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ENTROPY NUMBERS OF (R, W )-NUCLEAR
OPERATORS ACTING BETWEEN BANACH

SPACES OF CERTAIN WEAK TYPE

Hi Ja Song

Abstract. We characterize (r, w)-nuclear operators acting from a
Banach space whose dual has weak type q into a Banach space of
weak type p by the asymptotic behaviour of their entropy numbers.

1. Introduction

The theory of the so-called entropy numbers was introduced by A.
Pietsch [12]. Afterwards a lot of results concerning the behaviour of
entropy numbers of certain classes of operators were established (cf.
[4], [6], [10]). We only remind of diagonal operators acting between
Lorentz sequence spaces as well as embedding maps between Besov
function spaces.

B. Carl [4] characterized diagonal operators acting between Lorentz
sequence spaces by their entropy numbers.

In [5] B. Carl considered operators S : `q → X admitting a factor-

ization through `1, S : `q
D−→ `1

B−→ X, where D is a diagonal operator
generated by a sequence belonging to a Lorentz sequence space and
B is an arbitrary bounded operator. He characterized these operators
in terms of their entropy numbers under the hypothesis that X is a
Banach space of type p. By using this result, he [6] showed that the
sequence of entropy numbers of r-nuclear operators acting from a Ba-
nach space Lp into a Banach space Lq belongs to the Lorentz sequence
space.

In [10] T. Kühn dealt with operators T : X → `q factorizing through

`∞, T : X
B−→ `∞

D−→ `q, where B is an arbitrary bounded operator
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and D is a diagonal operator generated by a sequence belonging to
a Lorentz sequence space. He estimated the asymptotic behaviour of
the entropy numbers of these operators under the assumption that the
dual of a Banach space X has type p. And then he applied this result
to r-nuclear operators acting from a Banach space whose dual has type
q into a Banach space of type p.

In this paper we determine the “degree of compactness” of (r, w)-
nuclear operators acting from a Banach space whose dual has weak type
q into a Banach space of weak type p by means of entropy numbers.
Here, we present Defant and Junge’s approach [7].

2. Definitions and Notation

We present some of the definitions and notation to be used. Through-
out this paper X and Y denote Banach spaces.

Let (A0, A1) be a couple of quasi-Banach spaces. We consider the
functional K(t, a, A0, A1) = K(t, a) = inf{‖a0‖A0

+ t ‖a1‖A1
: a0 ∈

A0, a1 ∈ A1, a = a0 + a1} on A0 + A1. If 0 < θ < 1 and 0 < q ≤ ∞
then the real interpolation space (A0, A1)θ,q consists of all elements
a ∈ A0 + A1 which have a finite quasi-norm

‖a‖(A0,A1)θ,q
= ‖a‖θ,q =

{ (∫∞
0

[t−θK(t, a)]q dt
t

) 1
q if 0 < q < ∞,

supt [t−θK(t, a)] if q = ∞.

Notation. (1) The dual of a Banach space X is denoted by X∗.
(2) For 1 < p < ∞, the conjugate of p is denoted by p′, i.e.,

1/p + 1/p′ = 1.
(3) The closed unit ball of a Banach space X is denoted by

BX .
(4) B(X, Y ) denotes the set of all bounded linear operators

from X into Y .
(5) F(X,Y ) denotes the set of all finite rank operators from

X into Y .
(6) The dual operator of an operator T is denoted by T ∗.
(7) Vol(·) denotes the Lebesgue measure on Rn.

For every operator T ∈ B(X, Y ) the n-th outer entropy number
en(T ) is defined to be the infimum of all ε ≥ 0 such that there are
elements y1, · · · , yq ∈ Y with q ≤ 2n−1 and T (BX) ⊆ ⋃q

i=1{yi + εBY }.
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The n-th approximation number of T ∈ B(X, Y ) is defined by
an(T ) = inf{‖T − L‖ : L ∈ F(X,Y ), rank(L) < n}.

The n-th Gel’fand number of T ∈ B(X, Y ) is defined by
cn(T ) = inf{‖TJX

M‖ : codim(M) < n},
where JX

M denotes the canonical injection from the subspace M into
X.

The n-th Kolmogorov number of T ∈ B(X, Y ) is defined by
dn(T ) = inf{‖QY

N T‖ : dim(N) < ∞},
where QY

N denotes the canonical surjection from Y onto the quotient
space Y/N .

The n-th Weyl number of T ∈ B(X, Y ) is defined by
xn(T ) = sup{an(TU) : U ∈ B(`2, X), ‖U‖ ≤ 1}.

The n-th Grothendieck number of T ∈ B(X, Y ) is defined by
Γn(T ) = sup{ | det(〈Txi, y

∗
j 〉)|1/n : (xk)n

k=1 ⊂ BX , (y∗k)n
k=1 ⊂ BY ∗}.

The n-th volume number of T ∈ B(X, Y ) is defined by
vn(T ) =
sup

{(Vol(T (BM ))
Vol(BN )

)1/n : M ⊂ X, T (M) ⊂ N ⊂ Y, dim M = dim N = n
}
.

