• Title/Summary/Keyword: dual Banach space

Search Result 38, Processing Time 0.028 seconds

BANACH-SAKS PROPERTY ON THE DUAL OF SCHLUMPRECHT SPACE

  • Cho, Kyugeun;Lee, Chongsung
    • Korean Journal of Mathematics
    • /
    • v.6 no.2
    • /
    • pp.341-348
    • /
    • 1998
  • In this paper, we show that Schlumprecht space is reflexive and the Dual of Schlumprecht space has the Banach-Saks property and study behavior of block basic sequence in Schlumprecht space.

  • PDF

SOME PROPERTIES OF THE SPACE OF FUZZY BOUNDED LINEAR OPERATORS

  • Hwang, In Ah;Rhie, Gil Seob
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.347-354
    • /
    • 2008
  • In this paper, we will show that ($CF(X,K),{\chi}_{{\parallel}{\mid}{\cdot}{\parallel}{\mid}}$) is a fuzzy Banach space using that the dual space $X^*$ of a normed linear space X is a crisp Banach space. And for a normed linear space Y instead of a scalar field K, we obtain ($CF(X,Y),{\rho}^*$) is a fuzzy Banach space under the some conditions.

  • PDF

G-vector-valued Sequence Space Frames

  • Osgooei, Elnaz
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.793-806
    • /
    • 2016
  • G-vector-valued sequence space frames and g-Banach frames for Banach spaces are introduced and studied in this paper. Also, the concepts of duality mapping and ${\beta}$-dual of a BK-space are used to define frame mapping and synthesis operator of these frames, respectively. Finally, some results regarding the existence of g-vector-valued sequence space frames and g-Banach frames are obtained. In particular, it is proved that if X is a separable Banach space and Y is a Banach space with a Schauder basis, then there exist a Y-valued sequence space $Y_v$ and a g-Banach frame for X with respect to Y and $Y_v$.

RESEARCH ON NORMAL STRUCTURE IN A BANACH SPACE VIA SOME PARAMETERS IN ITS DUAL SPACE

  • Gao, Ji
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.465-475
    • /
    • 2019
  • Let X be a Banach space and $X^*$ be its dual. In this paper, we give relationships among some parameters in $X^*$: ${\varepsilon}$-nonsquareness parameter, $J({\varepsilon},X^*)$; ${\varepsilon}$-boundary parameter, $Q({\varepsilon},X^*)$; the modulus of smoothness, ${\rho}_{X^*}({\varepsilon})$; and ${\varepsilon}$-Pythagorean parameter, $E({\varepsilon},X^*)$, and weak orthogonality parameter, ${\omega}(X)$ in X that imply uniform norm structure in X. Some existing results are extended or approved.

The annihilators and the hahn-Banach Extension property

  • Park, Sung-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.691-702
    • /
    • 1994
  • Let X be a normed linear space, M a subspace of X, and V a subspace of the dual space $X^*$. In [3], we studied the Hahn-Banach extension property in V. Here we give the definition and a characterization of the Hahn-Banach extension property in V.

  • PDF

ON KATO`S DECOMPOSITION THEOREM

  • YONG BIN CHOI;YOUNG MIN HAN;IN SUNG HWANG
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.317-325
    • /
    • 1994
  • Suppose X is a complex Banach space and write B(X) for the Banach algebra of bounded linear operators on X, X* for the dual space of X, and T*$\in$ B(X*) for the dual operator of T. For T $\in$ B(X) write a(T) = dim T$^{-1}$ (0) and $\beta$(T) = codim T(X).(omitted)

  • PDF

SEQUENCES IN THE RANGE OF A VECTOR MEASURE

  • Song, Hi Ja
    • Korean Journal of Mathematics
    • /
    • v.15 no.1
    • /
    • pp.13-26
    • /
    • 2007
  • We prove that every strong null sequence in a Banach space X lies inside the range of a vector measure of bounded variation if and only if the condition $\mathcal{N}_1(X,{\ell}_1)={\Pi}_1(X,{\ell}_1)$ holds. We also prove that for $1{\leq}p<{\infty}$ every strong ${\ell}_p$ sequence in a Banach space X lies inside the range of an X-valued measure of bounded variation if and only if the identity operator of the dual Banach space $X^*$ is ($p^{\prime}$,1)-summing, where $p^{\prime}$ is the conjugate exponent of $p$. Finally we prove that a Banach space X has the property that any sequence lying in the range of an X-valued measure actually lies in the range of a vector measure of bounded variation if and only if the condition ${\Pi}_1(X,{\ell}_1)={\Pi}_2(X,{\ell}_1)$ holds.

  • PDF