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Abstract. G-vector-valued sequence space frames and g-Banach frames for Banach

spaces are introduced and studied in this paper. Also, the concepts of duality mapping

and β-dual of a BK-space are used to define frame mapping and synthesis operator of

these frames, respectively. Finally, some results regarding the existence of g-vector-valued

sequence space frames and g-Banach frames are obtained. In particular, it is proved that

if X is a separable Banach space and Y is a Banach space with a Schauder basis, then

there exist a Y -valued sequence space Yv and a g-Banach frame for X with respect to Y

and Yv.

1. Introduction

Various generalizations of frames have been proposed recently. For example in
[12], Sun introduced the concept of g-frames and showed that many basic proper-
ties of g-frames are similar to frames. Frames on Hilbert spaces were extended to
Banach spaces by Gröchenig [8], and studied in [2, 3]. Motivated by the results
of p-frames in [4, 7] and Banach frames in [1, 2, 3, 10], we define g-vector-valued
sequence space frames and g-Banach frames on Banach spaces and show that many
properties of these frames can be shared with Xd-frames and Banach frames by
considering some extra conditions.
In this article X,Y and Z are Banach spaces and X∗ is the dual space of X. If
x ∈ X and x∗ ∈ X∗, we denote x∗(x) by 〈x, x∗〉. Let W (X) and φ(X) signify the
space of all sequences in X and the space of all finite sequences in X, respectively. A
sequence space in X is a linear subspace of W (X). Let E be an X-valued sequence
space. For x ∈ E and k ∈ N, we write xk stands for the k-th term of x. For x0 ∈ X
and k ∈ N, we let ek(x0) be the sequence (0, 0, 0, ..., 0, x0, 0, ...) with x0 in the k-th
position and let e(x0) be the sequence (x0, x0, x0, ...). An X-valued sequence space
E is said to be normal if {yk} ∈ E whenever ‖yk‖X ≤ ‖xk‖X for all k ∈ N and
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{xk} ∈ E. Suppose that the X-valued sequence space E is endowed with some
linear topology τ. Then E is called a K-space if, for each k ∈ N, the k-th coordinate
mapping pk : E → X, pk(x) = xk, is continuous on E. In addition if (E, τ) is a
Frechet (Banach) space, then E is called a FK (BK)-space. Now, suppose that E
contains φ(X), then E is said to have property AK if

∑n
k=1 e

k(xk) → x in E as
n→∞ for every x = {xk} ∈ E.
For an X-valued sequence space E, the β-dual of E is defined by

Eβ = {{fk} : fk ∈ X∗,
∞∑
k=1

fk(xk) converges, ∀{xk} ∈ E}.

If E is a BK-space, we define a norm on Eβ by the formula

‖{fk}‖Eβ = sup‖{xk}‖E≤1|
∞∑
k=1

fk(xk)|.

Lemma 1.1.([11]) Let E be an X-valued sequence space which is a BK-space
containing φ(X). Then for each k ∈ N, the mapping Tk : X → E, defined by
Tk(x) = ek(x), is continuous.

Theorem 1.2.([11]) If E is a BK-space having property AK, then Eβ and E∗ are
isometrically isomorphic.

Note that if E has property AK, then for x = {xk} ∈ E and f ∈ E∗, we have

(1.1) f(x) =

∞∑
k=1

f(ek(xk)) =

∞∑
k=1

(foTk)(xk).

Definition 1.3.([2]) Let Xd be a scalar-valued sequence space which is a BK-space.
A countable family {gi} ⊆ X∗ is called an Xd-frame for X if
(i) {gi(x)} ∈ Xd, x ∈ X,
(ii) there exist constants A,B > 0 such that

(1.2) A‖x‖X ≤ ‖{gi(x)}‖Xd ≤ B‖x‖X , x ∈ X.

The constants A and B are called Xd-frame bounds. If (i) and the second inequality
in (1.2) are satisfied, then {gi} is called an Xd-Bessel sequence for X.

Definition 1.4.[2] Let Xd be a scalar-valued sequence space which is a BK-space.
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Given a bounded operator K : Xd → X, and an Xd-frame {gi} ⊆ X∗, we say that
({gi},K) is a Banach frame for X with respect to Xd if

K({gi(x)}) = x, x ∈ X.

