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SEQUENCES IN THE RANGE
OF A VECTOR MEASURE

Hi Ja Song

Abstract. We prove that every strong null sequence in a Banach
space X lies inside the range of a vector measure of bounded vari-
ation if and only if the condition N1(X, `1) = Π1(X, `1) holds. We
also prove that for 1 ≤ p < ∞ every strong `p sequence in a Banach
space X lies inside the range of an X-valued measure of bounded
variation if and only if the identity operator of the dual Banach
space X∗ is (p′, 1)-summing, where p′ is the conjugate exponent of
p. Finally we prove that a Banach space X has the property that
any sequence lying in the range of an X-valued measure actually
lies in the range of a vector measure of bounded variation if and
only if the condition Π1(X, `1) = Π2(X, `1) holds.

1. Introduction

The intriguing connection between the geometry of subsets of Ba-
nach spaces and vector measure theory is not confined to Radon-
Nikodym considerations. Questions regarding the finer structure of
the range of a vector measure have found interest since Liapounoff’s
discovery of his everintriguing convexity theorem which states that the
range of a nonatomic vector measure with values in a finite dimensional
space is compact and convex. The infinite dimensional version of Lia-
pounoff’s theorem remained resistant to analysis for a long time. It is
an important fact, first established by Bartle, Dunford and Schwartz in
the early fifties, that the range of a vector measure is always relatively
weakly compact.

Received March 23, 2007.
2000 Mathematics Subject Classification: 46G10,47B10.
Key words and phrases: vector measures, null sequences, summable sequences

in Banach spaces.



14 Hi Ja Song

Among the relatively weakly compact subsets of Banach spaces,
those that are the range of a vector measure occupy a special place ; a
remarkable similarity to the relatively norm compact sets is evidenced.
For instance, Diestel and Seifert [3] proved that any sequence in the
range of a vector measure admits a subsequence with norm convergent
arithmetic means, a phenomenon not shared by all weakly compact
sets.

Any intuition gained by noting the similarities between relatively
norm compact sets and sets arising as ranges of vector measures must
be tempered by the fact that the closed unit ball of an infinite dimen-
sional Banach space can be the range of a vector measure.

Anantharaman and Garg [1] proved that the closed unit ball of a
Banach space X is the range of a vector measure if and only if the dual
of a Banach space X is isometrically isomorphic to a reflexive subspace
of L1(µ) for some probability measure µ.

Anantharaman and Diestel [2] found that every weakly compact
subset of BD1 (the separable L∞ space of Bourgain and Delbaen that
has the weakly compact extension property) lies inside the range of a
BD1-valued measure. They also gave some necessary and some suffi-
cient conditions for a sequence in a Banach space X to lie in the range
of an X-valued measure.

Piñeiro and Rodriguez-Piazza [7] showed that the compact subset
of a Banach space X lies inside the range of an X-valued measure if
and only if the dual of a Banach space X can be embedded into an
L1(µ)-space for a suitable measure µ.

It is an easy consequence of the celebrated Dvoretsky-Rogers the-
orem that given an infinite dimensional Banach space X, there is an
X-valued measure that does not have finite variation [12]. Thus the
question arose : Which Banach spaces X have the property that every
compact subset of X lies inside the range of an X-valued measure of
bounded variation ? This was settled by Piñeiro and Rodriguez-Piazza
[7]: Only finite-dimensional Banach spaces have this property.

Piñeiro [9] treated the same problem in which case the measure is
not X-valued. He proved that every strong null sequence in a Banach
space X lies inside the range of a vector measure of bounded variation
if and only if X is isomorphic to a Hilbert space. He also showed that
every bounded sequence in X that lies in the range of a vector measure
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of bounded variation actually lies inside the range of an X∗∗-valued
measure of bounded variation if and only if X∗ satisfies Grothendieck’s
theorem.

In this paper we survey geometric structures of the ranges of vector
measures.

We first characterize Banach spaces X having the property that
every strong null sequence in X lies inside the range of a vector measure
of bounded variation in terms of operators.

