References
- M. S. Brodskii and D. P. Milman, On the center of a convex set, Doklady Akad. Nauk SSSR (N.S.) 59 (1948), 837-840.
- D. Dacunha-Castelle and J. L. Krivine, Applications des ultraproduits a l'etude des espaces et des algebres de Banach, Studia Math. 41 (1972), 315-334. https://doi.org/10.4064/sm-41-3-315-334
- M. M. Day, Normed Linear Spaces, third edition, Springer-Verlag, New York, 1973.
- J. Diestel, Geometry of Banach spaces-selected topics, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin, 1975.
- D. van Dulst, Some more Banach spaces with normal structure, J. Math. Anal. Appl. 104 (1984), no. 1, 285-292. https://doi.org/10.1016/0022-247X(84)90049-0
- J. Gao, The uniform degree of the unit ball of a Banach space. I, Nanjing Daxue Xuebao. Ziran Kexue Ban 1982 (1982), no. 1, 14-28.
- J. Gao, Normal structure and antipodal points in Banach spaces, Acta Anal. Funct. Appl. 2 (2000), no. 3, 247-263.
- J. Gao, Normal structure and modulus of smoothness in Banach spaces, Nonlinear Funct. Anal. Appl. 8 (2003), no. 2, 233-241.
- J. Gao, Normal structure and Pythagorean approach in Banach spaces, Period. Math. Hungar. 51 (2005), no. 2, 19-30. https://doi.org/10.1007/s10998-005-0027-3
- J. Gao, Normal structure and some parameters in Banach spaces, Nonlinear Funct. Anal. Appl. 10 (2005), no. 2, 299-310.
- J. Gao and K.-S. Lau, On two classes of Banach spaces with uniform normal structure, Studia Math. 99 (1991), no. 1, 41-56. https://doi.org/10.4064/sm-99-1-41-56
- J. Gao and S. Saejung, Some geometric measures of spheres in Banach spaces, Appl. Math. Comput. 214 (2009), no. 1, 102-107. https://doi.org/10.1016/j.amc.2009.03.060
- R. C. James, Uniformly non-square Banach spaces, Ann. of Math. (2) 80 (1964), 542-550. https://doi.org/10.2307/1970663
- A. Jimenez-Melado, E. Llorens-Fuster, and S. Saejung, The von Neumann-Jordan constant, weak orthogonality and normal structure in Banach spaces, Proc. Amer. Math. Soc. 134 (2006), no. 2, 355-364. https://doi.org/10.1090/S0002-9939-05-08362-0
- M. A. Khamsi, Uniform smoothness implies super-normal structure property, Nonlinear Anal. 19 (1992), no. 11, 1063-1069. https://doi.org/10.1016/0362-546X(92)90124-W
- W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006. https://doi.org/10.2307/2313345
- C. A. Kottman, Packing and reflexivity in Banach spaces, Trans. Amer. Math. Soc. 150 (1970), 565-576. https://doi.org/10.1090/S0002-9947-1970-0265918-7
- J. Lindenstrauss, On the modulus of smoothness and divergent series in Banach spaces, Michigan Math. J. 10 (1963), 241-252. https://doi.org/10.1307/mmj/1028998906
- S. Saejung, Suffcient conditions for uniform normal structure of Banach spaces and their duals, J. Math. Anal. Appl. 330 (2007), no. 1, 597-604. https://doi.org/10.1016/j.jmaa.2006.07.087
- S. Saejung and J. Gao, On semi-uniform Kadec-Klee Banach spaces, Abstr. Appl. Anal. 2010 (2010), Art. ID 652521, 12 pp.
- S. Saejung and J. Gao, Normal structure and moduli of UKK, NUC, and UKK* in Banach spaces, Appl. Math. Lett. 25 (2012), no. 10, 1548-1553. https://doi.org/10.1016/j.aml.2012.01.013
- B. Sims, "Ultra"-techniques in Banach space theory, Queen's Papers in Pure and Applied Mathematics, 60, Queen's University, Kingston, ON, 1982.
- B. Sims, Orthogonality and fixed points of nonexpansive maps, in Workshop/ Miniconference on Functional Analysis and Optimization (Canberra, 1988), 178-186, Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988.
- B. Sims, A class of spaces with weak normal structure, Bull. Austral. Math. Soc. 49 (1994), no. 3, 523-528. https://doi.org/10.1017/S0004972700016634
- Y. Takahashi, Some geometric constants of Banach spaces-a unified approach, in Banach and function spaces II, 191-220, Yokohama Publ., Yokohama, 2008.