2. G-vector-valued Sequence Space Frames

Definition 2.1. Let Yv be a Y -valued sequence space which is a BK-space. We
call a sequence {Λi ∈ B(X,Y ), i ∈ N} a g-Yv-frame for X with respect to Y if
(i) {Λi(x)} ∈ Yv, x ∈ X,
(ii) there exist constants A,B > 0 such that

(2.1) A‖x‖X ≤ ‖{Λi(x)}‖Yv ≤ B‖x‖X , x ∈ X.

The constants A and B are called the lower and upper frame bounds, respectively.
If (i) and the second inequality in (2.1) are satisfied, then {Λi} is called a g-Yv-
Bessel sequence for X with respect to Y . We call {Λi} a tight g-Yv-frame if A and
B can be chosen such that A = B and a Parseval g-Yv-frame if A and B can be
chosen such that A = B = 1.

Let 1 < p <∞. If Yv = (
∑
i∈N⊕Yi)`p , where for each i ∈ N, Yi = Y , then (2.1)

means that {Λi} is a pg-frame for X with respect to Y [1].

Example 2.2. Let Yv be a Y -valued sequence space which is a BK-space. The
k-th coordinate mapping pk : Yv → Y is a Parseval g-Yv-frame for Yv with respect
to Y .

Let (Y, ‖.‖) be a Banach space and b = (bk) be a bounded sequence of positive
real numbers. The Y -valued sequence space of Maddox is defined as

`∞(Y, b) = {y = {yk} : sup
k
‖yk‖bk <∞}.

Example 2.3. Let Yv be a C[0, 1]-valued sequence space, `∞(C[0, 1], (bk)), where
for each k ∈ N, bk = 1. We define Λi : C[0, 1]→ C[0, 1] by

Λi(f) = f ◦ gi,

where gi : C[0, 1] → C[0, 1] is defined by gi(x) = xi. Then {Λi} is a Parseval
g-`∞(C[0, 1], (bk))-frame for C[0, 1] with respect to C[0, 1].

Suppose that Yv is a Y -valued sequence space which is a BK-space and has the
property AK. If {Λi} is a g-Yv-Bessel sequence for X with respect to Y , then we
define two operators

U : X → Yv, U(x) = {Λix},
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and

T : Y ∗v → X∗, T (f) =

∞∑
i=1

(foTi)Λi,

where Ti is the mapping mentioned in Lemma 1.1. The operator U is called the
analysis operator and T is called the synthesis operator of {Λi}. The new idea that
occurs here is that we use the isomorphism of Y ∗v and Y βv in order to define analysis
and synthesis operators of g-Yv-Bessel sequences and show that they are bounded.

Theorem 2.4. Let Yv be a Y -valued sequence space which is a BK-space and has
the property AK. Let {Λi} ⊆ B(X,Y ) and for each x ∈ X − {0}, {Λix} 6= 0 and
{Λix} ∈ Yv. Then {Λi} is a g-Yv-Bessel sequence for X with respect to Y with
upper bound B if and only if T is a well-defined, bounded operator and ‖T‖ ≤ B.

Proof. Suppose that {Λi} is a g-Yv-Bessel sequence for X with respect to Y with
upper bound B. Then for each f ∈ Y ∗v and x ∈ X, since Yv has the property AK,
by (1.1) we have

|T (f)(x)| = |
∞∑
i=1

(foTi)Λix| = |f({Λix})|

≤ ‖f‖Y ∗v ‖{Λix}‖Yv ≤ B‖f‖Y ∗v ‖x‖X .

So T is well-defined and bounded. Conversely, assume that T is well-defined and
‖T‖ ≤ B. Since Yv has the property AK, by Theorem 1.2, for each x ∈ X, Fx :
Y ∗v ' Y βv → C, can be defined by

Fx(f) = T (f)(x) =

∞∑
i=1

(foTi)Λix, f ∈ Y ∗v .

Then

(2.2) |Fx(f)| = |T (f)(x)| ≤ ‖Tf‖X∗‖x‖X ≤ ‖T‖‖f‖Y ∗v ‖x‖X .

Clearly for each x ∈ X, Fx ∈ Y ∗∗v .
On the other hand by the Hahn-Banach theorem, there is f ∈ Y ∗v with ‖f‖Y ∗v ≤ 1
such that

(2.3) ‖{Λix}‖Yv = |f({Λix})|.