The n-th volume ratio number of T ∈ B(X, Y ) is defined by
vrn(T ) = sup

{(Vol(QY
N (T (BX))

Vol(BY/N )

)1/n : N ⊂ Y, codim N = n
}
.

For an operator U ∈ B(`n
2 , X), we define

`(U) =
(∫
Rn ‖Ux‖2 dγn(x)

)1/2,
where γn is the canonical Gaussian probability measure on Rn.

For an operator V ∈ B(X, `n
2 ), we set

`∗(V ) = sup{ | tr(V U)| : U ∈ B(`n
2 , X), `(U) ≤ 1}.

A Banach space X is called a weak type p space if there is a con-
stant C such that for all n and all operators V ∈ B(X, `n

2 ), we have
supk k1/p′ak(V ) ≤ C · `∗(V ). The smallest constant C for which this
holds will be denoted by wTp(X).

A Banach space X is called K-convex if there is a constant C such
that for every n and every operator V ∈ `∗(X, `n

2 ), we have `(V ∗) ≤
C · `∗(V ). In this case, we define the K-convexity constant as K(X) =
inf C, where the infimum is taken over all constants C satisfying the
above inequality.

If x = (ξi) is a bounded sequence then we put sn(x) = inf{σ ≥ 0 :
card(i : |ξi| ≥ σ) < n}. (

sn(x)
)

is called the non-increasing rearrange-
ment of x. Let 0 < r < ∞ and 0 < w ≤ ∞. Then the Lorentz sequence
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space `r,w consists of all sequences x = (ξi) having a finite quasi-norm

‖x‖r,w =

{ ( ∑∞
n=1 [n1/r−1/w sn(x)]w

)1/w if 0 < w < ∞,

supn [n1/rsn(x)] if w = ∞.

For s ∈ {e, a, c, d, x, v, vr}, an operator T ∈ B(X,Y ) is said to be of
s-type `r,w if

(
sn(T )

) ∈ `r,w. The set of these operators is denoted by
L(s)

r,w(X,Y ). For T ∈ L(s)
r,w(X, Y ), we define ‖T | L(s)

r,w‖ = ‖(sn(T ))‖r,w

[13].
Let 0 < r < 1 and 0 < w ≤ ∞. An operator T ∈ B(X, Y ) is said to

be (r, w)-nuclear if it can be written in the form T =
∑∞

i=1 τix
∗
i

⊗
yi

with (x∗i ) in BX∗ , (yi) in BY and (τi) ∈ `r,w. The set of these operators
is denoted by T ∈ Nr,w(X, Y ). For T ∈ Nr,w(X, Y ), we define a quasi-
norm

νr,w(T ) =

{
inf

(∑∞
n=1 [n1/r−1/wτn]w

)1/w if 0 < w < ∞,

inf
(
supn [n1/rτn]

)
if w = ∞,

where the infimum is taken over all (r, w)-nuclear representations such
that τ1 ≥ τ2 ≥ · · · ≥ 0.

3. Results

By using Carl’s proof [5] and the generalized Carl-Maurey inequal-
ity, we estimate the entropy quasi-norm of operators acting from `m

1

into a Banach space of weak type p.

Lemma 1. Let X be of weak type p, 1 ≤ p < 2, and S ∈ B(`m
1 , X).

Then there exists a constant C > 0 such that sup1≤k<∞ k1/sek(S) ≤
C ‖S‖m1/s−1/p′ for s < p′ and m = 1, 2, · · ·

Proof. We invoke Carl-Maurey inequality [8] to infer that there ex-
ists a constant C ≥ 0 such that

sup
1≤k≤m

k1/sek(S) ≤ C ‖S‖ sup
1≤k≤m

k1/s−1/p′ [1 + ln(
m

k
)]1/p′

≤ C0 ‖S‖m1/s−1/p′ for s < p′.



Entropy numbers of (r, w)-nuclear operators 87

Now we estimate supk>m k1/sek(S). Let Im denote the identity op-
erator on `m

1 . Using the multiplicativity of the entropy numbers we
obtain that

sup
k>m

k1/sek(S) = sup
k≥1

(m + k)1/s em+k(S)

≤ sup
k≥1

(m + k)1/s em(S) ek(Im) ≤ em(S) sup
k≥1

21/s(m1/s + k1/s)ek(Im)

≤ 21/sm1/sem(S) + 21/sem(S) sup
k≥1

k1/sek(Im).

Applying proposition 12.1.13 of [12] we derive that

sup
k≥1

k1/sek(Im) ≤ ( ∞∑

k=1

es
k(Im)

)1/s ≤ 4
( ∞∑

k=1

(2−(k−1)/2m)s
)1/s

≤ 4
1

(1− 2−s/2m)1/s
≤ 4

21/2m

(2s/2m − 1)1/s

≤ 4
21/2m

(s/2m)1/s (ln 2)1/s
≤ 8

21/sm1/s

(s ln 2)1/s
.

