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RESEARCH ON NORMAL STRUCTURE IN A BANACH

SPACE VIA SOME PARAMETERS IN ITS DUAL SPACE

Ji Gao

Abstract. Let X be a Banach space and X∗ be its dual. In this paper,

we give relationships among some parameters in X∗: ε-nonsquareness
parameter, J(ε,X∗); ε-boundary parameter, Q(ε,X∗); the modulus of

smoothness, ρX∗ (ε); and ε-Pythagorean parameter, E(ε,X∗), and weak

orthogonality parameter, ω(X) in X that imply uniform norm structure
in X. Some existing results are extended or approved.

LetX be a Banach space with dimX ≥ 2, and let S(X) = {x ∈ X : ‖x‖ = 1}
and B(X) = {x ∈ X : ‖x‖ ≤ 1} be the unit sphere and unit ball of X,
respectively.

Let C be a subset of a Banach space X. A mapping T : C → C is called a
nonexpansive mapping if ‖Tx−Ty‖ ≤ ‖x−y‖ for any x, y ∈ C. Many sufficient
conditions for guaranteeing the existence of fixed points of a nonexpansive
mapping are widely investigated by many authors. Such conditions are usually
expressed in terms of geometric properties or geometric parameters.

Definition 1 ([13]). A Banach space X is called uniformly non-square if there

exists δ > 0 such that for x, y ∈ S(X), either ‖x+y‖
2 ≤ 1− δ or ‖x−y‖2 ≤ 1− δ.

Definition 2 ([1]). A bounded convex subset K of a Banach space X is said
to have normal structure if for every convex subset H of K that contains more
than one point there exists a point x0 ∈ H such that

sup{‖x0 − y‖ : y ∈ H} < sup{‖x− y‖ : x, y ∈ H}.
A Banach space X is said to have normal structure if every bounded convex
subset of X has normal structure. A Banach space X is said to have weak
normal structure if each weakly compact convex set K of X that contains
more than one point has normal structure. X is said to have uniform normal
structure if there exists 0 < c < 1 such that for any bounded convex subset K
of X there exists x0 ∈ K such that

sup{‖x0 − y‖ : y ∈ K} < c · sup{‖x− y‖ : x, y ∈ K}.
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It is clear that for a reflexive Banach space, normal structure and weak
normal structure coincide.

The normal structure is not a property which is invariant under passing to
its dual space.

Kirk [16] proved that if a weakly compact convex subset K of X has normal
structure, then any nonexpansive mapping on K has a fixed point. Whether
or not a Banach space has normal structure depends on the geometry of the
unit ball.

Definition 3 ([3], [4]). Let X and Y be Banach spaces. We say that Y is
finitely representable in X if for any ε > 0 and any finite dimensional subspace
N ⊆ Y there is an isomorphism T : N → X such that for any y ∈ N , (1 −
ε)‖y‖ ≤ ‖Ty‖ ≤ (1 + ε)‖y‖.

The Banach space X is called super-reflexive if any space Y which is finitely
representable in X is reflexive.

Theorem 4. If X is uniformly non-square, then X is supper-reflexive and
therefore X is reflexive.

Theorem 5. X is supper-reflexive if and only if X∗ is supper-reflexive.

Many parameters have been used to study and describe the shape and struc-
ture of unit balls of Banach spaces. The measures of their values are used to
determine the existence of fixed points of nonexpansive mappings in Banach
spaces.

Let a and b be two real numbers, we use a
∧
b to denote the smaller number

between a and b.
Gao and Lau ([6], [11]) defined four functions via antipodal points x and −x

in S(X), and

J(X) = sup{‖x+ y‖
∧
‖x− y‖ : x, y ∈ S(X)}

is one of them.
Gao and Lau proved that:

Theorem 6 ([6], [11]). X is a uniformly non-square if and only if either
J(X) < 2.