By (1.1), (2.2) and (2.3), we have

‖{Λix}‖Yv = |f({Λix})| = |
∞∑
i=1

(foTi)Λix|

= |Fx(f)| ≤ ‖T‖‖f‖Y ∗v ‖x‖X
≤ ‖T‖‖x‖X ≤ B‖x‖X .
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2

Lemma 2.5. Let X be a Banach space and Yv be a Y -valued sequence space which
is a BK-space and has the property AK. Suppose that {Λi} is a g-Yv-Bessel sequence
for X with respect to Y . Then
(i) U∗ = T .
(ii) If X and Yv are reflexive, then T ∗ = U .

Proof. (i) By (1.1), for each f ∈ Y ∗v and x ∈ X, we have

U∗f(x) = 〈x, U∗f〉 = 〈Ux, f〉 = f({Λix}) =

∞∑
i=1

(foTi)Λix = T (f)(x).

(ii) Since X and Yv are reflexive, we deduce the proof. 2

Lemma 2.6.([9]) Given a bounded operator U : X → Y , the adjoint operator
U∗ : Y ∗ → X∗ is surjective if and only if U has a bounded inverse on its range
R(U).

Theorem 2.7. Suppose that X is a reflexive Banach space and Yv is a reflexive
Y -valued sequence space which is a BK-space and has the property AK. Let {Λi} ⊆
B(X,Y ) and for each x ∈ X − {0}, {Λix} 6= 0 and {Λix} ∈ Yv. Then {Λi} is a
g-Yv-frame for X with respect to Y if and only if T is a well-defined and bounded
operator of Y ∗v onto X∗. In this case, the frame bounds are ‖(T ∗)−1‖−1 and ‖T‖.
Proof. By Theorem 2.4, the upper g-Yv-frame condition satisfies if and only if T is
a well-defined and bounded operator of Y ∗v into X∗. Now suppose that {Λi} is a
g-Yv-frame for X with respect to Y . Then U has a bounded inverse on its range
R(U). By Lemma 2.6, U∗ is surjective and so T is surjective by Lemma 2.5.
Conversely, suppose that T is a well-defined and bounded operator of Y ∗v onto X∗.
By Lemma 2.5, for each x ∈ X, we have

‖Ux‖Yv = ‖T ∗x‖Yv ≤ ‖T‖‖x‖X .

Since T is bounded and surjective, T ∗ is one to one. Hence T ∗ has a bounded
inverse on R(T ∗). So for each x ∈ X we have

‖x‖X = ‖(T ∗)−1T ∗x‖X ≤ ‖(T ∗)−1‖‖Ux‖Yv .

2

After this in this section, X is a reflexive Banach space and Yv is a reflexive
Y -valued sequence space which is a BK-space and has the property AK.

Definition 2.8. A family {Λi ∈ B(X,Y ) : i ∈ N} is called a g-Y ∗v -Riesz basis for
X∗ with respect to Y if
(i) {x : Λix = 0, i ∈ N} = {0} (i.e. {Λi} is g-complete);
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(ii) for each x ∈ X, {Λix} ∈ Yv and the operator T : Y ∗v → X∗ is well-defined and
there are constants A,B > 0 such that

(2.4) A‖f‖Y ∗v ≤ ‖Tf‖X∗ ≤ B‖f‖Y ∗v , f ∈ Y
∗
v .

The constants A and B are called the lower and upper Riesz basis bounds,
respectively.

The following theorem shows that every g-Y ∗v -Riesz basis with bounds A and
B is a g-Yv-frame with the same bounds.

Theorem 2.9. Let {Λi} be a g-Y ∗v -Riesz basis for X∗ with respect to Y with
lower and upper Riesz basis bounds A and B, respectively. Suppose that for each
x ∈ X − {0}, {Λix} 6= 0. Then {Λi} is a g-Yv-frame for X with respect to Y with
frame bounds A and B.