It takes another appeal to Carl-Maurey inequality [8] to yield that

sup
k>m

k1/sek(S) ≤ em(S)m1/s 21/s
[
1 +

8 · 21/s

(s ln 2)1/s

]

≤ C1 ‖S‖m1/s−1/p′ 21/s
[
1 +

8 · 21/s

(s ln 2)1/s

] ≤ C2 ‖S‖m1/s−1/p′ .

Combining this with the above estimate we see that

sup
1≤k<∞

k1/sek(S) ≤ sup
1≤k≤m

k1/sek(S) + sup
k>m

k1/sek(S)

≤ C3 ‖S‖m1/s−1/p′ for s < p′.

¤

Applying this lemma and Carl’s proof [4], [5] we intend to charac-
terize operators of the form SDσ, where Dσ : `q → `1 is a diagonal
operator generated by a sequence belonging to a Lorentz sequence space
and S : `1 → X is an arbitrary operator with the image in a Banach
space of weak type p, in terms of entropy numbers.
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Proposition 1. Let X be of weak type p, 1 ≤ p < 2, S ∈ B(`1, X)
and let Dσ ∈ B(`1, `1) be a diagonal operator generated by a sequence
σ = (σi) ∈ `r,t, where 0 < r < ∞ and 0 < t ≤ ∞. Then SDσ ∈
L(e)

s,t (`1, X) for 1/s = 1/r + 1/p′.

Proof. First we shall show that if σ ∈ `r,∞ then SDσ ∈ L(e)
s,∞(`1, X),

where 1/s = 1/r + 1/p′ (∗).
There is no loss in assuming that |σ1| ≥ |σ2| ≥ · · · ≥ 0. We define
canonical operators Jk ∈ B(`2

k

1 , `1) and Qk ∈ B(`1, `2
k

1 ) by

Jk(ξ1, · · · , ξ2k) = (0, · · · , 0, ξ1, · · · , ξ2k , 0, · · · ),
Qk(ξ1, · · · , ξk, · · · ) = (ξ2k , · · · , ξ2k+1−1),

respectively, for k ≥ 0. Let Mk ∈ B(`2
k

1 , `2
k

1 ) be the operator defined
by Mk(η1, · · · , η2k) = (σ2k η1, · · · , σ2k+1−1 η2k) for k ≥ 0. Then Dσ =∑∞

k=0 JkMkQk and so SDσ =
∑∞

k=0 SJkMkQk. Taking account of the
fact that L(e)

s,∞ admits an equivalent α-norm and using lemma 1 we
obtain

‖
m−1∑

k=0

SJkMkQk | L(e)
s,∞‖ ≤ C0 (

m−1∑

k=0

‖SJkMkQk | L(e)
s,∞‖α)1/α

≤ C0 (
m−1∑

k=0

‖SJk | L(e)
s,∞‖α ‖Mk‖α ‖Qk‖α)1/α

≤ C0 (
m−1∑

k=0

‖SJk | L(e)
s,∞‖α |σ2k |α)1/α

≤ C1 (
m−1∑

k=0

‖SJk‖α 2αk(1/s−1/p′) |σ2k |α)1/α

≤ C1 ‖S‖ (
m−1∑

k=0

2αk(1/s−1/p′) |σ2k |α)1/α for s < p′.

We assume that σ = (σi) ∈ `r,∞. Then we get
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‖
m−1∑

k=0

SJkMkQk | L(e)
s,∞‖ ≤ C2 ‖S‖ (

m−1∑

k=0

2αk(1/s−1/p′)2−αk/r)1/α

≤ C3 ‖S‖ 2m(1/s−1/p′−1/r) for 1/s > 1/r + 1/p′.

This yields e2m−1(
∑m−1

k=0 SJkMkQk) ≤ C4 ‖S‖ 2−m(1/r+1/p′). In order
to estimate ‖∑∞

k=m SJkMkQk | L(e)
s,∞‖ we choose s such that 1/p′ <

1/s < 1/r + 1/p′. By arguing similarly as above, we establish the
following estimation

‖
∞∑

k=m

SJkMkQk | L(e)
s,∞‖ ≤ C5 ‖S‖ (

∞∑

k=m

2αk(1/s−1/r−1/p′))1/α

≤ C5 ‖S‖ 2m(1/s−1/r−1/p′) · (
∞∑

k=0

2αk(1/s−1/r−1/p′))1/α

≤ C6 ‖S‖ 2m(1/s−1/r−1/p′).

This implies e2m−1(
∑∞

k=m SJkMkQk) ≤ C7 ‖S‖ 2−m(1/r+1/p′). From
the additivity of the entropy numbers it follows that

e2m(SDσ) ≤ e2m−1(
m−1∑

k=0

SJkMkQk) + e2m−1(
∞∑

k=m

SJkMkQk)

≤ C8 ‖S‖ 2−m(1/r+1/p′).

