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RESEARCH ON NORMAL STRUCTURE IN A BANACH
SPACE VIA SOME PARAMETERS IN ITS DUAL SPACE

J1 Gao

ABSTRACT. Let X be a Banach space and X* be its dual. In this paper,
we give relationships among some parameters in X*: e-nonsquareness
parameter, J(e, X*); e-boundary parameter, Q(g, X*); the modulus of
smoothness, px=(¢€); and e-Pythagorean parameter, FE (e, X*), and weak
orthogonality parameter, w(X) in X that imply uniform norm structure
in X. Some existing results are extended or approved.

Let X be a Banach space with dim X > 2, and let S(X) = {z € X : ||z|| = 1}
and B(X) = {z € X : ||z|| < 1} be the unit sphere and unit ball of X,
respectively.

Let C be a subset of a Banach space X. A mapping T': C' — C' is called a
nonexpansive mapping if ||Tz—Ty|| < ||z —y|| for any z,y € C. Many sufficient
conditions for guaranteeing the existence of fixed points of a nonexpansive
mapping are widely investigated by many authors. Such conditions are usually
expressed in terms of geometric properties or geometric parameters.

Definition 1 ([13]). A Banach space X is called uniformly non-square if there
exists § > 0 such that for =,y € S(X), either w <l-4dor Hmigy” <1-o.

Definition 2 ([1]). A bounded convex subset K of a Banach space X is said
to have normal structure if for every convex subset H of K that contains more
than one point there exists a point zg € H such that
supq{||zo — y|| :y € H} < sup{|jlz —y|| : z,y € H}.

A Banach space X is said to have normal structure if every bounded convex
subset of X has normal structure. A Banach space X is said to have weak
normal structure if each weakly compact convex set K of X that contains
more than one point has normal structure. X is said to have uniform normal

structure if there exists 0 < ¢ < 1 such that for any bounded convex subset K
of X there exists zg € K such that

sup{[lzo —yll 1y € K} < c-sup{|lz -yl : z,y € K}.
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It is clear that for a reflexive Banach space, normal structure and weak
normal structure coincide.

The normal structure is not a property which is invariant under passing to
its dual space.

Kirk [16] proved that if a weakly compact convex subset K of X has normal
structure, then any nonexpansive mapping on K has a fixed point. Whether
or not a Banach space has normal structure depends on the geometry of the
unit ball.

Definition 3 ([3], [4]). Let X and Y be Banach spaces. We say that Y is
finitely representable in X if for any € > 0 and any finite dimensional subspace
N C Y there is an isomorphism T : N — X such that for any y € N, (1 —
)yl < 1Tyl < (1+ )yl

The Banach space X is called super-reflexive if any space Y which is finitely
representable in X is reflexive.

Theorem 4. If X is uniformly non-square, then X is supper-reflexive and
therefore X is reflexive.

Theorem 5. X is supper-reflexive if and only if X* is supper-reflezive.

Many parameters have been used to study and describe the shape and struc-
ture of unit balls of Banach spaces. The measures of their values are used to
determine the existence of fixed points of nonexpansive mappings in Banach
spaces.

Let a and b be two real numbers, we use a A b to denote the smaller number
between a and b.

Gao and Lau ([6], [11]) defined four functions via antipodal points 2 and —x
in S(X), and

J(X) = sup{l|lz +yll A\ llz = yll : 2,y € S(X)}

is one of them.
Gao and Lau proved that:

Theorem 6 ([6], [11]). X is a uniformly non-square if and only if either
J(X) < 2.

Gao [7] extended the above concepts to the following parameter:
J(e, X) = sup{|lz + ey A\ = —ey|l} : 2,y € S(X)},

where 0 < e < 1.
It is easy to see that:

Theorem 7. X is a uniformly non-square if J(e,X) < 1+e.

