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DUAL OPERATOR ALGEBRAS GENERATED
BY A JORDAN OPERATOR -

Kun Wook Chei, Young Soo Jo and Il Bong Jung

Let 'H be a separable, infinite dimensional, complex Hilbert space and
let £(H) be the algebra of all bounded linear operators on H. Suppose that
C; = C1(H) 1s the von Neumann-Schatten ideal of trace class operators in
L(H) under the trace norm. Then it is well known that C; = L(H) under
the pairing

(1) <T,[L] > =trace(TL), T € L(KH), L € C,.

Note that the weak* topology that accrues to L(H) by virtue of the above
duality coincides with the ultraweak operator topology on L(H) (cf. [6]).
A dual algebra is a subalgebra of £(H) that contains the identity operator
I3 and is closed in the ultraweak operator topology on L(H). For T' €
L(H), let Ar denote the dual algebra generated by T'. The theory of dual
algebras is applied to the study of invariant subspaces, reflexivity and
dilation theory. This theory is deeply related to properties (A, ) which
are the study of the problem of solving systems of the predual of a dual
algebra (cf. [1], [3] and [4]). In this paper, we discuss property (A,...)
of the dual algebra singly generated by a Jordan block part of a Jordan
operator.

The notation and terminology employed here agree with those in [2],
[4] and [5]. We recall the essentials nonetheless for the convenience of the
reader. Suppose that A is a dual algebra in £(H). Let + A denote the
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preannihilator of A'in C;. Let Q4 denote the quotient space C;/*A. One
knows that A is the dual space of @4 and that the duality is given by

(2) <T,[L] > = trace(TL), T € A, [L] € Q4.

For vectors = and y in H, we write, as usual, * @ y for the rank one
operator in C; defined by (¢ ® y)(u) = (u,y)z,u € H. Throughout this
paper, we write IN for the set of natural numbers. For a Hilbert space K
and any operators T; € L(K), 1 = 1,2, we write Ty = Ty if T} is unitarily
equivalent to T5. For T' € L(K) we write the n-th ampliation of T by

(n)
") =Teg...qT.

Let A be an algebra in £(K). Then we write
AP = (Tt T € A},

Suppose m and n are cardinal numbers such that 1 < m,n < 8. A dual
algebra A will be said to have property (A, ) if every m x n system of
simultaneous equations of the form

(3) [z; @ y;] = [Ly],0<i<m, 0< 5 <n,

where {[L;;]}o<i<m 1s an arbitrary m X n array from Q4, has a solution
0<i<n

{%: Jocicms {yj}_DSKn consisting of a pair of sequences of vectors from H.
Furthermore, if m, n € N and r is a fixed real number satisfying r > 1,
then a dual algebra A has property (A,,,)(r) if for every s > r and every
m X n array from Q4, there exist sequences {Z;}ocicm,{¥j}locj<n that
satisfy (3) and also satisfy the following conditions:

1/2
(4) lwzll<( 2 II[LU]H) » 0<i<m

0<3<n
and
1/2
(5) lJwill < (S 7. ||[L1-J-]||) , 0<j<n
0<<m

Finally, a dual algebra A CL(H) has property (A, x,(r)) (for some real
number r > 1) if for every s > r and every array {[L,‘j]}oﬂgf<m from Q4
Sy<o0
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with summable rows, there exist sequences {;}ocicm and {¥;}o<jcoo Of
vectors from H that satisfy (3), (4) and (5) with the replacement of n
by No. Properties (Ay, (7)) and (Ay,x,(r)) are defined similarly. For
brevity, we shall denote (A, ) by (A,). We shall denote by D the open
unit disc in the complex plane C and we write T for the boundary of D.
For 1 < p < oo, we denote by L? = L?(T) the Banach space of complex
valued, Lebesgue measurable functions f on T for which |f|? is Lebesgue
integrable, and by L* = L*°(T) the Banach algebra of all complex valued
Lebesgue measurable, essentially bounded functions on T. For1 < p < oo
we denote by H? = H?(T) the subspace of L? consisting of those functions
whose negative Fourier coefficients vanish. Let us recall that a completely
nonunitary contraction 7' € L£L(H) is to be of class Cj if there exists a
non-zero function u € H*(T) such that (under the functional calculus)
u(T) = 0 (cf. [2]). Let S be the unilateral shift of multiplicity one.
Then the function S(0) defined by S(0) = (S*|(H* & 6H?))*, for an inner
function @, is called a Jordan block and that any operator of the form
S(0,) ® S(0;) @ --- @ S(0x) ® S, where 0,,8,,---,0; are nonconstant
(scalar valued) inner functions and 0 < k < o0, 0 < I < o0, is called a
Jordan operator (cf. [13]).