If n is a natural number we take m so that 2m ≤ n < 2m+1. An
appeal to the monotonicity of the entropy numbers establishes that
en(SDσ) ≤ e2m(SDσ) ≤ C9‖S‖n−1/r−1/p′ . Hence SDσ ∈ L(e)

s,∞(`1, X)
for 1/s = 1/r + 1/p′, which verifies (∗).

Now we use real interpolation to derive the desired assertion. Given
r with 0 < r < ∞ we can find r0, r1 and θ such that 0 < r0 < r1 <
∞, 0 < θ < 1 and 1/r = (1− θ)/r0 + θ/r1. We consider the operator
T transforming every sequence σ into the composition operator SDσ.
By (∗), T : `ri,∞ → L(e)

si,∞(`1, X), where 1/si = 1/ri + 1/p′, i = 0, 1,
are both bounded linear operators. Since 1/r = (1 − θ)/r0 + θ/r1,
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theorem 5.3.1. of [1] tells us that (`r0,∞, `r1,∞)θ,t = `r,t. The well-
known interpolation formula concerning entropy ideals allows us to
obtain

(L(e)
s0,∞(`1, X), L(e)

s1,∞(`1, X)
)
θ,t
⊆ L(e)

s,t (`1, X), where 1/s = (1−
θ)/s0 + θ/s1 = 1/r + 1/p′. We apply the interpolation theorem [1] to
deduce that T : `r,t → L(e)

s,t (`1, X) is also bounded. This ends the proof
of the proposition. ¤

Proposition 2. Let X be of weak type p, 1 ≤ p < 2, S ∈ B(`1, X)
and let Dσ ∈ B(`q, `1) be a diagonal operator generated by a sequence
σ = (σi) ∈ `r,t, where 0 < r < ∞, 0 < t ≤ ∞, 1 ≤ q ≤ ∞ and 1/r +
1/q > 1. Then SDσ ∈ L(e)

s,t (`q, X) provided that 1/s = 1/r+1/q−1/p.

Proof. The assumptions on q and r guarantee that we can choose
r0 and r1 such that 0 < r0, r1 < ∞, 1/r = 1/r0 + 1/r1 and 1/r1 +
1/q > 1. Then we can split σ = τ ◦ µ with µ ∈ `r1,∞ and τ ∈
`r0,t. As a result the operator Dσ ∈ B(`q, `1) can be factorized with

diagonal operators Dµ and Dτ as Dσ : `q
Dµ−−→ `1

Dτ−−→ `1. Since 1/r1 >

max(1−1/q, 0), we use a result of Carl [4] to see that Dµ ∈ L(e)
s1,∞(`q, `1)

for 1/s1 = 1/r1 + 1/q − 1. An appeal to proposition 1 reveals that
SDτ ∈ L(e)

s0,t(`1, X) for 1/s0 = 1/r0 + 1/p′. Using the multiplication

theorem for the entropy ideals we derive that SDσ = SDτDµ ∈ L(e)
s0,t ◦

L(e)
s1,∞(`q, X) ⊆ L(e)

s,t (`q, X) for 1/s = 1/s0 + 1/s1 = 1/r + 1/q − 1/p.¤

In the next proposition we describe the dual situation.

Proposition 3. Let X∗ be of weak type p, 1 ≤ p < 2, R ∈
B(X, `∞) and let Dσ ∈ B(`∞, `q) be a diagonal operator generated
by a sequence σ = (σi) ∈ `r,t, where 1 ≤ q ≤ ∞, 0 < r < q ≤ ∞ and

0 < t ≤ ∞. Then DσR ∈ L(e)
s,t (X, `q) for 1/s = 1/r + 1/q′ − 1/p.

Proof. We start with the case 1 < q < ∞. For R ∈ B(X, `∞),
we denote the restriction of R∗ to `1 by S. Since X∗ is of weak
type p and 1/r + 1/q′ > 1, it follows from proposition 2 that SDσ ∈
L(e)

s,t (`q′ , X
∗) with 1/s = 1/r + 1/q′ − 1/p. The K-convexity of `q′ en-

ables us to invoke a result due to Bourgain, Pajor,Szarek and Tomczak-
Jaegermann [2] to get that there exists a constant C ≥ 0 such that
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‖DσR | L(e)
s,t‖ = ‖DσS∗|X | L(e)

s,t‖ ≤ ‖DσS∗ | L(e)
s,t‖ ≤ C ‖SDσ | L(e)

s,t‖.
Consequently DσR ∈ L(e)

s,t (X, `q) for 1/s = 1/r + 1/q′ − 1/p.
Now we deal with the case q = 1 or q = ∞. Given r with 0 < r <

q ≤ ∞, we choose r0, r1 and u such that 0 < r0, r1 < ∞, 1 < u <
∞, 1/r0+1/u > 1/q, 1/r1 > 1/u and 1/r = 1/r0+1/r1. Thus we split
σ = µ ◦ τ with τ ∈ `r1,t and µ ∈ `r0,∞ and hence the operator Dσ ∈
B(`∞, `q) is factorized with diagonal operators Dτ and Dµ as Dσ :