Next we give descriptions of Banach spaces X for which every strong
`p sequence in X lies inside the range of an X-valued measure of
bounded variation. And then we find usable sufficient condition for
a sequence lying in the range of an X-valued measure to lie inside the
range of an X∗∗-valued measure of bounded variation.

Finally we give a characterization of Banach spaces X with the
property that every sequence lying in the range of an X-valued measure
actually lies in the range of a vector measure of bounded variation.

2. Definitions and Notations

We give some definitions and notation to be used. Throughout this
paper X and Y denote Banach spaces.

A function µ from a σ-field Σ of subsets of a set Ω to a Banach
space X is called a countably additive vector measure if µ(∪∞n=1En) =∑∞

n=1 µ(En) in the norm topology of X for all sequences (En) of
pairwise disjoint members of Σ such that ∪∞n=1En ∈ Σ. The range
of µ will be denoted by rg µ. The variation of µ is the extended
nonnegative function |µ| whose value on a set E ∈ Σ is given by
|µ|(E) = supπ

∑
A∈π ‖µ(A)‖, where the supremum is taken over all

partitions π of E into a finite number of pairwise disjoint members of
Σ. If |µ|(Ω) = tv(µ) < ∞ then µ will be called a measure of bounded
variation. The semivariation of µ is the extended nonnegative function
‖µ‖ whose value on a set E ∈ Σ is given by ‖µ‖(E) = sup{|x∗ ◦µ|(E) :
x∗ ∈ X∗, ‖x∗‖ ≤ 1}, where |x∗ ◦ µ| is the variation of the real-valued
measure x∗ ◦ µ. If ‖µ‖(Ω) = tsv(µ) < ∞, then µ will be called a
measure of bounded semivariation.

Notations. (1) The dual of a Banach space X is denoted by X∗.
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(2) The closed unit ball of a Banach space X is denoted by
BX .

(3) The dual operator of an operator T is denoted by T ∗.
(4) B(X, Y ) denotes the set of all bounded linear operators

from X into Y .
(5) K(X, Y ) denotes the set of all compact operators from X

into Y .
(6) The identity operator of a Banach spaces X is denoted

by idX .
(7) The canonical isometric embedding from a Banach space

X into the bidual of X is denoted by κX .
(8) The natural isometric embedding from X into `∞(BX∗)

is denoted by iX .
(9) For 1 < p < ∞, the conjugate exponent of p is denoted

by p′, i.e. 1/p + 1/p′ = 1.

The space R(X) is defined to consist of all sequences (xn) in X such
that there exists an X-valued measure µ satisfying {xn : n ∈ N} ⊂ rg µ.
For each (xn) ∈ R(X), define ‖(xn)‖r = inf tsv(µ), where the infimum
is taken over all vector measures µ as above.

The space Rc(X) consists of all sequences in X that lie inside the
range of an X-valued measure with relatively compact range. If (xn)
belongs to Rc(X) then proposition 1.4 of [7] ensures that there exists
an unconditionally convergent series

∑∞
k=1 yk in X for which {xn :

n ∈ N} ⊂ {∑∞
k=1 αkyk : (αk) ∈ `∞, ‖(αk)‖∞ ≤ 1}. For each (xn) ∈

Rc(X), define ‖(xn)‖rc = inf sup{∑∞
k=1 |〈x∗, yk〉| : x∗ ∈ BX∗}, where

the infimum is taken over all unconditionally convergent series
∑∞

k=1 yk

of the kind described above.
The space Rbv(X) is defined to consist of all sequences (xn) in X

such that there exists an X-valued measure µ with bounded variation
satisfying {xn : n ∈ N} ⊂ rg µ. For each (xn) ∈ Rbv(X), set ‖(xn)‖bv =
inf tv(µ), where the infimum is taken over all vector measures µ as
above.

The space Riv(X) is defined to consist of all sequences (xn) in X
such that there exists an isometric J : X → X0 and an X0-valued
measure µ with bounded variation satisfying {Jxn : n ∈ N} ⊂ rg µ.