We start the work from the following theorem which comes from [9,
Corollary 4.8].

Theorem 1. If T = S™ @ S(0,) @ --- @ S(0x) is a Jordan operator,
1 <n < oo, and k € N, then Ar has property (A, x,)(1) but not property
(Ant1,)-

The Jordan block part, S(¢1) @ --- @ S(0x), of T in the above theorem
doesn’t give any role for the property (A, x,)(1). But by considering only
the Jordan block part without shift part, we obtain the following theorem.

Theorem 2. If T = S(6)™ for n € N, then Ar has property (A,)(1).

We need several lemmas to prove the above main theorem. The follow-
ing lemma is elementary, but we sketch the proof here for the convenience
of readers.

Lemma 3. Suppose that A C L(H) is a dual algebra. Then the following

are equivalent:

(a) For a weak*-continuous linear functional ¢ on A and every € > 0,
there exist vectors z,y € H such that p(A) = (Az,y) for all A € A and
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lzllllgll < (1 +llell 5
(b) For a weak*-continuous linear functional ¢ on A and every s > 1,

there exist vectors x,y € H such that p(A) = (Az,y) for all A € A and

Iyl < sllell;
(c) For every s > 1 and [L] € Q4, there exist vectors z,y € H such

that [L] = [z @3] and |Jel31] < SIZI] ;
(d) For every s > 1 and [L] € Q4, there exist vectors z,y € H such
that [L) = [ @ 3], [[2]F < s|(L)] and ] < s|(L]]
(e) For every s > 1 and [L]| € Qa, there exist vectors x,y € H with
lzll = llyll such that [L] = [2®] and ||z||* < s||[L]]|-
Proof. (a) = (b): obvious.
(b) = (c): Let [L] € @4 and let ¢ : A — C be a weak*-continuous linear
functional on A defined by ¢(A) =< A,[L] >. Then there exist vectors
z,y € H such that ¢(A) = (Az,y). Since < A,[L] >=< A,[zr @ y] > for
all A€ A, [L] = [z ® y]. Furthermore, since

(6) Il = sup{lp(A)] : A € A, [|A[l < 1} = [|[L]]],

we have this implication.

(c) = (e) : Consider 2’ = ;z,y = Ay, where X = /| z||/|ly||-

(e) = (d) = (c): obvious.

(e) =(a): Let ¢ be a weak™-continuous linear functional on .A. Then there
exist square summable sequences {z;}2, and {y;}32, in H such that

o0

(7) p(A) = D (A, ).

=1
By assumption of (e) there exist  and y in ‘H such that

(e}

(8) ;[331' R y;] = [z @yl

and

(9) 1> = llyll* < (1 + )|z @ ]|

which implies that

10)  p(A) =< A, e @ 5] >=< A [z 03] >= (Az,y).

=1

Moreover, by (6) and (9) we have ||z||* < (1 + ¢€)||||. Hence the proof is
complete.
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The following comes from Hadwin-Nordgren [T7].

Lemma 4. Let M be a weak*-closed subspace of L(H) and ¢ be a weak*-
continuous functional on M with ||¢|| < 1. Then for every € > 0, there is
an extension ¢ of p to L(H) such that

(s o]

(11) &(T) = D (Tzn,yn)

n=1

and 1
L (Z IIInllz) (Z ||yn!|2) <1l+e
n=1 n=1

where {z,}22, and {y.}22, are square summable sequences in H.