Proof. Since {Λi} is a g-Y ∗v -Riesz basis for X∗ with respect to Y , the operator T
is well-defined, bounded and surjective. By Theorem 2.7, {Λi} is a g-Yv-frame for
X with respect to Y . The upper Riesz basis bound coincides with the upper frame
bound by Theorem 2.4. Now we show that A is a lower frame bound for {Λi}. Since
T : Y ∗v → X∗ is invertible, for each g ∈ X∗, there exists a unique f ∈ Y ∗v , such that
Tf = g. So by (2.4) we have

‖T−1g‖ = ‖f‖ ≤ 1

A
‖Tf‖ =

1

A
‖g‖.

This implies that A ≤ ‖(T−1)∗‖−1. Now we conclude the proof by Theorem 2.7. 2

Definition 2.10. Let {Λi} be a g-Yv-frame for X with respect to Y . We say that
{Λ∗i (Y ∗)}i∈N is a Riesz decomposition of X∗, if for each g ∈ X∗, there is a unique
choice of f ∈ Y ∗v such that

∑∞
i=1(foTi)Λi = g.

Theorem 2.11. Let {Λi} be a g-Yv-frame for X with respect to Y . Then the
following conditions are equivalent:
(i) {Λi} is a g-Y ∗v -Riesz basis for X∗.
(ii) T is injective.
(iii) R(U) = Yv.
(iv) {Λ∗i (Y ∗)}i∈N is a Riesz decomposition of X∗.

Proof. (i)→ (ii) It is evident by the definition of g-Y ∗v -Riesz basis.
(ii)→ (i) The operator T is well-defined, bounded and surjective by Theorem 2.7,
and is injective by (ii), so it has a bounded inverse and therefore {Λi} is a g-Y ∗v -
Riesz basis for X∗.
(i) → (iii) By assumption, T has a bounded inverse on R(T ) = X∗. By Lemma
2.6, T ∗ is surjective and Lemma 2.5, implies that R(U) = Yv.
(iii) → (i) Since U is surjective, by Lemma 2.5, T is injective. So {Λi} is a g-Y ∗v -
Riesz basis for X∗.
(ii)→ (iv) Suppose that there exist f, h ∈ Y ∗v such that f 6= h and

∞∑
i=1

(foTi)Λi =

∞∑
i=1

(hoTi)Λi.
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Then for each x ∈ X,
∞∑
i=1

(foTi)Λix =

∞∑
i=1

(hoTi)Λix.

This implies that f({Λix}) = h({Λix}). Since T is injective, f = h.
(iv) → (ii) Suppose that for some f ∈ Y ∗v , T (f) = 0. Then for each x ∈ X,∑∞
i=1(foTi)Λix = 0. Since {Λ∗i (Y ∗)}i∈N is a Riesz decomposition of X, f = 0. 2

3. G-Yv-Frame Mapping

In this section X is a reflexive Banach space and Yv is a reflexive Y -valued
sequence space which is a BK-space and has the property AK. Here we extend the
results of [10] to define g-Yv-frame mapping and investigate its invertibility.
We recall that when the family {gi} is a frame for a Hilbert space H, the frame
mapping S : H → H, S(f) = TU(f) is the composition of the synthesis operator
T : `2 → H and the analysis operator U : H → `2. Now suppose that the family
{Λi} ⊆ B(X,Y ) is a g-Yv-frame for X with respect to Y . In order to compose the
analysis operator U : X → Yv and the synthesis operator T : Y ∗v → X∗, we need a
mapping J : Yv → Y ∗v , to this aim we use the definition of duality mapping.
First we recall that the Banach space X is strictly convex if whenever x, y ∈ X with
x 6= y, ‖x‖ = ‖y‖ = 1 then ‖λx+ (1− λ)y‖ < 1 for all λ ∈ (0, 1).
The mapping φX from X into the set of subsets of X∗, defined by

φXx = {x∗ ∈ X∗ : x∗(x) = ‖x∗‖‖x‖, ‖x∗‖ = ‖x‖},

is called the duality mapping on X. By the Hahn-Banach theorem, for each x ∈ X,
φXx is nonempty. In general, the duality mapping is set valued, but for certain
spaces it is single-valued and such spaces are called smooth.

Proposition 3.1.([6]) The following statements are true:
(i) If X∗ is strictly convex, then for each x ∈ X, φXx consists of unique element
x∗ ∈ X∗.
(ii) If X and X∗ are strictly convex and X is reflexive, then φX is bijective.
(iii) If H is a Hilbert space, then for each x ∈ H, φHx = x.

