PUSAN KYÖNGNAM MATHEMATICAL JOURNAL Vol.3, 27-31, 1987

PRIME DUAL IDEALS IN TANAKA ALGEBRAS

YOUNG BAE JUN AND KYUNG RIN CHUN

1. Introduction

K. Iseki [6] has introduced the notion of a BCK-algebra which is an algebraic formulation of a propositional calculus. We refer to Iseki [7], [8], and [9] for certain basic properties of these algebras. The ideals and their properties were studied by K. Iseki and S. Tanaka [10]. Elias Deeba [5] has introduced the notion of dual ideals in BCK-algebras. In [1], B. Ahmad has given a characterization of prime dual ideals in Tanaka algebras. In this note, we obtain some properties of prime dual ideals in Tanaka algebras. We recall that a set X is said to be a Tanka algebra [9] if the following conditions are satisfied:

- (1) (X, \leq) is a partially ordered set with least element 0,
- (2) (x*y)*z=(x*z)*y,
- (3) x*(x*y) = y*(y*x),

where $x \leq y$ means x * y = 0.

S. Tanaka proved that the algebra X is a semilattice with respect to $x \wedge y$ which is defined by y*(y*x), and X is a BCK-algebra, i.e. $(x*y)*(x*z) \leq z*y$ holds in X (See S. Tanaka [11], [12]).

In a BCK-algebra, the notion of a dual ideal has been defined in [5] as follows: DEFINITION. A non-empty subset D of X is a dual ideal in X if the following conditions are satisfied:

(1) $x \in D$, $x \le y$ imply $y \in D$.

(2) $x \in D$, $y \in D$ imply there exists an element $z \in D$ such that $z \leq x$, $z \leq y$.

In [1], B. Ahmad has defined a prime dual ideal as follows:

DEFINITION. A dual ideal P in a Tanaka algebra X is called a prime dual ideal if for any $x, y, x \lor y \in P$ implies $x \in P$ or $y \in P$.

2. Main Results

LEMMA 1. Let $\{P_i\}_{i\in I}$ be a non-empty family of prime dual ideals in a bounded Tanaka algebra X. If the family is totally ordered by set inclusion, then both $\bigcup_i P_i$ and $\bigcap_i P_i$ are prime dual ideals.

PROOF. To prove $\bigcup_i P_i$ (put P') is a prime dual ideal, suppose $x \in P'$ and $x \leq y$ for every $x, y \in X$. Then we have $x \in P_i$ and $x \leq y$ for some $i \in I$, which imply $y \in P_i$ for some i. This means that $y \in P'$. Assume that x and y are in P'. Then $x \in P_i$ and $y \in P_j$ for some i, j. If $P_i \subset P_j$ then $x, y \in$ P_j , and hence there exists an element $z \in P_j \subset P'$ such that $z \leq x$ and $z \leq y$. If $P_j \subset P_i$ then $x, y \in P_j$, and therefore there exists $z \in P_i \subset P'$ such that $z \leq x$ and $z \leq y$. Thus in any case there exists an element $z \in P'$ with $z \leq x$ and $z \leq y$. It follows that P' is a dual ideal. Next suppose that $x \lor y \in P'$ and $x \notin P'$. Then $x \lor y \in P_i$ and $x \notin P_i$ for some i, which imply $y \in P_i \subset P'$. Therefore P' is a prime dual ideal.

To prove $\bigcap_i P_i(\text{put } P'')$ is a prime dual ideal, we first

assume that $x \in P''$ and $x \leq y$ for all $x, y \in X$. Then $x \in P_i$ and $x \leq y$ for all $i \in I$. This imply that $y \in P_i$ for all i, and hence $y \in P''$. If x and y are in P'' then $x, y \in P_i$ for all i. Then there exists $z \in P_i$ such that $z \leq x$ and $z \leq y$ for all i. It follows that $z \in P''$ with $z \leq x$ and $z \leq y$. Thus P'' is a dual ideal of X. Now suppose that $x \lor y$ belongs to P'' but $x \notin P''$. Then it is possible to choose i with $x \lor y \in P_i$ but $x \notin P_i$. Then $y \in P_i$. Finally let j be an arbitrary element of I. If $P_i \subset P_i$ then $y \in P_i$. On the other hand, if $P_j \subset P_i$ then $x \lor y \in P_i$ while $x \notin P_j$. Consequently $y \in P_i$. Thus in any case $y \in P_j$ and hence $y \in P''$. Therefore P'' is a prime dual ideal and the proof is complete.