Gao [7] extended the above concepts to the following parameter:

J(ε,X) = sup{‖x+ εy‖
∧
‖x− εy‖} : x, y ∈ S(X)},

where 0 < ε ≤ 1.
It is easy to see that:

Theorem 7. X is a uniformly non-square if J(ε,X) < 1 + ε.

Theorem 8 ([19]). For a Banach space X if J(ε,X) < ε+
√
ε2+4
2 , then X has

uniform normal structure.
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Gao [8] introduced the parameter:

Q(ε,X) = sup{‖x+ εy‖+ ‖x− εy‖ : x, y ∈ S(X)},
where 0 < ε ≤ 1, and proved:

Theorem 9 ([8]). A Banach space X with Q(ε,X) < 2(1 + ε) for some 0 <
ε ≤ 1 is uniformly non-square.

Since Q(ε,X) ≥ 2J(ε,X), we have:

Theorem 10. A Banach space X with Q(ε,X) < ε +
√
ε2 + 4 for some 0 <

ε ≤ 1 has normal structure.

Lindenstrauss [18] introduced the modulus of smoothness:

ρX(ε) = sup{‖x+ εy‖+ ‖x− εy‖ − 2

2
, x, y ∈ S(X)}, where ε ≥ 0.

The following results were proved:

Theorem 11 ([8]). A Banach space X with ρX(ε) < ε for some 0 < ε ≤ 1 is
uniformly non-square.

Theorem 12 ([19]). A Banach space X with ρX(ε) < ε−2+
√
ε2+4

2 for some
0 < ε ≤ 1 has normal structure.

In fact, Q(ε,X) = 2 + 2ρX(ε).
To compare the unit balls between Banach spaces and Hilbert spaces, Gao

[9] also introduced the Pythagorean parameter:

E(ε,X) = sup{‖x+ εy‖2 + ‖x− εy‖2 : x, y ∈ S(X)},
where 0 < ε ≤ 1, and proved:

Theorem 13 ([9]). A Banach space X with E(ε,X) < 2(1 + ε)2 for some
0 < ε ≤ 1 is uniformly non-square.

Theorem 14 ([12]). Let X be a Banach space.

(a) If E(ε,X) < 2+ε2+ε
√

4 + ε2 for some 0 < ε ≤ 1, then X has uniform
normal structure;

(b) If E(ε,X) <
(1+ε)2+(1+ε)

√
(1+ε)2+8ε

2 for some 0 < ε ≤ 1, then X∗ has
uniform normal structure.

Since
(1+ε)2+(1+ε)

√
(1+ε)2+8ε

2 ≤ 2 + ε2 + ε
√

4 + ε2 ≤ 2(1 + ε)2, we actually
have:

Theorem 15. If E(ε,X) <
(1+ε)2+(1+ε)

√
(1+ε)2+8ε

2 for some 0 < ε ≤ 1, then
both X and X∗ have uniform normal structure.

Example. Let X be the space either lp or Lp where 1 < p <∞.
Then [7]

(a) J(ε,X) = (1 + εp)
1
p , 1 < p ≤ 2,



468 J. GAO

(b) J(ε,X) = 2−
1
p ((1 + ε)p + (1− ε)p)

1
p , p > 2, where 1

p + 1
q = 1;

and [8]

(c) Q(ε,X) = 2(1 + εp)
1
p , 1 < p ≤ 2,

(d) Q(ε,X) = 2
1
q ((1 + ε)p + (1− ε)p)

1
p , p > 2, where 1

p + 1
q = 1;

and [9]

(e) E(ε,X) ≥ 2(1 + εp)
2
p , 1 < p ≤ 2,

(f) E(ε,X) = 21−
2
p ((1 + ε)p + (1− ε)p)

2
p , p > 2, where 1

p + 1
q = 1.

In [23], Sims introduced the property WORTH: A Banach space X has the
property WORTH whenever

lim
n→∞

sup{‖xn + x‖ − ‖xn − x‖} = 0

for all the weakly null sequence {xn} in X and all the element x of X.
In [24], Sims introduced the following parameter:

ω(X) ≡ sup{λ > 0 : λ lim inf
n→∞

‖xn + x‖ ≤ lim inf
n→∞

‖xn − x‖},

where the supremum is taken over all the weakly null sequence {xn} in X and
all the element x of X.