Definition 3.2. Let Y ∗v be strictly convex and {Λi} be a g-Yv-Bessel sequence for
X with respect to Y . The mapping S : X → X∗, defined by

S = TφYvU,

is called the g-Yv-frame mapping of {Λi}.

We note that if {Λi} is a g-Yv-frame for X with respect to Y with frame bounds
A and B, then by the definition of the duality mapping, for each x ∈ X, we have

A2‖x‖2 ≤ Sx(x) ≤ B2‖x‖2.
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Let {gi} be a frame for H and T be the synthesis operator for {gi}. Since T
is surjective and bounded operator, it has a pseudo-inverse, the unique operator
T † : H → `2, for which TT † = IR(T ), ker(T †) = (R(T ))⊥ and R(T †) = (ker(T ))⊥.

The pseudo-inverse T † is actually the bounded operator (T |(ker(T ))⊥)−1, where
T |(ker(T ))⊥ is the restriction of T to the orthogonal complement of ker(T ).
The existence of a right inverse of the synthesis operator for a given Hilbert frame is
due to the fact that a closed subspace of a Hilbert space H is always complemented
in H. However, a closed subspace of a Banach space X is not necessarily comple-
ment in X and the existence of a right inverse in the Banach space needs some
complementary conditions, to approach to this aim we have the following proposi-
tion.
The following proposition is the extension of [Prop. 5.2, [10]] to g-Yv-frames.

Proposition 3.3. Let {Λi} be a g-Yv-frame for X with respect to Y . Then the
following assertions are equivalent:
(i) T has a bounded right inverse.
(ii) ker(T ) is complemented in Y ∗v .

Proof. (i) → (ii) Let W : X∗ → Y ∗v be the right inverse of the operator T . Put
P = WT : Y ∗v → Y ∗v . Clearly P 2 = P and we have Y ∗v = ker(P ) ⊕ R(P ). Since
ker(P ) = ker(T ), ker(T ) is complemented in Y ∗v .
(ii) → (i) Suppose that M is a complement of ker(T ) in Y ∗v . By Theorem 2.7, the
operator T is bounded and surjective. So (T |M )−1 is a bounded right inverse of T .

2

Now we recall the concept of semi-inner product in Banach spaces in order to
define the right inverse of T . A mapping [., .] from X × X into R is said to be a
semi-inner product on X if it has the following properties:
(i) for all x ∈ X, [x, x] ≥ 0 and [x, x] = 0 iff x = 0;
(ii) for all α, β ∈ R and for all x, y, z ∈ X, [αx+ βy, z] = α[x, z] + β[y, z];
(iii) for all x, y ∈ X, |[x, y]|2 ≤ [x, x][y, y].
If X∗ is strictly convex, then there is a unique semi-inner product on X such that for
each x ∈ X, ‖x‖X = [x, x]

1
2 and for all x, y ∈ X, φXx(y) = [y, x], where φX is the

duality mapping on X. In this case an operator A : X → X is said to be adjoint
abelian if for all x, y ∈ X, [Ax, y] = [x,Ay] or equivalently A∗φX = φXA. The
element x ∈ X is called (Giles) orthogonal to the element y ∈ X (denoted by x ⊥ y),
if [y, x] = 0. If M is a linear subspace of X, the notation M⊥ is used to show the
orthogonal complement of M in Giles sense, i.e. M⊥ = {x ∈ X : x ⊥ y,∀y ∈M}.

Proposition 3.4. Suppose that X and Y are reflexive Banach spaces. Let X and
X∗ be strictly convex spaces. Suppose that span{Λ∗i (Y ∗)}i∈N and (span{Λ∗i (Y ∗)}i∈N)⊥

(in Giles sense) are topologically complementary in X∗. Then
(i) If {Λi ∈ B(X,Y ), i ∈ N} is a g-Yv-frame for X with respect to Y , then
X∗ = span{Λ∗i (Y ∗)}i∈N.
(ii) {Λi ∈ B(X,Y ), i ∈ N} is a g-complete sequence on X if and only if
X∗ = span{Λ∗i (Y ∗)}i∈N.
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Proof. (i) Suppose that g ∈ (span{Λ∗i (Y ∗)}i∈N)⊥. Then for each i ∈ N and y∗ ∈ Y ∗,
g ⊥ Λ∗i (y