Theorem 8 ([19]). For a Banach space X if J(g, X) < £HY/e+4 V252+4, then X has
uniform normal structure.
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Gao [8] introduced the parameter:

Q(e, X) = sup{llz + eyl + [lx — eyl : 2,y € S(X)},
where 0 < € < 1, and proved:

Theorem 9 ([8]). A Banach space X with Q(e,X) < 2(1 + ) for some 0 <
e <1 is uniformly non-square.

Since Q(e, X) > 2J (g, X), we have:

Theorem 10. A Banach space X with Q(e,X) < & + V&2 + 4 for some 0 <
e <1 has normal structure.

Lindenstrauss [18] introduced the modulus of smoothness:

|z + eyl + [l —eyl] — 2
2
The following results were proved:

px(€) :sup{| , ,y € S(X)}, where e > 0.

Theorem 11 ([8]). A Banach space X with px () < e for some 0 < e <1 is
uniformly non-square.

Theorem 12 ([19]). A Banach space X with px(e) < ==2tye+d V' for some
0 < e <1 has normal structure.

In fact, Q(, X) =2+ 2px (e).
To compare the unit balls between Banach spaces and Hilbert spaces, Gao
[9] also introduced the Pythagorean parameter:

B(e, X) = sup{l|lz + eyl* + [|lz — eyl|* : 2,y € S(X)},
where 0 < € < 1, and proved:
Theorem 13 ([9]). A Banach space X with E(e,X) < 2(1 + €)% for some

0 < e <1 is uniformly non-square.
Theorem 14 ([12]). Let X be a Banach space.

(a) If E(e,X) < 242 +eV4 + €2 for some 0 < € < 1, then X has uniform
normal structure;

2 /
(b) If E(e, X) < (L+e) HHE; (Lte)i+8e for some 0 < e < 1, then X* has
uniform normal structure.

2
Since 119 HHE; VTl t8e 91 2 L o/i 12 < 2(1 + ¢)?, we actually
have:

2 /
Theorem 15. If E(¢, X) < (Ite) +(1+62) (Lte)*+8e for some 0 < e <1, then
both X and X* have uniform normal structure.

Example. Let X be the space either I, or L, where 1 < p < oc0.
Then [7]

(a) J(5,X)=(1+eP)7, 1 <p<2,



468 J. GAO

(b) J(e,X)=2"7((1+e)P + (1 —c))7, p>2 where L + 1 =1;
8]

) @
(d) @
and [9]

(e) E(g, )>2(1+sp) 1<p<2,
(f) (5X)—21_7((1+5)p+(1—5)) ,p>27where%+$:1.

In [23], Sims introduced the property WORTH: A Banach space X has the
property WORTH whenever

and

aa

p’l
)p+(1_5)p)%, p>2,where%+%:1;

Tim sup{[la, + 2] — flen — 2} =0
for all the weakly null sequence {z,,} in X and all the element z of X.

In [24], Sims introduced the following parameter:

w(X) =sup{A > 0: Aliminf ||z, + z| < liminf ||z, — z|},
n—oQ n—o0

where the supremum is taken over all the weakly null sequence {z,} in X and
all the element x of X.

It was proved in [24] that 1 < w(X) <1 for all Banach space X, and X has
the property WORTH if and only if w(X) = 1.

It was also proved in [14] that if X is a reflexive Banach space, then w(X) =
w(X™).

The following results were proved:

Theorem 16 ([14]). If X is a Banach space with J(X) < 1+ w(X), then X
has normal structure.

But it was also proved in [14]: J(X) < 1 4 w(X) does not imply that X*
has normal structure.

Theorem 17 ([25]). If X is a Banach space with J(X) < 2w(X), then both
X and X* have normal structure.

Theorem 18 ([12]). If X is a Banach space with J(e,X) < 1+ ew(X) for
some 0 < e <1, then X has normal structure.

Since Q(e, X) > 2J (g, X), we have:

Theorem 19. If X is a Banach space with Q(g,X) < 2(1 + ew(X)) for some
0 <e <1, then X has normal structure.