It was proved in [24] that 1
3 ≤ ω(X) ≤ 1 for all Banach space X, and X has

the property WORTH if and only if w(X) = 1.
It was also proved in [14] that if X is a reflexive Banach space, then ω(X) =

ω(X∗).
The following results were proved:

Theorem 16 ([14]). If X is a Banach space with J(X) < 1 + ω(X), then X
has normal structure.

But it was also proved in [14]: J(X) < 1 + ω(X) does not imply that X∗

has normal structure.

Theorem 17 ([25]). If X is a Banach space with J(X) < 2ω(X), then both
X and X∗ have normal structure.

Theorem 18 ([12]). If X is a Banach space with J(ε,X) < 1 + εω(X) for
some 0 < ε ≤ 1, then X has normal structure.

Since Q(ε,X) ≥ 2J(ε,X), we have:

Theorem 19. If X is a Banach space with Q(ε,X) < 2(1 + εω(X)) for some
0 < ε ≤ 1, then X has normal structure.

Since Q(ε,X) = 2 + 2ρX(ε), we have:

Theorem 20. If X is a Banach space with ρX(ε) < εω(X) for some 0 < ε ≤ 1,
then X has normal structure.

Theorem 21 ([10], [12]). (a) A Banach space X with E(ε,X) < 2(1 +
εω(X))2 implies that X has normal structure;
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(b) A Banach space X with E(ε,X) < (1+ε)2(1+ω2(X)) implies that X∗

has normal structure.

Since (1 + ε)2(1 + ω2(X)) ≤ 2(1 + εω(X))2 ≤ 2(1 + ε)2, we actually have:

Theorem 22. A Banach space X with E(ε,X) < (1 + ε)2(1 +ω2(X)) implies
that both X and X∗ have normal structure.

Definition 23 ([17]). Let X be a Banach space. The norm-separation

µ(X) ≡ sup{ε > 0 : there is a sequence {xn} ⊆ S(X)

with sep(xn) ≡ inf{‖xn − xm‖ : n 6= m} ≥ ε}.

Lemma 24 ([5]). Let X be a Banach space without weak normal structure.
Then for any 0 < ε < 1, there exists a sequence {xn} ⊆ S(X) with xn →w 0,
such that

1− ε < ‖xn+1 − x‖ < 1 + ε

for sufficiently large n, and any x ∈ co{xk}nk=1.

Lemma 24 can be used to get the following result for the norm-separation
µ(X∗):

Lemma 25 ([20]). If X is a Banach space with B(X∗) is weak* sequentially
compact (for example, X is reflexive or separable, or has an equivalent smooth
norm) and fails to have weak normal structure, then for any ε > 0 there is a
sequence {xn} ⊆ S(X) and a sequence {fn} ⊆ S(X∗) such that

(a) |‖xi − xj‖ − 1| < ε, where i 6= j;
(b) 〈xi, fi〉 = 1, where 1 ≤ i ≤ ∞;
(c) |〈xj , fi〉| < ε, where i 6= j; and
(d) ‖fi − fj‖ > 2− ε, where i 6= j.

The following result regarding the relationship between separation measure
in X∗ and normal structure in X was proved:

Theorem 26 ([21]). If X is a Banach space with B(X∗) is weak∗ sequentially
compact, and µ(X∗) < 2, then X has weak normal structure.

Remark 27. In general, the values of these parameters in X are different from
the corresponding values in X∗ : J(ε,X) 6= J(ε,X∗), Q(ε,X) 6= Q(ε,X∗),
ρX(ε) 6= ρX∗(ε), and E(ε,X) 6= E(ε,X∗),

Let X = l 3
2
, then X∗ = l3, and let ε = 1

2 .