Let [A, α] be a Banach operator ideal. We say that the operator T :
X → Y belongs to A∗(X, Y ) provided there is a constant C ≥ 0 such
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that regardless of the finite dimensional normed spaces E and F and
operators a ∈ B(E, X), b ∈ B(Y, F ) and U ∈ B(F, E), the composition
E

a−→ X
T−→ Y

b−→ F
U−→ E satisfies | tr(UbTa)| ≤ C ·‖a‖·‖b‖·α(U). The

collection of all such C has an infimum, which is denoted by α∗(T ).
The Banach operator ideal [A∗, α∗] is called the adjoint operator ideal
of [A, α].

For 1 ≤ p ≤ ∞, an operator T ∈ B(X, Y ) is called p-integral if
there are a probability measure µ and operators A ∈ B(Lp(µ), Y ∗∗)
and B ∈ B(X, L∞(µ)) such that κY ◦ T = A ◦ ip ◦ B, where ip :
L∞(µ) → Lp(µ) is the formal identity. The p-integral norm of T is
defined by ıp(T ) = inf{‖A‖‖B‖}, where the infimum is extended over
all measures µ and operators A and B as above. The collection of all
p-integral operators from X into Y is denoted by Ip(X, Y ).

We denote by C0(X) the space of all sequences (xn) in X with
limn→∞ ‖xn‖ = 0.

Let 1 ≤ p < ∞. The vector sequence (xn) in X is strongly p-
summable if the corresponding scalar sequence (‖xn‖) is in `p. We
denote by `strong

p (X) the set of all such sequences in X. This is a
Banach space with respect to the norm ‖(xn)‖strong

p = (
∑

n ‖xn‖p)1/p.
Let 1 ≤ p < ∞. The vector sequence (xn) in X is weakly p-

summable if the scalar sequences (〈x∗, xn〉) are in `p for every x∗ ∈ X∗.
We denote by `weak

p (X) the set of all such sequences in X. This is a
Banach space under the norm

‖(xn)‖weak
p = sup

{
(
∑

n

|〈x∗, xn〉|p)1/p : x∗ ∈ X∗, ‖x∗‖ ≤ 1
}
.

For 1 ≤ p ≤ ∞, an operator T ∈ B(X,Y ) is said to be p-nuclear if
it can be written in the form T =

∑∞
i=1 x∗i ⊗ yi, where (x∗i ) in X∗ and

(yi) in Y satisfy Np((x∗i ), (yi)) < ∞. Here

Np((x∗i ), (yi)) =





‖(x∗i )‖strong
1 · (supi ‖yi‖) for p = 1,

‖(x∗i )‖strong
p · ‖(yi)‖weak

p′ for 1 < p < ∞,

(supi ‖xi‖) · ‖(yi)‖weak
1 for p = ∞.

Each such representation of T is called a p-nuclear representation. The
set of all p-nuclear operators from X into Y is denoted by Np(X,Y ).
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With each T ∈ Np(X,Y ) we associate its p-nuclear norm, νp(T ) =
inf Np((x∗i ), (yi)), where the infimum is taken over all p-nuclear repre-
sentations of T .

Let 1 ≤ p ≤ q < ∞. An operator T ∈ B(X, Y ) is called absolutely
(q, p)-summing if there exists a constant C ≥ 0 such that for all finite
subsets {xi}n

i=1 ⊂ X, we have

(
n∑

i=1

‖Txi‖q)1/q ≤ C · sup
{
(

n∑

i=1

|〈x∗, xi〉|p)1/p : x∗ ∈ BX∗}.

The infimum of such C is the absolutely (q, p)-summing norm of T and
denoted by πq,p(T ). We write Πq,p(X, Y ) for the set of all absolutely
(q, p)-summing operators from X into Y . If p = q we say absolutely p-
summing operator instead of absolutely (p, p)-summing operator, and
we use the notation πp(T ) instead of πp,p(T ) and Πp(X,Y )instead of
Πp,p(X,Y ).