`∞
Dτ−−→ `u

Dµ−−→ `q. Since 1/r0 > max(1/q − 1/u, 0), we take account
of a result due to Carl [4] to conclude that Dµ ∈ L(e)

s0,∞(`u, `q) with
1/s0 = 1/r0 + 1/u− 1/q. Applying the result of the preceding case to
the operator Dτ ∈ B(`∞, `u) we have DτR ∈ L(e)

s1,t(X, `u) with 1/s1 =
1/r1 + 1/u′ − 1/p. The multiplication theorem for the entropy ideals
assures us that DσR = DµDτR ∈ L(e)

s0,∞ ◦ L(e)
s1,t(X, `q) ⊆ L(e)

s,t (X, `q)
whenever 1/s = 1/s0 + 1/s1 = 1/r + 1/q′ − 1/p. ¤

Propositions 2 and 3 permit us to give a description of (r, w)-nuclear
operators acting from a Banach space whose dual has weak type q into
a Banach space of weak type p, 1 ≤ p, q < 2, in terms of their entropy
numbers.

Theorem 1. Let X∗ be of weak type q and Y of weak type p,

1 ≤ p, q < 2. Then Nr,w(X, Y ) ⊂ L(e)
s,w(X, Y ) provided that 0 < r <

1, 0 < w ≤ ∞ and 1/s = 1 + 1/r − 1/p− 1/q.

Proof. We divide the proof into two steps.
Step 1. The first step is to verify the following assertion : If R ∈
B(X, `∞), Dσ ∈ B(`∞, `1) is a diagonal operator generated by a se-
quence σ = (σi) ∈ `r, 0 < r < 1, and S ∈ B(`1, Y ) then SDσR ∈
L(e)

s,r(X,Y ) with 1/s = 1 + 1/r − 1/p− 1/q.
Since 1/r = 1/2r + 1/2r, for σ ∈ `r, we split σ = τ ◦ τ with τ ∈
`2r. Therefore the operator Dσ ∈ B(`∞, `1) admits a factorization
Dσ : `∞

Dτ−−→ `2
Dτ−−→ `1, where Dτ is a diagonal operator induced by

a sequence τ ∈ `2r. Since Y is of weak type p and 1/2r + 1/2 > 1,
we apply proposition 2 to deduce that SDτ ∈ L(e)

s0,2r(`2, Y ) for 1/s0 =
1/2r + 1/2− 1/p. As X∗ is of weak type q and 0 < 2r < 2, we invoke
proposition 3 to produce DτR ∈ L(e)

s1,2r(X, `2) with 1/s1 = 1/2r+1/2−
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1/q. The multiplication theorem for the entropy ideals informs us that
SDσR = SDτDτR ∈ L(e)

s0,2r ◦ L(e)
s1,2r(X, Y ) ⊆ L(e)

s,r(X, Y ) ⊆ L(e)
s,∞(X, Y )

with 1/s = 1/s0 + 1/s1 = 1 + 1/r − 1/p− 1/q.
Step 2. We improve the result of the preceding step by real inter-
polation. Given r with 0 < r < 1 we can find r0, r1 and θ such
that 0 < r0 < r1 < 1, 0 < θ < 1 and 1/r = (1 − θ)/r0 + θ/r1.
Let T be the operator transforming every sequence σ into the com-
position operator SDσR. By Step 1, T : `ri → L(e)

si,∞(X,Y ), where
1/si = 1+1/ri−1/p−1/q, i = 0, 1, are both bounded linear operators.
Since 1/r = (1−θ)/r0+θ/r1, we have (`r0 , `ri)θ,w = `r,w with the help
of theorem 5.3.1. of [1]. The well-known interpolation formula con-
cerning entropy ideals asserts that

(L(e)
s0,∞(X,Y ), L(e)

s1,∞(X, Y )
)
θ,w

⊆
L(e)

s,w(X, Y ), where 1/s = (1 − θ)/s0 + θ/s1 = 1 + 1/r − 1/p − 1/q.
An appeal to the interpolation theorem [1] establishes that T : `r,w →
L(e)

s,w(X, Y ) is also bounded.
Now we select any T ∈ Nr,w(X,Y ). It is known that T can be

represented as T = SDσR, where R ∈ B(X, `∞), Dσ ∈ B(`∞, `1)
is a diagonal operator generated by a sequence σ = (σi) ∈ `r,w and
S ∈ B(`1, Y ). This leads us to have that T = SDσR ∈ L(e)

s,w(X,Y ).
This proves the desired inclusion. ¤

Naturally the question arises : Does the above theorem remain valid
even when p = 2 or q = 2 ? This is answered by the theorems stated
below. By applying a known fact concerning the relationship between
entropy numbers and Kolmogorov numbers, together with estimates for
the Kolmogorov numbers in terms of the Weyl numbers, we improve
proposition 2 in Banach spaces of weak type 2.