It is easy to see that

J(
1

2
, l 3

2
) = (1 + (

1

2
)

3
2 )

2
3 = 1.223630407 . . . ; and

J(
1

2
, l3) = 2

−1
3 ((1 +

1

2
)3 + (1− 1

2
)3)

1
3

= 2
−1
3 ((

3

2
)3 + (

1

2
)3)

1
3 = 1.205071132 . . . .
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This implies J( 1
2 , l 32 ) 6= J( 1

2 , l3).

Q(
1

2
, l 3

2
) = 2(1 + (

1

2
)

3
2 )

2
3 = 2.447260815 . . . ; and

Q(
1

2
, l3) = 2

2
3 ((1 +

1

2
)3 + (1− 1

2
)3)

1
3

= 2
2
3 ((

3

2
)3 + (

1

2
)3)

1
3 = 2.410142264 . . . .

This implies Q( 1
2 , l 32 ) 6= Q( 1

2 , l3), and ρX( 1
2 ) 6= ρX∗(

1
2 ).

E(
1

2
, l 3

2
) ≥ 2(1 + (

1

2
)

3
2 )

4
3 = 2.994542748 . . . ; and

E(
1

2
, l3) = 2

1
3 ((1 +

1

2
)3 + (1− 1

2
)3)

2
3

= 2
1
3 ((

3

2
)3 + (

1

2
)3)

2
3 = 2.904392867 . . . .

This implies E( 1
2 , l 32 ) 6= E( 1

2 , l3).

We now consider the relationship between the values of these parameters in
X∗ and geometric properties in X.

Theorem 28. For a Banach space X with B(X∗) is weak∗ sequentially com-
pact, if

J(ε,X∗) < (1 + ε)ω(X),

or

Q(ε,X∗) < (1 + ε)(1 + ω(X)),

or

ρX∗(ε) <
ω(X) + ε+ εω(X)− 1

2
,

or

E(ε,X∗) < (1 + ε)2(1 + ω2(X))

for some 0 < ε ≤ 1, then X has weak normal structure.

Proof. If X fails to have weak normal structure, from Lemma 25, for any η > 0,
there are two sequences {xn} ⊆ S(X) with xn →w 0, and {fn} ⊆ S(X∗),
satisfies four conditions there.

From (a) of Lemma 25, we have ‖xn − x1‖ ≤ 1 + η, so

lim inf
n→∞

‖xn − x1‖ ≤ 1 + η.

On the other hand, from definition of ω(X), we have

(ω(X)− η) lim inf
n→∞

‖xn + x1‖ ≤ lim inf
n→∞

‖xn − x1‖.

Therefore exists an n such that

(ω(X)− η)‖xn + x1‖ ≤ ‖xn − x1‖ ≤ 1 + η.
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That is

‖xn + x1‖ ≤
1 + η

ω(X)− η
.

From

‖fn − εf1‖ = ‖(fn − f1) + (f1 − εf1)‖
≥ 2− η − (1− ε) = 1 + ε− η,

and

‖fn + εf1‖ ≥
ω(X)− η

1 + η
〈xn + x1, fn + εf1〉

=
ω(X)− η

1 + η
(1 + 〈x1, fn〉+ ε〈xn, f1〉+ ε〈x1, f1〉)

≥ ω(X)− η
1 + η

(1 + ε− η − εη)

=
ω(X)− η

1 + η
(1 + ε)(1− η),

we have

‖fn + εf1‖
∧
‖fn − εf1‖ =

ω(X)− η
1 + η

(1 + ε)(1− η)
∧

(1 + ε− η),

‖fn + εf1‖+ ‖fn − εf1‖ ≥
ω(X)− η

1 + η
(1 + ε)(1− η) + (1 + ε− η)),

‖fn + εf1‖+ ‖fn − εf1‖ − 2

2
≥ 1

2
(
ω(X)− η

1 + η
(1 + ε)(1− η) + (1 + ε− η))− 1,

and

‖fn + εf1‖2 + ‖fn − εf1‖2 ≥
(ω(X)− η)2

(1 + η)2
(1 + ε)2(1− η)2 + (1 + ε− η)2.