∗). Since X and Y are reflexive and X is strictly convex, we have

[Λ∗i (y
∗), g] = 〈Λ∗i (y∗), φX∗g〉 = 〈y∗,ΛiφX∗g〉 = 0,

so for each i ∈ N, ΛiφX∗g = 0. Since {Λi} is a g-Yv-frame and X is a reflexive space
and X, X∗ are strictly convex spaces, φX∗ is bijective by Proposition 3.1. So we
deduce that g = 0.
(ii) Let {Λi} be a g-complete sequence on X. Similar to the proof of (i), we can
show that X∗ = span{Λ∗i (Y ∗)}i∈N. Conversely suppose that for each i ∈ N, Λix = 0.
Then

〈Λix, y∗〉 = 〈x,Λ∗i y∗〉 = 0, y∗ ∈ Y ∗.

Since X∗ = span{Λ∗i (Y ∗)}i∈N, for each g ∈ X∗, 〈x, g〉 = 0 and so x = 0. 2

Remark 3.5. Let Yv be a strictly convex space and {Λi} be a g-Yv-frame for X with
respect to Y . Suppose that ker(T ) and (ker(T ))⊥ are topologically complementary
in Y ∗v . Then by Proposition 3.3, the operator T |(ker(T ))⊥ is invertible and T⊥ =
(T |(ker(T ))⊥)−1 is a bounded right inverse of T .

Definition 3.6. Let Yv be a strictly convex space and {Λi} be a g-Yv-frame for X
with respect to Y . Suppose that ker(T ) and (ker(T ))⊥ are topologically comple-
mentary in Y ∗v . We define the mapping F : X∗ → X∗∗ ' X by

F = (T⊥)∗φY ∗v T
⊥.

Lemma 3.7. Let Yv be a strictly convex space and {Λi} be a g-Yv-frame for X with
respect to Y . Suppose that ker(T ) and (ker(T ))⊥ are topologically complementary
in Y ∗v . Then for each g ∈ X∗

Fg(g) ≥ 1

B2
‖g‖2X∗ ,

where B is the upper frame bound for {Λi}.
Proof. For each g ∈ X∗, we have

Fg(g) = 〈g, Fg〉 = 〈g, (T⊥)∗φY ∗v T
⊥g〉

= 〈T⊥g, φY ∗v T
⊥g〉 = ‖T⊥g‖2Y ∗v .(3.1)

By Theorem 2.4, ‖T‖ ≤ B. Hence by (3.1)

‖g‖2X∗ = ‖TT⊥g‖2X∗ ≤ B2‖T⊥g‖2Y ∗v = Fg(g)B2.

2

Theorem 3.8. Let Yv and Y ∗v be strictly convex spaces and {Λi} be a g-Yv-frame
for X with respect to Y . Suppose that ker(T ) and (ker(T ))⊥ are topologically com-
plementary in Y ∗v and the operator T⊥T is adjoint abelian. Then the following
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assertions hold:
(i) S is invertible and S−1 = F.
(ii) S−1 = U−1φY ∗v T

⊥.

Proof. (i) By Proposition 3.1, φY ∗v φYv = IYv . Since T⊥T is adjoint abelian, we have

FS = (T⊥)∗φY ∗v T
⊥TφYvT

∗

= (T⊥)∗(T⊥T )∗φY ∗v φYvT
∗

= (TT⊥TT⊥)∗ = IX .

Similarly, we can show that SF = IX∗ .
(ii) Since U = T ∗ and T⊥T is adjoint abelian, for each g ∈ X∗, we have

φY ∗v T
⊥g = φY ∗v T

⊥TT⊥g

= (T⊥T )∗φY ∗v T
⊥g

= U(T⊥)∗φY ∗v T
⊥g.

Therefore, φY ∗v T
⊥g ∈ R(U), and we have

U−1φY ∗v T
⊥g = (T⊥)∗φY ∗v T

⊥g = S−1g.

2

4. G-Banach Frames

We recall that a sequence {xi} in Banach space X is called a Schauder basis for
X if for each x ∈ X there is a unique sequence of scalars {ai} such that x =

∑
aixi.