PROPOSITION 2. Let D be a dual ideal of a bounded Tanaka algebra X and let P be a prime dual ideal containing D. Then P contains a prime dual ideal which contains D and has no smaller prime dual ideal containing D.

PROOF. Denote by \mathscr{T} the set of all prime dual ideals which contain D and are contained in P. Then \mathscr{T} is not empty. Define a relation \leq on \mathscr{T} by $P' \leq P''$ if and only if $P'' \subset P'$ for all $P', P'' \in \mathscr{T}$. Then (\mathscr{T}, \leq) is a partially ordered set. Let S be a non-empty totally ordered subset of \mathscr{T} . By the above Lemma, the intersection of all members of S is a prime dual ideal \hat{P} , say. This certainly contains D and is contained in P. Consequently $\bar{P} \in \mathscr{T}$. Since $\bar{P} \subset P'$ for all $P' \in S$, we have $P' \leq \bar{P}$ for every $P' \in S$. Thus \bar{P} is an upper bound for S. By Zorn's Lemma, \mathscr{T} contains a maximal element P^* , and hence P^* is a prime dual ideal and $D \subset P^* \subset P$. Suppose now that $P^{**} \in \mathscr{T}$ and $P^* \leq P^{**}$. By the maximality of P^* , we have $P^* = P^{**}$, which completes the proof.

LEMMA 3. Let X be a bounded and implicative BCK-algebra and D be a dual ideal of X. Then D is maximal dual implies D is a prime dual ideal.

PROOF. See [3], p. 650.

PROPOSITION 4. Let X be a bounded and implicative Tanaka algebra, A an ideal of X, and let D be a dual ideal of X such that $D \cap A = \phi$. Then X contains a prime dual ideal which contains D and disjoint from A.

PROOF. Let \mathcal{D} be the set of all dual ideals which contain D and disjoint from A. \mathcal{D} is non-empty because $D \in \mathcal{D}$. We shall show that \mathcal{D} is inductively ordered by inclusion. To this purpose, let \mathcal{D}' be a totally ordered non-empty subset of \mathcal{D} . Let E be the union of all dual ideals in \mathcal{D}' . Then, by Lemma 1, E is a dual ideal. Also E contains D and disjoint from A, which implies that $E \in \mathcal{D}$. Moreover, it is clear that E is an upper bound of \mathcal{D}' . By Zorn's Lemma 3 that P is a prime dual ideal.

References

- B. Ahmad, A note on prime dual ideals in Tanaka algebras, Math. Seminar Notes, 10(1982), 239-242.
- [2] _____, Dual ideals in BCK-algebras I, Math. Seminar Notes, 10(1982), 243-250.
- [3] _____, Characterizations of dual ideals in BCK-algebras, Math. Seminar Notes, 10(1982), 647-652.
- [4] _____, Dual ideals in BCK-algebras I, Math. Seminar

Notes, 10(1982), 653-655.

- [5] E. Deeba, A characterization of complete BCK-algebras, Math. Seminar Notes 7(1979), 343-349.
- [6] K. Iseki, An algebra related with a propositional calculus, Proc. Japan Acad., 42(1966), 26-29.
- [7] ____, Some properties of BCK-algebras, Math. Seminar Notes, 2(1974), 193-201.
- [8] ____, Remarks on BCK-algebras, Math. Seminar Notes, 3 (1975), 45-54.
- [9] ____, On some ideals in BCK-algebras, Math. Seminar Notes, 3(1975), 65-70.
- [10] K. Iseki and S. Tanaka, Ideal theory of BCK-algebras, Math, Japonica 21(1976), 351-366.
- [11] S. Tanaka, A new class of algebras, Math, Seminar Notes, 3 (1975), 37-43.
- [12] _____, On A-commutative algebras, Math. Seminar Notes, 3(1975), 59-64.

Department of Mathematics Gyeongsang National University Jinju 620 Korea

Department of Mathematics Kyung Hee University Seoul 131 Korea

Received April 14, 1987