Since η can be arbitrarily small, from definition of J(ε,X∗), Q(ε,X∗), ρX∗(ε)
and E(ε,X∗), we have

J(ε,X∗) ≥ (1 + ε)w(X),

Q(ε,X∗) ≥ (1 + ε)(1 + w(X)),

ρX∗(ε) ≥
ω(X) + ε+ εω(X)− 1

2
,

and

E(ε,X∗) ≥ (1 + ε)2(1 + w2(X)). �

Theorem 29. For a Banach space X, if J(ε,X∗) < (1+ε)ω(X), or Q(ε,X∗) <

(1 + ε)(1 + ω(X)), or ρX∗(ε) <
ω(X)+ε+εω(X)−1

2 , or E(ε,X∗) < (1 + ε)2(1 +

ω2(X)) for some 0 < ε ≤ 1, then X has normal structure.
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Proof. Since J(ε,X∗) < (1+ε)ω(X) implies J(ε,X∗) < 1+ε, from Theorem 7,
X∗ is uniformly non-square, so X∗ and therefore X is reflexive. From Theorem
28, X has normal structure.

Since Q(ε,X∗) < (1 + ε)(1 + ω(X)) implies Q(ε,X∗) < 2(1 + ε), from
Theorem 9 and Theorem 28, X has normal structure.

Since ρX∗(ε) <
ω(X)+ε+εω(X)−1

2 implies ρX∗(ε) < ε, from Theorem 11 and
Theorem 28, X has normal structure.

Since E(ε,X∗) < (1 + ε)2(1 + ω2(X)) implies E(ε,X∗) < 2(1 + ε)2, from
Theorem 13 and Theorem 28, X has normal structure. �

Theorem 30. For a Banach space X, if J(ε,X) < (1 + ε)ω(X) for some
0 < ε ≤ 1, then both X and X∗ have normal structure.

Proof. Since X is reflexive, we have ω(X) = ω(X∗).
From Theorem 29, J(ε,X∗) < (1 + ε)ω(X) for some 0 < ε ≤ 1, implies X

has normal structure, and from Theorem 18, J(ε,X∗) < 1 + εω(X), for some
0 < ε ≤ 1, implies X∗ has normal structure. Since (1 + ε)ω(X) ≤ 1 + εω(X),
J(ε,X∗) < (1 + ε)ω(X) implies both X and X∗ have normal structure. So,
J(ε,X) < (1+ε)ω(X) for some 0 < ε ≤ 1, implies both X and X∗ have normal
structure. �

When ω(X) ≥ ε+
√
ε2+4

2(1+ε) , (1 + ε)ω(X) ≥ ε+
√
ε2+4
2 , Theorem 30 improves

Theorem 8 for ω(X) ≥ ε+
√
ε2+4

2(1+ε) .

Theorem 31. For a Banach space X, if Q(ε,X) < (1+ε)(1+ω(X)) for some
0 < ε ≤ 1, then both X and X∗ have normal structure.

Proof. Since X is reflexive and (1 + ε)(1 + ω(X)) ≤ 2(1 + εω(X)), the proof is
similar to the proof of Theorem 30. �

When ω(X) ≥
√
ε2+4−1
1+ε , (1 + ε)(1 + ω(X)) ≥ ε +

√
ε2 + 4, Theorem 31

improves Theorem 10 for ω(X) ≥
√
ε2+4−1
1+ε .

Since Q(ε,X∗) = 2 + 2ρX∗(ε). We have:

Theorem 32. For a Banach space X, if ρX∗(ε) <
ε+ω(X)+εω(X)−1

2 for some
0 < ε ≤ 1, then both X and X∗ have normal structure.

When ω(X) ≥
√
ε2+4−1
1+ε , ε+ω(X)+εω(X)−1

2 ≥ ε−2+
√
ε2+4

2 , Theorem 32 im-

proves Theorem 12 for ω(X) ≥
√
ε2+4−1
1+ε .

