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BANACH-SAKS PROPERTY ON THE
DUAL OF SCHLUMPRECHT SPACE

Kyugeun Cho and Chongsung Lee

Abstract. In this paper, we show that Schlumprecht space is re-

flexive and the Dual of Schlumprecht space has the Banach-Saks

property and study behavior of block basic sequence in Schlumprec-
ht space.

1. Introduction

S. Banach and S. Saks [BS] showed that every bounded sequence in
Lp[0, 1], 1 < p < ∞, has a subsequence with arithmetic means con-
verging in norm. J. Schrier [Sc] showed that C[0, 1] does not have this
property. The above results lead us to consider the following ques-
tion. What Banach space X has the Banach-Saks property i.e., every
bounded sequence in X admits a subsequence whose arithmetic means
converges in norm. S. Kakutani [Ka] showed that uniformly convex
Banach spaces have the Banach-Saks property. T. Nishiura and D.
Waterman [NW] showed that Banach spaces with the Banach-Saks
property are reflexive. A. Baernstein [Ba] proved the converse by pro-
viding an example of a reflexive Banach space which does not have
the Banach-Saks property. C. Seifert [Se1] showed that the dual of
Baernstein space has the Banach-Saks property. In this paper, we in-
troduce arbitrarily distortable Banach space - Schlumprecht space [Sh]
and show that it is reflexive, not uniformly convex and its dual has the
Banach-Saks property.

Schlumprecht [Sh] introduced a Banach space which is arbitrar-
ily distortable. We introduce some basic definitions and construct
Schlumprecht space S. The vector space of all real valued sequences
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(xn) whose elements are eventually zero is denoted by c00 ; (ei) denotes
the usual unit vector basis of c00, i.e., ei(j) = 1 if i = j and ei(j) = 0

if i 6= j. For x =
n∑

i=1

αiei ∈ c00, the set supp(x) = {i ∈ N : αi 6= 0}

is called the support of x. If E and F are two finite subsets of N
we write E < F if max(E) < min(F ), and for x, y ∈ c00 we write

x < y if supp(x) <supp(y). For E ⊂ N and x =
∞∑

i=1

xiei ∈ c00 we put

E(x) :=
∑
i∈E

xiei.

The following lemma is essential to define the Schlumprecht space
and we refer to [Sh] for the its proof. From now on, we mean f(x) as
log2(x + 1).

Lemma 1.1. [Sh] Let f(x) = log2(x+1), for x ≥ 1. Then f has the
following properties :

(1) f(1) = 1 and f(x) < x for all x > 1,
(2) f is strictly increasing to ∞,
(3) lim

x→∞
(f(x)/xq) = 0 for all q > 0,

(4) the function g(x) = x/f(x), x ≥ 1 is concave, and
(5) f(x) · f(y) ≥ f(x · y) for x, y ≥ 1.

On c00 we define a norm | · |k by induction for each k ∈ N . For
x =

∑
xnen ∈ c00 we let |x|0 = max

n∈N
|xn|. Assuming that |x|k is defined

for some k ∈ N we put

|x|k+1 = max
l∈N

E1<E2<···<El
Ei⊂N

1
f(l)

l∑
i=1

|Ei(x)|k.

Since f(1) = 1,
|x|k+1 ≥ |E(x)|k = |x|k,

where E =supp(x). It follows that (|x|k) is increasing for any x ∈ c00.
Since f(l) > 1 for all l ≥ 2 and

1
f(l)

l∑
k=1

|Ek(ei)|k ≤
1

f(l)
,
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it follows that

|ei|k = 1 for any i ∈ N and k ∈ N0.

We put
‖x‖ = max

k∈N
|x|k, for x ∈ c00.

Then ‖ · ‖ is a norm on c00 and we define the Schlumprecht space S as
the completion of c00 with respect to ‖ · ‖.

The following proposition states some easy facts about S.

Proposition 1.2. [Sh]

(1) The sequence of unit vectors (ei) is a 1-subsymmetric and 1-
unconditional basis of the Schlumprecht space S ; i.e., for any

x =
∞∑

i=1

xiei ∈ S, any strictly increasing sequence (ni) ⊂ N and

any (εi)i∈N ∈ {−1, 1}N it follows that

‖x‖ =

∥∥∥∥∥
∞∑

i=1

xiei

∥∥∥∥∥ =

∥∥∥∥∥
∞∑

i=1

εixieni

∥∥∥∥∥ .

(2) For x ∈ S,

‖x‖ = max

|x|0, sup
l≥2

E1<E2<···<El
Ei⊂N

1
f(l)

l∑
i=1

‖Ei(x)‖


(3) For n ∈ N we have that∥∥∥∥∥

n∑
i=1

ei

∥∥∥∥∥ =
n

f(n)
.

The following is the main result of [Sh].

Theorem 1.3. The Schlumprecht space S is arbitrarily distortable
and does not contain an isomorphic copy of l1.
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2. Banach-Saks Property on the Dual of Schlumprecht
space

In this chapter, we show that S is reflexive, not uniformly convex
and S∗ has the Banach-Saks Property. Finally, we carefully examine
the rather special behavior of block basic sequence in Schlumprecht
space.

Theorem 2.1. S is a reflexive space.

Proof. It suffices to show that S does not contain c0, by Theorem
1.3 and Proposition 1.2.(1). Suppose c0 is isomorphic to a subspace of
S. Then there exists a sequence {yn} of S which is equivalent to the
unit vectors {en} of c0, that is, there exists m, M > 0 such that

m‖
∑

anen‖c0 ≤ ‖
∑

anyn‖ ≤ M‖
∑

anen‖c0 .