Proposition 4. Let X be of weak type 2, S ∈ B(`1, X) and let
Dσ ∈ B(`q, `1) be a diagonal operator generated by a sequence σ =
(σi) ∈ `r,t, where 1 ≤ q ≤ ∞, 0 < r < min(2, q′) and 0 < t ≤ ∞. Then

SDσ ∈ L(e)
s,t (`q, X) with 1/s = 1/r + 1/q − 1/2.

Proof. First we shall show that if σ ∈ `r then SDσ ∈ L(e)
s,∞(`q, X),

where 1/s = 1/r + 1/q − 1/2. (∗)
Given r with 0 < r < min(2, q′), we can pick r1 and r2 such that
0 < r1 < 2, 1/r2 > max(1/2 − 1/q, 0) and 1/r = 1/r1 + 1/r2. Hence
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for σ ∈ `r, we split σ = τ ◦ µ with µ ∈ `r2 and τ ∈ `r1 . Accordingly
the operator Dσ ∈ B(`q, `1) can be factorized with diagonal operators

Dµ and Dτ as Dσ : `q
Dµ−−→ `2

Dτ−−→ `1. Since 1/r2 > max(1/2− 1/q, 0),
we invoke a result of Carl [4] to deduce that Dµ ∈ L(e)

s2,r2(`q, `2) ⊂
L(e)

s2,∞(`q, `2) for 1/s2 = 1/r2 +1/q−1/2. Using a result due to Carl [3]
and making use of theorem 11.7.7. of [12] we get that ‖SDτ | L(e)

r1,∞‖ ≤
C0 ‖SDτ | L(d)

r1,∞‖ = C0 ‖(SDτ )∗ | L(c)
r1,∞‖. Since X is of weak type 2, it

follows that X is K-convex and hence X∗ is K-convex. This enables
us to use a result of Pajor and Tomczak-Jaegermann [11] to see that

‖(SDτ )∗ | L(c)
r1,∞‖ ≤ C1 K(X∗)2/r1 ‖(SDτ )∗ | L(vr)

r1,∞‖
≤ C1 K(X∗)2/r1 ‖SDτ | L(v)

r1,∞‖.

Now we estimate the volume numbers in terms of the Weyl num-
bers. Let H be an n-dimensional subspace of `2. By setting E =
ran(SDτ iH), where iH : H → `2 is the natural injection, we have
dim E ≤ n. Then Lewis’ theorem [14] asserts that there is an isomor-
phism u : `n

2 → E and an operator v : X → `n
2 such that v|E = u−1 and

`(u) = `∗(v) ≤ n1/2. Using Geiss’ theorem [9] and a result due to Pa-
jor and Tomczak-Jaegermann [14], together with the multiplicativity
of the volume numbers, we obtain the following :

vn(SDτ iH) = vn(uvSDτ iH) ≤ vn(u) vn(vSDτ iH)

≤ 4 en(u)
( n∏

k=1

ak(vSDτ iH)
)1/n

≤ 4 C2 n−1/2 `(u) n−(1/r1+1/2) sup
k

k1/r1+1/2 xk(v∗(SDτ iH)∗)

≤ 4 C3 n−(1/r1+1/2) ‖v | L(a)
2,∞‖ · ‖(SDτ )∗ | L(x)

r1,∞‖
≤ 4 C3 n−(1/r1+1/2) wT2(X) `∗(v) ‖(SDτ )∗ | L(x)

r1,∞‖
≤ 4 C3 n−1/r1 wT2(X) ‖(SDτ )∗ | L(x)

r1,∞‖

This gives that ‖SDτ | L(v)
r1,∞‖ ≤ 4 C3 wT2(X) ‖(SDτ )∗ | L(x)

r1,∞‖. From
a result of Lubitz [13], we know that ‖(SDτ )∗ | L(x)

r1,∞‖ ≤ C4 ‖S‖ ·
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‖τ‖r1,∞ ≤ C4 ‖S‖ · ‖τ‖r1 . Combining the above inequalities we arrive
at ‖SDτ | L(e)

r1,∞‖ ≤ C K(X∗)2/r1 wT2(X) ‖S‖ · ‖τ‖r1 , that is SDτ ∈
L(e)

r1,∞(`2, X). An appeal to the multiplication theorem for the en-
tropy ideals ensures that SDσ = SDτDµ ∈ L(e)

r1,∞ ◦ L(e)
s2,∞(`q, X) ⊆

L(e)
s,∞(`q, X) for 1/s = 1/r1 +1/s2 = 1/r +1/q−1/2, which proves (∗).
Next we apply real interpolation to derive the required assertion.