The unique elements x∗i ∈ X∗ satisfying

x =
∑
〈x, x∗i 〉xi, ∀x ∈ X,

are called the biorthogonal functionals for {xi}. So if X is a Banach space with
a Schauder basis {xi}, we always have a retrieval formula, that we can get every
x ∈ X by the sequence {xi}. But the question is how we can find a retrieval
formula for the spaces with no Schauder basis. Gröchenig and Casazza answered
this question by considering the concepts of atomic decompositions and Banach
frames. By inspiration of their results, in this section we present retrieval formulas
for these Banach spaces by the concept of g-Banach frames.

Definition 4.1. Let Yv be a Y -valued sequence space which is a BK-space. Given
a bounded operator K : Yv → X and a g-Yv-frame {Λi} ⊆ B(X,Y ), we say that
({Λi},K) is a g-Banach frame for X with respect to Y and Yv, if

(3.1) K({Λix}) = x, x ∈ X.
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Note that (3.1) can be considered as a kind of generalized retrieval formula, in the
sense that it tells how to come back to x ∈ X, based on the coefficients {Λi(x)}.
By extending [Prop. 3.4, [2]], the following proposition gives the equivalent condi-
tions in which we can obtain g-Banach frames from g-Yv-frames.

Proposition 4.2. Suppose that {Λi} is a g-Yv-frame for X with respect to Y . Then
the following conditions are equivalent:
(i) R(U) is complemented in Yv.
(ii) The operator U−1 : R(U) → X can be extended to a bounded linear operator
V : Yv → X.
(iii) There exists a linear bounded operator K such that ({Λi},K) is a g-Banach
frame for X with respect to Y and Yv.

Proof. (i)→ (ii) Since R(U) is complemented in Yv, there exists a closed subspace
N of Yv such that Yv = R(U) ⊕ N. We define V : Yv → X, V (g) = U−1(g) if
g ∈ R(U) and V (g) = 0 if g ∈ N.
(ii) → (i) Let V : Yv → X be a linear bounded extension of U−1. Now consider
the bounded operator P : Yv → R(U) defined by P = UV . Using the fact that
V U = I, we get P 2 = P . For each x ∈ X, we have

Ux = UV Ux = P (Ux) ∈ R(P ).

Thus R(U) is complemented in Yv.
(ii) → (iii) Since there exists a bounded operator V : Yv → X, such that for each
x ∈ X, V ({Λix}) = V Ux = x and {Λi} is a g-Yv-frame for X with respect to Y ,
we conclude the proof.
(iii) → (ii) Since for each x ∈ X, K({Λix}) = x, the operator K is a bounded
extension of U−1. 2

In the rest of this section we investigate the conditions that help us construct
g-Yv-frames and g-Banach frames.

Proposition 4.3.([3]) Every separable Banach space has a Banach frame with
frame bounds A = B = 1.

By inspiration of the result of Proposition 4.3, in the following theorem we show
that if X is a separable Banach space and Y is a Banach space with a Schauder
basis {ei}, then we can find a Y -valued sequence space Yv, and a g-Banach frame
for X with respect to Y and Yv.

Theorem 4.4. Let X be a separable Banach space and Y be a Banach space with a
Schauder basis {ei} such that for each i ∈ N, ‖ei‖ = 1. Then there exist a Y -valued
sequence space Yv, which is a BK-space and a g-Banach frame for X with respect
to Y and Yv with frame bounds A = B = 1.
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Proof. Since X is a separable Banach space, we can choose a sequence gi ∈ X∗ with
‖gi‖X∗ = 1, such that for every x ∈ X, we have

(3.2) ‖x‖X = supi|gi(x)|.

We define the operator Λi : X → Y by Λi(x) = gi(x)ei. Let Yv be the subspace of
`∞(Y, (bk)), where for each k ∈ N, bk = 1, given by

Yv = {{Λix} : x ∈ X}.

Let K : Yv → X, K({Λix}) = x. Now by (3.2), K is an isometrical isomorphism of
Yv onto X and therefore Yv is a Banach space. Also we define

pk : Yv → Y, pk({Λix}) = Λk(x).

Then

‖pk({Λix})‖ = ‖Λk(x)‖ = ‖gk(x)ek‖ ≤ ‖gk‖‖x‖ = ‖x‖ = ‖{Λi(x)}‖`∞ .