Since Q(e, X) = 2 + 2px (€), we have:

Theorem 20. If X is a Banach space with px (€) < ew(X) for some0 < e <1,
then X has normal structure.

Theorem 21 ([10], [12]). (a) A Banach space X with E(e,X) < 2(1 +
ew(X))? implies that X has normal structure;
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(b) A Banach space X with E(e, X) < (1+¢)?(1+w?(X)) implies that X*
has normal structure.

Since (1 +¢)2(1 +w?(X)) < 2(1 + cw(X))? < 2(1 +¢)?, we actually have:

Theorem 22. A Banach space X with E(e, X) < (1+4¢)?(1 +w?(X)) implies
that both X and X* have normal structure.

Definition 23 ([17]). Let X be a Banach space. The norm-separation
1(X) = sup{e > 0 : there is a sequence {z,} C S(X)
with sep(x,,) = inf{||z, — x| : n #m} > e}

Lemma 24 ([5]). Let X be a Banach space without weak normal structure.
Then for any 0 < € < 1, there exists a sequence {x,} C S(X) with z, =" 0,
such that

l—e<||wner —z|| <1+e
for sufficiently large n, and any x € co{zr}}_;.

Lemma 24 can be used to get the following result for the norm-separation

p(X):
Lemma 25 ([20]). If X is a Banach space with B(X™*) is weak* sequentially
compact (for example, X is reflexive or separable, or has an equivalent smooth
norm) and fails to have weak normal structure, then for any e > 0 there is a
sequence {x,} C S(X) and a sequence {f,} C S(X*) such that

(a) [|lz; — x;|| — 1] < e, where i # j;

(b) (@4, fi) =1, where 1 < < oo

(c) Kz, fi)l < e, wherei# j; and

(d) Ifi = fill > 2 — &, where i # .

The following result regarding the relationship between separation measure
in X* and normal structure in X was proved:

Theorem 26 ([21]). If X is a Banach space with B(X™) is weak* sequentially
compact, and p(X*) < 2, then X has weak normal structure.

Remark 27. In general, the values of these parameters in X are different from

the corresponding values in X* : J(e, X) # J(&, X*), Q(e, X) # Q(g, X*),

px(€) # px+(e), and E(e, X) # E(e, X*),
Let X = l%, then X* =13, and let € =
It is easy to see that

1
5

1 1
J(5:0s) = (1+ (5)%)% =1.223630407 ... ; and
1 _ o3 Lis Ligy1
J(5ls) =27 (1+5)" + (1= 5)7)®
1,3

=27 ((2)® 4+ (£)*)5 = 1.205071132... ..
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Q(5.13) =201+ ( )2)5 =2.447260815. . .; and
1 1., 141
Q(5:ls) =25((1+ 5" + (1= 5)7)3

= 2%((;)3 + (%)3)% = 2.410142264 . . ..

This implies Q(3,13) # Q(3,13), and px(3) # px-(3)-
1

E(%,l%) >2(1+ (5)%)% = 2.994542748 . . .; and
1 \ 1 g0
+ (14 2)3 _ 132
E(3,ls) =28((1+35)" +(1-3)7)3

1
= 2%((2)3 + (5)3)% = 2.904392867 . ...

This implies E(%,l%) # E(3,13).

We now consider the relationship between the values of these parameters in
X* and geometric properties in X.

Theorem 28. For a Banach space X with B(X™) is weak® sequentially com-

pact, if
J(e, X7) < (1 +e)w(X),

Qe, X™) < (1+¢)(1 4+ w(X)),
pxe (&) < w(X) +€—;€w(X) — 17

E(e, X*) < (14 )2(1 +w?(X))
for some 0 < e <1, then X has weak normal structure.

Proof. If X fails to have weak normal structure, from Lemma 25, for any n > 0,
there are two sequences {x,} C S(X) with z, =™ 0, and {f,} C S(X*),
satisfies four conditions there.