Given r with 0 < r < min(2, q′), we can select r0, r1 and θ such that
0 < r0 < r1 < min(2, q′), 0 < θ < 1 and 1/r = (1 − θ)/r0 + θ/r1.
Let T be the operator assigning to every sequence σ the composition
operator SDσ. By (∗), T : `ri → L(e)

si,∞(`q, X), where 1/si = 1/ri +
1/q−1/2, i = 0, 1, are both bounded linear operators. Since 1/r = (1−
θ)/r0+θ/r1, we have (`r0 , `r1)θ,t = `r,t in view of theorem 5.3.1. of [1].
The well-known interpolation formula concerning entropy ideals tells
us that

(L(e)
s0,∞(`q, X), L(e)

s1,∞(`q, X)
)
θ,t

⊆ L(e)
s,t (`q, X), where 1/s =

(1−θ)/s0+θ/s1 = 1/r+1/q−1/2. Applying the interpolation theorem
[1] we draw that T : `r,t → L(e)

s,t (`q, X) is also bounded. This completes
the proof of the proposition. ¤

The following proposition shows a corresponding dual formulation
for a Banach space whose dual has weak type 2.

Proposition 5. Let X∗ be of weak type 2, R ∈ B(X, `∞) and
let Dσ ∈ B(`∞, `q) be a diagonal operator generated by a sequence
σ = (σi) ∈ `r,t, where 1 ≤ q ≤ ∞, 0 < r < min(2, q) and 0 < t ≤ ∞.

Then DσR ∈ L(e)
s,t (X, `q) for 1/s = 1/r − 1/q + 1/2.

Proof. We proceed in the same way as in the proof of proposition
3. We first deal with the case 1 < q < ∞. For R ∈ B(X, `∞),
we define R∗|`1 = S ∈ B(`1, X∗). As X∗ is of weak type 2 and
0 < r < min(2, q), we summon up proposition 4 to conclude that
SDσ ∈ L(e)

s,t (`q′ , X
∗) with 1/s = 1/r + 1/q′ − 1/2. Since `q′ is K-

convex, we use a result due to Bourgain, Pajor, Szarek and Tomczak-
Jaegermann [2] to obtain that there exists a constant C ≥ 0 such that
‖DσR | L(e)

s,t‖ = ‖DσS∗|X | L(e)
s,t‖ ≤ ‖DσS∗ | L(e)

s,t‖ ≤ C ‖SDσ | L(e)
s,t‖.

This implies DσR ∈ L(e)
s,t (X, `q) for 1/s = 1/r − 1/q + 1/2.

Next we treat the case q = 1 or q = ∞. Given r with 0 < r <
min(2, q), we find r0, r1 and u such that 0 < r0 < ∞, 1 < u <
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∞, 0 < r1 < min(2, u), 1/r0 + 1/u > 1/q and 1/r = 1/r0 + 1/r1.
Therefore we split σ = µ ◦ τ with τ ∈ `r1,t and µ ∈ `r0,∞ and so
the operator Dσ ∈ B(`∞, `q) is factorized with diagonal operators Dτ

and Dµ as Dσ : `∞
Dτ−−→ `u

Dµ−−→ `q. Since 1/r0 > max(1/q − 1/u, 0),
we invoke a result of Carl [4] to infer that Dµ ∈ L(e)

s0,∞(`u, `q) with
1/s0 = 1/r0 + 1/u− 1/q. Applying the result of the preceding case to
the operator Dτ ∈ B(`∞, `u) we get DτR ∈ L(e)

s1,t(X, `u) with 1/s1 =
1/r1−1/u+1/2. Thanks to the multiplication theorem for the entropy
ideals, we have DσR = DµDτR ∈ L(e)

s0,∞ ◦L(e)
s1,t(X, `q) ⊆ L(e)

s,t (X, `q) for
1/s = 1/s0 + 1/s1 = 1/r − 1/q + 1/2. ¤

We are now in a position to extend theorem 1 to the case p = 2 or
q = 2.

Theorem 2. Let X∗ be of weak type 2 and Y of weak type p,

1 ≤ p < 2. Then Nr,w(X, Y ) ⊂ L(e)
s,w(X, Y ) provided that 0 < r <

1, 0 < w ≤ ∞ and 1/s = 1/2 + 1/r − 1/p.

Proof. We divide the proof into two steps.
Step 1. The first step is to verify the following assertion : If R ∈
B(X, `∞), Dσ ∈ B(`∞, `1) is a diagonal operator generated by a se-
quence σ = (σi) ∈ `r, 0 < r < 1, and S ∈ B(`1, Y ) then SDσR ∈
L(e)

s,r(X,Y ) with 1/s = 1/2 + 1/r − 1/p.
Since 1/r = 1/2r + 1/2r, for σ ∈ `r, we split σ = τ ◦ τ with τ ∈
`2r. Consequently the operator Dσ ∈ B(`∞, `1) admits a factorization
Dσ : `∞

Dτ−−→ `2
Dτ−−→ `1, where Dτ is a diagonal operator generated by

a sequence τ ∈ `2r. As Y is of weak type p and 1/2r + 1/2 > 1, it
follows from proposition 2 that SDτ ∈ L(e)

s1,2r(`2, Y ) for 1/s1 = 1/2r +
1/2 − 1/p. Since X∗ is of weak type 2 and 0 < 2r < min(2, 2), we
have DτR ∈ L(e)