From Theorem 13 and Theorem 21 and similar to the proof of Theorem 30,
we have:

Theorem 33. For a Banach space X, if E(ε,X) < (1 + ε)2(1 + ω2(X)) for
some 0 < ε ≤ 1, then both X and X∗ have normal structure.

The Theorem 33 is the same as Theorem 22.
We consider the uniform normal structure. To discuss this result, let us

recall the concept of the “ultra”-technique.
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Let F be a filter of an index set I, and let {xi}i∈I be a subset in a Hausdorff
topological space X, {xi}i∈I is said to converge to x with respect to F , denoted
by limF xi = x, if for each neighborhood U of x, {i ∈ I : xi ∈ U} ∈ F .
A filter U on I is called an ultrafilter if it is maximal with respect to the
ordering of the set inclusion. An ultrafilter is called trivial if it is of the form
{A : A ⊆ I, i0 ∈ A} for some i0 ∈ I. We will use the fact that if U is an
ultrafilter, then

(i) for any A ⊆ I, either A ⊆ U or I −A ⊆ U ;
(ii) if {xi}i∈I has a cluster point x, then limU xi exists and equals to x.

Let {Xi}i∈I be a family of Banach spaces and let l∞(I,Xi) denote the subspace
of the product space equipped with the norm ‖(xi)‖ = supi∈I ‖xi‖ <∞.

Definition 34 ([2, 22]). Let U be an ultrafilter on I and let NU = {(xi) ∈
l∞(I,Xi) : limU ‖xi‖ = 0}. The ultra-product of {Xi}i∈I is the quotient space
l∞(I,Xi)/NU equipped with the quotient norm.

We will use (xi)U to denote the element of the ultra-product. It follows from
remark (ii) above, and the definition of quotient norm that

(1) ‖(xi)U‖ = lim
U
‖xi‖.

In the following we will restrict our index set I to be N, the set of natural
numbers, and let Xi = X, i ∈ N for some Banach space X. For an ultrafilter
U on N, we use XU to denote the ultra-product. Note that if U is nontrivial,
then X can be embedded into XU isometrically.

Lemma 35 ([22]). Suppose that U is an ultrafilter on N and X is a Banach
space. Then (X∗)U ∼= (XU )∗ if and only if X is super-reflexive; and in this
case, the mapping J is defined by

〈(xi)U , J((fi)U )〉 = lim
U
〈xi, fi〉 for all (xi)U ∈ XU

is the canonical isometric isomorphism from (X∗)U onto (XU )∗.

Theorem 36. Let X be a super-reflexive Banach space. Then for any non-
trivial ultrafilter U on N, and for all n ∈ N and 0 < ε ≤ 1, we have J(ε,X∗U ) =
J(ε,X∗), Q(ε,X∗U ) = Q(ε,X∗), ρX∗U (ε) = ρX∗(ε), E(ε,X∗U ) = E(ε,X∗), and
ω(XU ) = ω(X).

Proof. The proof is similar to the proof of Theorem 6 in [8]. �

Lemma 37 ([15]). If X is a super-reflexive Banach space, then X has uniform
normal structure if and only if XU has normal structure.

Theorem 38. For a Banach space X, if J(ε,X∗) < (1+ε)ω(X), or Q(ε,X∗) <

(1 + ε)(1 + ω(X)), or ρX∗(ε) <
ω(X)+ε+εω(X)−1

2 , or E(ε,X∗) < (1 + ε)2(1 +

ω2(X)) for some 0 < ε ≤ 1, then X has uniform normal structure.

Proof. It follows directly from Theorems 29, Theorem 36 and Lemma 37. �
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Finally, we have:

Theorem 39. For a Banach space X, if J(ε,X∗) < (1+ε)ω(X), or Q(ε,X∗) <

(1 + ε)(1 + ω(X)), or ρX∗(ε) <
ε+ω(X)+εω(X)−1

2 , or E(ε,X∗) < (1 + ε)2(1 +

ω2(X)) for some 0 < ε ≤ 1, then both X and X∗ have uniform normal struc-
ture.
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