Therefore Yv is a BK-space and ({Λi},K) is a g-Banach frame for X with respect
to Y and Yv with frame bounds A = B = 1. 2

Theorem 4.5. Let X be a Banach space and Yv be a Y -valued sequence space
which is a BK-space. Then the following statements hold:
(i) There exists a g-Yv-frame for X with respect to Y if and only if X is isomorphic
to a subspace of Yv.
(ii) There exists a g-Banach frame for X with respect to Y and Yv if and only if X
is isomorphic to a complemented subspace of Yv.

Proof. (i) Let {Λi} be a g-Yv-frame for X with respect to Y . Then the mapping
U : X → Yv, U(x) = {Λi(x)} is an isomorphism of X into Yv.
Conversely, let X be a subspace of Yv. By the definition of a BK-space, the i-th
coordinate mapping pi : Yv → Y , pi({yk}) = yi is continuous. Let Λi = pi |X . Then
for each x ∈ X, {Λi(x)} = x ∈ Yv and ‖x‖X = ‖{Λi(x)}‖Yv .
(ii) Assume that X is isomorphic to a complemented subspace of Yv. Suppose
that M is a complemented subspace of Yv. Then F : X → M is an isomorphism.
Let P : Yv → M be the projection of Yv onto R(F ). Define K : Yv → X by
Ky = F−1Py. Let pi be the i-th coordinate mapping of Yv onto Y . Then for each
x ∈ X, we define

Λi(x) = pi(Fx), i ∈ N.

Hence, Fx = {Λi(x)}. Since F is an isomorphism, it follows that ({Λi},K) is a
g-Banach frame for X with respect to Y and Yv.
Conversely, suppose that there exists a g-Banach frame for X with respect to Y and
Yv. Then by Proposition 4.2, R(U) is complemented in Yv and so X is isomorphic
to a complement subspace of Yv. 2
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Lemma 4.6. Let {Λi ∈ B(X,Y ) : i ∈ N} be a g-complete sequence on X. Then
there exist a BK-space Yv and a bounded operator K : Yv → X such that ({Λi},K)
is a g-Banach frame for X with respect to Y and Yv.

Proof. Let define the normed linear space

Yv = {{Λi(x)} : x ∈ X}, ‖{Λi(x)}‖Yv = ‖x‖X .

Since {Λi} is a g-complete sequence on X, the norm on Yv is well-defined and the
operator W : X → Yv, W (x) = {Λix} is an isometrical isomorphism of X onto Yv.
Therefore Yv is a BK-space and ({Λi},K = W−1) is a g-Banach frame for X with
respect to Y and Yv. 2

Corollary 4.7. Let {Λi} be a g-Yv-frame for X with respect to Y . If for j0 ∈ N,
Λj0 is a surjective operator, then there exist an X∗-valued sequence space (X∗)v,
which is a BK-space and a bounded operator W : (X∗)v → Y ∗ such that ({Λ∗i },W )
is a g-Banach frame for Y ∗ with respect to X∗ and (X∗)v.

Proof. Let for each i ∈ N, Λ∗i g = 0. Then we have

〈x,Λ∗j0g〉 = 〈Λj0x, g〉 = 0, x ∈ X.

Since Λj0 is surjective, g = 0. So {Λ∗i } is a g-complete sequence on Y ∗. We conclude
the proof by Lemma 4.6. 2

In the next example, we show the existence of a g-Banach frame, which is not
a g-frame.

Example 4.8. Let g(x) = e
−x2
2 be the Gaussian and {αm,n : m,n ∈ Z} be an

orthonormal basis for `2(Z2). Define

Λjf =
∑
m,n∈Z

〈f(x), ei2πmxg(x− 2n− j)〉αm,n, j = 1, 2.

We deduce from [5] that, {Λi}i=1,2 is not a g-frame but is a g-complete sequence on
L2(R). However, by Lemma 4.6, ({Λi}i=1,2,K = W−1), for which W : L2(R)→ Zv,
W (f) = {Λif}i=1,2 is a g-Banach frame for L2(R) with respect to `2(Z2) and the
Bk-space

Zv = {{Λif} : f ∈ L2(R)},

with norm

‖{Λif}‖Zv = ‖f‖L2(R).
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