2r (X, `2) by way of proposition 5. Appealing to the
multiplication theorem for the entropy ideals we derive that SDσR =
SDτDτR ∈ L(e)

s1,2r ◦L(e)
2r (X, Y ) ⊆ L(e)

s,r(X,Y ) ⊆ L(e)
s,∞(X,Y ) with 1/s =

1/s1 + 1/2r = 1/2 + 1/r − 1/p.
Step 2. We improve the result of the preceding step by real interpo-
lation. Given r with 0 < r < 1 we can select r0, r1 and θ such that
0 < r0 < r1 < 1, 0 < θ < 1 and 1/r = (1 − θ)/r0 + θ/r1. We



96 Hi Ja Song

consider the operator T transforming every sequence σ into the com-
position operator SDσR. By step 1, T : `ri → L(e)

si,∞(X, Y ), where
1/si = 1/2 + 1/ri − 1/p, i = 0, 1, are both bounded linear opera-
tors. Applying the interpolation formulas given in the proof of theo-
rem 1 we deduce that T : `r,w → L(e)

s,w(X, Y ) is also bounded, where
1/s = (1− θ)/s0 + θ/s1 = 1/2 + 1/r − 1/p.

Now we take any T ∈ Nr,w(X,Y ). It is known that T can be
represented as T = SDσR, where R ∈ B(X, `∞), Dσ ∈ B(`∞, `1)
is a diagonal operator generated by a sequence σ = (σi) ∈ `r,w and
S ∈ B(`1, Y ). This allows us to have that T = SDσR ∈ L(e)

s,w(X,Y ).
This proves the required inclusion. ¤

Theorem 3. Let X∗ be of weak type q, 1 ≤ q < 2, and Y of weak

type 2. Then Nr,w(X, Y ) ⊂ L(e)
s,w(X, Y ) for 0 < r < 1, 0 < w ≤ ∞ and

1/s = 1/2 + 1/r − 1/q.

Proof. Suppose that R ∈ B(X, `∞), Dσ ∈ B(`∞, `1) is a diagonal
operator generated by a sequence σ = (σi) ∈ `r, 0 < r < 1, and
S ∈ B(`1, Y ). Since 1/r = 1/2r+1/2r, for σ ∈ `r, we split σ = τ◦τ with
τ ∈ `2r. As a result the operator Dσ ∈ B(`∞, `1) admits a factorization
Dσ : `∞

Dτ−−→ `2
Dτ−−→ `1, where Dτ is a diagonal operator induced

by a sequence τ ∈ `2r. Since Y is of weak type 2 and 0 < 2r <

min(2, 2), we have SDτ ∈ L(e)
2r (`2, Y ) with the aid of proposition 4.

Since X∗ is of weak type q and 0 < 2r < 2, an appeal to proposition
3 reveals that DτR ∈ L(e)

s1,2r(X, `2) for 1/s1 = 1/2r + 1/2 − 1/q. We
apply the multiplication theorem for the entropy ideals to produce that
SDσR = SDτDτR ∈ L(e)

2r ◦ L(e)
s1,2r(X,Y ) ⊆ L(e)

s,t (X, Y ) ⊆ L(e)
s,∞(X, Y )

with 1/s = 1/2r + 1/s1 = 1/2 + 1/r− 1/q. The required inclusion can
be carried out by arguing exactly as in the second part of the proof of
theorem 2. ¤

Theorem 4. Let X∗ be of weak type 2 and Y of weak type 2. Then

Nr,w(X, Y ) ⊂ L(e)
r,w(X, Y ) where 0 < r < 1 and 0 < w ≤ ∞.

Proof. Assume that R ∈ B(X, `∞), Dσ ∈ B(`∞, `1) is a diagonal
operator generated by a sequence σ = (σi) ∈ `r, 0 < r < 1, and
S ∈ B(`1, Y ). Since 1/r = 1/2r + 1/2r, for σ ∈ `r, we split σ = τ ◦ τ



Entropy numbers of (r, w)-nuclear operators 97

with τ ∈ `2r. Accordingly the operator Dσ ∈ B(`∞, `1) admits a
factorization Dσ : `∞

Dτ−−→ `2
Dτ−−→ `1, where Dτ is a diagonal operator

generated by a sequence τ ∈ `2r. Since Y is of weak type 2 and 0 <

2r < min(2, 2), it follows from proposition 4 that SDτ ∈ L(e)
2r (`2, Y ).

As X∗ is of weak type 2 and 0 < 2r < min(2, 2), proposition 5 steps
in to assure that DτR ∈ L(e)

2r (X, `2). Application of the multiplication
theorem for the entropy ideals leads to SDσR = SDτDτR ∈ L(e)

2r ◦
L(e)

2r (X, Y ) ⊆ L(e)
r (X, Y ) ⊆ L(e)

r,∞(X,Y ). The remaining assertions are
established by arguing exactly as in the second part of the proof of
theorem 2. ¤
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