Since the unit vector {en} of c0 is convergent weakly to zero and
bounded away from zero in norm, so is {yn}. By the Bessaga-Pelcynski
selection principle, there exists a subsequence {y′n} of {yn} which is
equivalent to a normalized block basis {uj} of unit vectors {en} of S.
Then we have ∥∥∥∥∥

n∑
k=1

y′k

∥∥∥∥∥ ≤ M

and ∥∥∥∥∥
n∑

k=1

uk

∥∥∥∥∥ ≥ 1
f(n)

n∑
k=1

‖Ek(
n∑

k=1

uk)‖

=
n

f(n)
,

where Ek=supp (uk).

Since n
f(n) →∞ as n →∞ by Lemma 1.1.(3), we get the contradiction

to the fact that {uj} is equivalent to {y′k}. �

We show that S is not uniformly convex. For this, we need following
easy lemma.
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Lemma 2.2. Let x =
(

f(2)
2 ± ε

)
e1 +

(
f(2)

2 ∓ ε
)

e2 ∈ S and f(2)
2 ≤

f(2)
2 + ε ≤ 1. Then ‖x‖ = 1.

Proof. Since the number of supp(x) is 2, by Proposition 1.2.(2),

‖x‖ = max
{
|x|0,

1
f(2)

(‖E1(x)‖+ ‖E2(x)‖)
}

= max
{

f(2)
2

+ ε, 1
}

= 1.

�

Using Lemma 2.2, we get the following proposition.

Proposition 2.3. The Schlumprecht space S is not uniformly con-
vex.

Proof. . Let ε > 0, f(2)
2 + ε ≤ 1 and

x =
(

f(2)
2

+ ε

)
e1 +

(
f(2)

2
− ε

)
e2

y =
(

f(2)
2

− ε

)
e1 +

(
f(2)

2
+ ε

)
e2.

Then ‖x‖ = ‖y‖ = 1 and

‖x + y‖ = f(2)‖e1 + e2‖

= f(2)
2

f(2)
by Proposition 1.2.(3)

= 2.

�

By Proposition 2.3 and Theorem 2.1, we can ask a natural question
: does S or S∗ has the Banach-Saks property ? The following Lemma
is the criterion for testing for the Banach-Saks property.
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Lemma 2.4. [Se2] Suppose X is a reflexive Banach space whose
basis is {xn}. Then X has the Banach-Saks property if and only if
every bounded block basic sequence with respect to {xn} admits a
subsequence whose arithmetic means converges to zero in norm.

Now we are ready to get our main theorem which is focused through-
out this paper.

Theorem 2.5. S∗ has the Banach-Saks property, where S∗ is the
dual space of the Schlumprecht space.

Proof. We note that {en} is shrinking and the biothogonal func-
tionals {e∗} form a Schauder basis of S∗, since S is reflexive. Let {x∗n}
be a bounded block basic sequence with respect to {e∗n}, where x∗n =∑
j∈Fn

αje
∗
j , F1 < F2 < · · ·Fn < · · · . Let x =

∞∑
j=1

xjej ∈ S, ‖x‖ = 1.

Then ∣∣∣∣∣
〈

n∑
m=1

x∗m, x

〉∣∣∣∣∣ =

∣∣∣∣∣∣
n∑

m=1

〈 ∑
j∈Fm

αje
∗
j ,

∞∑
j=1

xjej

〉∣∣∣∣∣∣
≤

n∑
m=1

∣∣∣∣∣∣
∑

j∈Fm

αjxj

∣∣∣∣∣∣
=

n∑
m=1

|〈x∗m, xFm
〉|

≤
n∑

m=1

M‖xFm‖, where M = sup
m
‖x∗m‖

≤ Mf(n)‖x‖, by Proposition 1.2 (2)

= Mf(n).

Hence

1
n

∥∥∥∥∥
n∑

m=1

x∗m

∥∥∥∥∥ ≤ Mf(n)
n

→ 0 as n →∞, by Lemma 1.1 (3)
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This completes the proof. �

Finally, we carefully examine the rather special behavior of block
basic sequence in Schlumprecht space.

Theorem 2.6. Let yn =
pn+1∑

i=pn+1

aiei, (n = 1, 2, · · · ) be a normalized

block basic sequence of scalars {en}∞n=1. Then for every sequence of
scalars {bn}∞n=1, ∥∥∥∥∥∑

n

bnen

∥∥∥∥∥ ≤
∥∥∥∥∥∑

n

bnyn

∥∥∥∥∥ .

Proof. We show for every choice of (bn),∣∣∣∣∣∑
n

bnen

∣∣∣∣∣
m

≤

∥∥∥∥∥∑
n

bnyn

∥∥∥∥∥ for every m.

For m = 0, ∣∣∣∣∣∑
n

bnen

∣∣∣∣∣
0

= sup
n
|bn|

= sup
n
‖bnyn‖

≤ sup
n

∥∥∥∥∥∑
n

bnyn

∥∥∥∥∥ ,

since (en) is 1-unconditional. Suppose our result up to some positive
integer m. Let x =

∑
bnen, y =

∑
bnyn. Then for E1 < · · · < El,

1
f(l)

l∑
j=1

|Ej(x)|m ≤ 1
f(l)

l∑
j=1

∥∥∥∥∥∥
∑

n∈Ej

bnyn

∥∥∥∥∥∥
by the induction hypothesis

=
1

f(l)

l∑
j=1

‖Fj(y)‖

where Fj = ∪n∈Ej
suppyn

≤ ‖y‖.
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Thus, |x|m+1 ≤ ‖y‖. This completes the proof. �
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