausdorff.

We have A — e(A) C §(A) = I'(e(A)) in I7, where T is the closure
operation of the product topology of I*. Then §(A) is a compact topo-
logical MV -algebra which is complete and B(4(A)) is complete atomic.
Let X be the set of all atoms of B(§(A)). Then A = e(A) C 6(A) =
IVHolx TI{A(m)|m € A C Z*}, where |Hp| U|A| = | X| (disjoint). This
0(A) is called the §-completion of A.

For a € X, we have a € Hy when | a = Aa is atomless and we have
a € A when | a = Aa = A(m) for some m € Z7, where | a = {z|z <
a}. Hence if A is atomless then §(A) = I'Xl. We would say that any
semi-simple MV -algebra that is atomless is densely embedded into a
cube I'XI. Of course, A itself is not necessary to be a topological MV-
algebra but e(A) has the relative topology under which it is regarded as
a topological MV -algebra.

REMARK 3. In [6], it is also shown that for e : A — §(A) (embedding)
e is I-extensive. This reduces that if B is complete and its idempotents
are atomic then for a homomorphism f : A — B, there exists a unique

homomorphism F : §(A) — B such that Foe = f.

LEMMA 4. Let X € X = Lim, and let |X| be the underlying set of
X with the discrete structure. Then |X| and |SC(|X|)| are equipotent.

Proof. Consider C(|X|). Clearly, it is isomorphic to I'X!. Now we find
the all maximal ideals of I'X|. Clearly B(I'X!) is a complete Boolean
algebra whose atoms are {€;|x € X}, where €, has all zero components
but the zt"-component is 1 for each z € X. Since I'X! is a compact M V-
algebra, B(I'X!) is a power set Boolean algebra with atoms {g;|z € X}.
Every maximal ideal M of I'X! is compact because it is closed. There
exists an €% such that M =| &, where €% are the coatoms of B(I'X!).
Hence |X| and [D(I'X!)| are equivalent under the map x — €%. On
the other hand M(IX!) and S(I'X!) are also equipotent and |X| and
|SI(|X|)| are equipotent. O

THEOREM 5. Let X € Lim,(X # 0). Then the é-completion of the
semi-simple MV -algebra C(X) is isomorphic to a cube I'SC(X),
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Proof. Firstly we have to show that for any non void X € Lim,C(X)
is a semi-simple MV-algebra that is atomless. Clearly C(X) is em-
bedded into I'X!. Thus it is semi-simple. Now show that C(X) is
atomless. For any f € C(X) with f # 0, we claim that %f < fin
C(X). Indeed, setting g = 1f, we have g < gV f = f + f*g in C(X),
g(z) < g(x)V f(z) = f(z)+ f*(x)g(x) = f(x) in I for each z € X. Show
that gf* =0, ie., g < f. Since g(z) < f(x), (gf*)(x) =0 for any xz € X.
Thus gf* = 0. Obviously, g # f, and hence g < f. Hence C(X) has no
atom. By Remark 2, §(C(X)) = 15(C(X), O

LEMMA 6. For X € T, the maximal space (MM(I1X),7,) of I'X| with
the Zarski topology is the discrete space.

Proof. For each M € IMM(IX!) we have M =| € for some = € |X|. For
any non void subfamily {M,|z € T} of MIXN), let a = inf{e*|c € T'}
and let b = inf{€;|y ¢ I'}. Since IX1 is semi-simple, we have a A b = 0.

Furthermore, a* = sup{e;|x € I'} and b* = sup{gyly ¢ I'}. Claim
that b = {M,|z € I'}. Indeed, if b € M, =] &, then &, < b*. This is
impossible. Thus M, € b for all z € T. Hence 7, is discrete topology.
Hence | X| and M (I'X!, 7,) are homeomorphic as the discrete spaces. [

LEMMA 7. For X € T,ex : |X| — S(IX,7,) is surjective.

Proof. By [6], ® : S(I'X| 7)) — 9(I1X], 7,) defined by ®(u) = u~'(0)
for u € S(I¥1) is a continuous bijection. Let ¥ : [X| — M(IX] 7,) be
the homeomorphism by ®(x) =] €} for each x € |X|. Thus ®-¢|x) = V.
It follows that € x| is surjective.

The following criterion whether ex for X € T is surjective is a gen-
eralized result from the case of Zdim with k& = 2 to the case T with
K=1.

LEMMA 8. For (n,¢) : S 4 C, ex is onto for X € T iff U # 0,
rel

where L{,(f) =N {u(r)|u e h71(r)} for eachr € I.