From (a) of Lemma 25, we have ||z, — z1|| <147, so

liminf ||z, —z1]] < 14 n.
n— oo
On the other hand, from definition of w(X), we have
(w(X) —n)liminf ||z, + 21| < liminf ||z, — 2]
n—oo n—o0
Therefore exists an n such that

(W(X) =)llzn + 21| < flzn — 2]l < T+,
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That is 1
From
[ fn —efall = |(fa — f1) + (fr —ef)ll
>2—-n—(1—-¢e)=14e—n,
and
Ifn +efill = W@n + a1, fu+efi)

= N o, fo) o olon, ) el )
>%(1+sfnfsn)
— 0004 ),

we have

I+ Rl A= el = 2200 90— A +2 - o),

1o+ efill + 1o — il 2 X

+
LI 1=+ e )
It el 4L~ 2l -2 1 (X

) =

( La4e)i-m+0+e—m) -1,

2 2 1+mn
and
X 2
I+ eal? + o = Al 2 1+ 20—+ (142 =

Since 7 can be arbitrarily small, from definition of J(g, X*), Q(e, X*), px+(¢)
and E(g, X*), we have

J(e, X™*)
Qe, X7)

(1+e)w(X),
1+e)(1+wX))

pxe (&) w(X) —l—s—;aw(X) iy

2
>

Y

and
E(e,X*) > (1+5)2(1+w2(X)). O

Theorem 29. For a Banach space X, if J(e, X*) < (14+e)w(X), or Q(e, X*) <
(14 &)(1 + w(X)), or px-(e) < LXL@ITL 0 Be X)) < (14 )2(1 +

w?(X)) for some 0 < ¢ < 1, then X has normal structure.
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Proof. Since J(g, X*) < (14¢&)w(X) implies J(g, X*) < 1+¢, from Theorem 7,
X* is uniformly non-square, so X* and therefore X is reflexive. From Theorem
28, X has normal structure.

Since Q(e, X*) < (1 +¢)(1 + w(X)) implies Q(e, X*) < 2(1 + ¢), from
Theorem 9 and Theorem 28, X has normal structure.

Since px-(g) < M implies px«(g) < ¢, from Theorem 11 and
Theorem 28, X has normal structure.

Since E(g, X*) < (1 +¢)?(1 + w?(X)) implies E(e, X*) < 2(1 + €)?, from
Theorem 13 and Theorem 28, X has normal structure. O

Theorem 30. For a Banach space X, if J(e,X) < (1 + e)w(X) for some
0 <e <1, then both X and X* have normal structure.

Proof. Since X is reflexive, we have w(X) = w(X™).

From Theorem 29, J(e, X*) < (1 4 ¢)w(X) for some 0 < € < 1, implies X
has normal structure, and from Theorem 18, J(g, X*) < 1 + ew(X), for some
0 < e <1, implies X* has normal structure. Since (1 4 ¢)w(X) < 1+ ew(X),
J(e, X*) < (1 4 e)w(X) implies both X and X* have normal structure. So,
J(g,X) < (14+¢e)w(X) for some 0 < € < 1, implies both X and X* have normal

structure. g
When w(X) > =557 Vlf;)r‘l, (1 + e)w(X) > =VE2H | Theorem 30 improves
e+Ver+4
Theorem 8 for w(X) > R

Theorem 31. For a Banach space X, if Q(e,X) < (1+¢)(14+w(X)) for some
0 <e <1, then both X and X* have normal structure.

Proof. Since X is reflexive and (1+¢)(1+ w(X)) < 2(1 +ew(X)), the proof is

similar to the proof of Theorem 30. O
When w(X) > 7“5?13_1, (1+¢e)(1+wX)) > e+ Ve?2+4, Theorem 31
improves Theorem 10 for w(X) > 7“5?1‘;_1.