Without loss of generality, we can assume that ||¢|| = 1 in Lemma
3 (a) (because, consider ¢’ = ”—:’:“) Hence if we follow the proof of the
implication (a) = (d) in Lemma 3, we can restate Lemma 4 as following:

Lemma 5. Let ¢ be a weak*-continuous linear functional on a dual algebra
A C L(H). Then for every s > 1, there is an extension ¢ of p to L(H)
with

(13) P(T) = 3 (Tzn,yn)

n=1
such that
(14) 2 Nzl < sllll
n=1
and
(15) 2 Nyl < sllell,
ri=1

where {z,}52, and {y,}>>, are square summable sequences in H.

Recall that if @ is an inner function, then it follows from [2, Proposition
IIT 1.21] (or [11, Theorem 2]), the dual algebra Agg) has property (A)(1).
The following proposition improves [2, Proposition III 1.21 (iv)] (or [11,
Theorem 2]).

Proposition 6. For an inner function 6 and anyn € N, the dual algebra
As(sy has property (Ay,.)(1) and property (A, 1)(1).



48 Kun Wook Choi, Young Soo Jo and |l Bong Jung

Proof. Note that
(16) 5 o ( ; 5?@) )

relative to a decomposition X = Hy @ H, where S is a unilateral shift of
multiplicity one. Suppose that ¢; is a weak™-continuous linear functional
on Age and s > 1, = 1,2,---,n. By Lemma 5, there are sequences

{:EE)}EO:I and {y;(:)}f:l in H satisfying

(17) oi(A) = 3 (Az, )

k=1
for all A in A7 such that

(18) S 1201 < sl
k=1

and -

(19) S 1P < slleil)-
k=1

We denote by
K=o aoklNokle--akMa

(n) ()
(i-1) (i-1)
(20) 70) :(m,xf),... qu(‘) -,0,-++)
(n) (n)
and
(21) 7=", - u™ 0, e,

“v*

(n) (n)

where ICE) =K,1<i<n, ke N. Let M =V, 5%, where

(22) S=5e--osMesVe- a5,
(n) (n)

where S,(:) =S8,1<i<n, ke N. Since S|M is a cyclic completely
non-unitary isometry, it is unitarily equivalent to S. Then there is an

isometry W from K into K such that WK = M and
(23) WS = SW.
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Let T,Si} = Pi;W, where Py; is the projection from K ‘onto ICS). Then
clearly T,E’) € L(K) and for every = € K we have
24) Wz=T{z0---0f:0l'ce -0 ze- -
(n) ()
It follows by (23) and (24) that

(25) s = s

for any k,i. Let yo = W*y. Then T Yo = yk) for any k € N. Furthermore,
by (19) we have

(26) lwoll? = 1717 = -3 s < sZ||<.o,||

i=1 k=1
Since
@1) Wz, z) =GO, W) =3 (P, 702) = (T2, 2
= k=1
for every z € K, we can assert that the series T(' Ik converges

weakly to some a:( )( wWsiekK,i=1,---,n. By (18) we have
(28) 6”1 = 12)* = E i1 < slleill

Moreover, H is a hyperinvariant subspace for S*, so that .'r: YeH by (25).
Now for every A € Ag(s) we have

pi(A) = Z(Axk ) = Y (420, T ye)

k=1
(29) = (1 A2Q, o) = (AT 2, o) by (22)
k=1 k=1
= (AZ T2, yo) = (AcY, o)

= (Aa:o , Pnyo),  since :co Ve H

t =1,2,---,n. Hence the dual algebra Ag) has property (A;,)(1). Fur-
thermore, since S(0)* = S(8) (see [2, Corollary III 1.7]), where f(e't) =
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f(e~*), and since AS@) has property (A;,)(1), the algebra Ag) has prop-
erty (A,1)(1). Hence the proof is complete.

Proof of Theorem 2. If A is a dual algebra with property (A, ,) for some
positive integer n, then it follows from [10, Proposition 2.21] that the dual
algebra A™ has property (A,,). Since

Arey = (Ar)™

for any positive integer n, Proposition 6 implies the theorem.
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