Proof. Assume that € x is onto. Then for each h € SC(X) there exists
x € X such that h = ex(z). For each r € I and for each u € h=1(r),
h(u) = ex(z)u = u(z) =r.
Thus z € u~!(r), i.e., z € U,(Lr) and z € ﬂL{,(f).
rel

Conversely, ﬂL{,(:) # (). Then nu,(f) = {z}, for some z € X. For,
rel

if z,y € ﬂu,ﬁ’") and x # y, then there exists u € C(X) such that
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u(z) # u(y), say u(xr) = r and u(y) = s. Let h(u) = t. Then x €
L{,St) nu,ﬁ’"), r € u1(t) and ¢ € wi(r), u € h™1(t) and u € AY(r).
Thus ¢ = r = h(u). Similarly ¢ = s, a contradiction. Now show that
ex(x) = h. For each u € C(X), let h(u) = r. Then u € h~*(r). Since
€ nu,([), z € u”l(r), ie., u(z) = r. ie., ex(z)(u) = h(u). Thus
h =ex(z). O

For A € A, a family {A,|r € I} are said to be completely separated
if there exists h € S(A) such that A, C h=1(r) for each r € I. For any
object X € X, the underlying set | X| of X with discrete topology is also
an object of X. For the identity idx : |X| — X in X, C(idx) : C(X) —
C(|X|) = I¥ is an embedding.

THEOREM 9. For an object X € T, the following statements are
equivalent :

(1) ex is an epimorphism, i.e., an isomorphism.

(2) For each h € SC(X) ﬂu;(:) = {z} for some & € X, where U,(f) is
rel
the same as in lemma 6.

(3) Any completely separated family {A,|r € I} in C(X) is also com-
pletely separated in I'X!. '

(4) For each h € SC(X),{T'(h=1(r))|r € I} are mutually disjoint in
I'X! where I is the closure operation.

(5) SC(iy) is surjective.

Proof. (1) <= (2) We have proved in lemma 6.

(2) = (3) Let {A,|r € I} be a completely separated family in C'(X),
i.e., there exists a h € SC(X) such that A, C h=!(r) for each r € I.
If u € Ar C h71(r), then U,(f) C u~Y(r) for each r € I. Since z €
nu}["),u(m) = r. u € pr;i(r) for each r, and hence A, C pr;i(r),
where pr; is the z*P-projection C(|X|) onto I. But on the other hand,
plrmle SC(|1X|) = SUIXN). Thus {A,|r € I} is completely separated in
i,

(83) = (4) Since {h~(r)|r € I} is complete separated in C(X), by
(3) it is completely separated in I'X!. Thus there exists a h € S(I'X)
such that h~1(r) C B~ (r). But Cl(h~i(r)) C 7 '(r). Hence (4) holds.

(4) = (5) To show this end, we prove firstly that (4) implies (1)
as follows: for each h € SC(X),{h *(r)|r € I} is complete separated.
By (4), they are complete separated in I'X|. It follows that there exists
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h € S(I'X1) such that A~1(r) C H_l(r) for each r € I. But by lemma 8,
€|x| is surjective. Hence there exists x € |X| such that h = ¢x(x).

Claim that for the same x € X, h = ex(x). Indeed for any u €
C(X), h(u) = r iff u € A™1(r) implies u € E~1(r) iff A(u) = r iff
g x|(z)(u) = r iff u(z) = r. Thus h(u) = u(z) = ex(z)(u), which says
that h = ex(x) for z € X. Hence X € Fixe.

On the other hand, the §-completion §(C(X)) of C(X) is isomorphic
to a cube ISCXI by theorem 5 which is isomorphic to I'X! because
SC(X) = X by ex. By the universal property of 6, for a homomorphism
h : C(X) — I, there exists an extension h : §(C(X)) — I such that
he = h, where e is the embedding of C(X) into §(C(X)). Let iy :
|X| — X be the identity function. Then iy is a X-morphism. Thus
Clix): C(X) — C(|X|)(= I'X!). Further, & - C(ix) = h because C(ix)
and e are identified since 6C(X) = C(|X|). Namely SC(ix)(h) = h.
Hence SC(ix) is surjective.

(5) = (1) By (1,¢)S -1 C we have that for X € X, and let ix : | X| —
X, exix = SC(@'X)5|X[. Since ¢|x| and SC(ix) are surjective, ex is also
surjective. Thus ex is an isomorphism. The proof is complete. O
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