Since Q(e, X*) = 2+ 2px~(€). We have:

. etw(X)+ew(X)—1
Theorem 32. For a Banach space X, if px«(e) < == =—5—"—

0 <e <1, then both X and X* have normal structure.

for some

When UJ(X) > \/Eiigfl’ etw(X)tew(X)—1 > 6724’2\/624’47 Theorem 32 im-

2
proves Theorem 12 for w(X) > @.
From Theorem 13 and Theorem 21 and similar to the proof of Theorem 30,
we have:

Theorem 33. For a Banach space X, if E(g,X) < (14 ¢)*(1 + w?(X)) for
some 0 < e <1, then both X and X* have normal structure.

The Theorem 33 is the same as Theorem 22.
We consider the uniform normal structure. To discuss this result, let us
recall the concept of the “ultra”-technique.
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Let F be a filter of an index set I, and let {z;};cs be a subset in a Hausdorff
topological space X, {x;};cr is said to converge to x with respect to F, denoted
by limrx; = x, if for each neighborhood U of =, {i € [ : »; € U} € F.
A filter U on [ is called an ultrafilter if it is maximal with respect to the
ordering of the set inclusion. An ultrafilter is called t¢rivial if it is of the form
{A: A C Iy e A} for some iy € I. We will use the fact that if &/ is an
ultrafilter, then

(i) for any A C I, either ACU or I — ACU;

(ii) if {z;}ics has a cluster point z, then limy, z; exists and equals to x.
Let {X; }ies be a family of Banach spaces and let I (I, X;) denote the subspace
of the product space equipped with the norm ||(z;)| = sup;¢; ||z:|| < oc.

Definition 34 (]2,22]). Let U be an ultrafilter on I and let Ny = {(x;) €
loo(I, X;) : limyy ||z;]| = 0}. The ultra-product of {X;}ics is the quotient space
loo(I, X;) /Ny equipped with the quotient norm.

We will use (z;)y to denote the element of the ultra-product. It follows from
remark (ii) above, and the definition of quotient norm that

(1) [(a)ul] = i [l

In the following we will restrict our index set I to be N, the set of natural
numbers, and let X; = X,i € N for some Banach space X. For an ultrafilter
U on N, we use Xy to denote the ultra-product. Note that if I/ is nontrivial,
then X can be embedded into X;; isometrically.

Lemma 35 ([22]). Suppose that U is an ultrafilter on N and X is a Banach
space. Then (X*)y = (Xy)* if and only if X is super-reflexive; and in this
case, the mapping J is defined by

(@, J(fi)u)) = Nim(zs, fi) - for all (zi)u € Xu
is the canonical isometric isomorphism from (X*)y onto (Xy)*.

Theorem 36. Let X be a super-reflexive Banach space. Then for any non-
trivial ultrafilter U on N, and for alln € N and 0 < ¢ < 1, we have J(e, Xj;) =
J(E,X*), Q(E,XZ}) = Q(E,X*), szj(E) = px*(zf), E(E’Xg{) = E(EvX*)7 and
w(Xy) = w(X).

Proof. The proof is similar to the proof of Theorem 6 in [8]. (]

Lemma 37 ([15]). If X is a super-reflexive Banach space, then X has uniform
normal structure if and only if Xy has normal structure.

Theorem 38. For a Banach space X, if J(e, X*) < (14+¢)w(X), or Q(e, X*) <
(14 &)(1 + w(X)), or px-(e) < LXIEL@ITL 0 Be, X)) < (14 )2(1 +

w?(X)) for some 0 < & < 1, then X has uniform normal structure.

Proof. Tt follows directly from Theorems 29, Theorem 36 and Lemma 37. O
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Finally, we have:

Theorem 39. For a Banach space X, if J(e, X*) < (14+¢)w(X), or Q(e, X*) <
(14 &)(1 + w(X)), or px-(e) < FXIIZL o Be X*) < (14 )2(1 +
w2(X)) for some 0 < e < 1, then both X and X* have uniform normal struc-
ture.
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