An operator T ∈ B(X, Y ) is called Pietsch integral if there exists
a Y -valued countably additive vector measure µ of bounded variation
defined on the Borel sets of BX∗ such that for each x ∈ X, T (x) =∫

BX∗
〈x∗, x〉 dµ(x∗). The set of Pietsch integral operators from X into

Y becomes a Banach space under the norm ‖T‖pint = inf{|µ|(BX∗)}
,where the infimum is taken over all measures µ that satisfy the above
definition.

A Banach space X has the Radon-Nikodym property with respect
to (Ω, Σ, µ) if for each µ-continuous vector measure G : Σ → X of
bounded variation there exists g ∈ L1(µ,X) such that G(E) =

∫
E

g dµ
for all E ∈ Σ. A Banach space X has the Radon-Nikodym property
if X has the Radon-Nikodym property with respect to every finite
measure space.

We will say that a Banach space X satisfies Grothendieck’s theorem
if every operator from X into a Hilbert space is absolutely 1-summing.

3. Results

We begin by describing Banach spaces X for which any strong null
sequence in X lies inside the range of a vector measure of bounded
variation.



Sequences in the range of a vector measure 19

Theorem 1. The following statements are equivalent.

(i) C0(X) ⊂ Riv(X).
(ii) N1(X, `1) = Π2(X, `1).
(iii) X is isomorphic to a Hilbert space.

Proof. (i)⇒(ii). The hypothesis (i) leads us to have that there exist
an isometric J : X → X0 and a vector measure F :

∑ → X0 with
bounded variation such that {Jxn : n ∈ N} ⊂ rg F for any sequence
(xn) ∈ C0(X). We invoke theorem 2.4 of [8] to infer that J∗ is 1-
summing and so 2-summing. Then J∗ is factorizable through a Hilbert
space H as follows : J∗ : X∗

0
v−→ H

u−→ X∗. As J∗ is onto, so is
u. Injectivity of u can be arranged by replacing H by the orthogonal
complement of keru. Then the open mapping theorem tells us that u
is an isomorphism and hence X is isomorphic to a Hilbert space. This
allows us to create a continuous map Φ : C0(X) → Π1(`1, X) through
Φ(xn) =

∑
n en ⊗ xn. Taking account of the fact that Π1(`1, X) =

Π2(`1, X) and ν2(S) = π2(S) for any finite rank operator S, we derive
that there exists a constant C > 0 such that ν2(

∑n
k=1 ek ⊗ xk) ≤

C sup{‖xk‖ : 1 ≤ k ≤ n} for all finite sets {x1, · · ·xn} in X and n ∈ N.
Using the trace duality we have

(∗)
n∑

k=1

‖x∗k‖ ≤ C π2(
n∑

k=1

x∗k ⊗ ek : X → `n
1 ).

Now let us take operator T =
∑

k x∗k ⊗ ek ∈ Π2(X, `1). Then it fol-
lows from (∗) that

∑n
k=1 ‖x∗k‖ ≤ C π2(T ) for all n and hence T ∈

N1(X, `1). As N1(X, `1) ⊂ Π2(X, `1) we end up with the desired
equality N1(X, `1) = Π2(X, `1).
(ii)⇒(iii). The hypothesis (ii) assures us that there exists a constant
C > 0 such that ν1(U) =

∑ ‖x∗k‖ ≤ C π2(U) for any operator U =∑
k x∗k ⊗ ek ∈ N1(X, `1). We make use of the fact that ν2(S) = π2(S)

for any finite rank operator S to obtain that
n∑

k=1

‖x∗k‖ ≤ C ν2(
n∑

k=1

x∗k ⊗ ek : X → `n
1 ).

Using the trace duality we obtain

π2(
n∑

k=1

ek ⊗ xk : `n
1 → X) ≤ C sup{‖xk‖ : 1 ≤ k ≤ n} for all n.



20 Hi Ja Song

Since Π1(`1, X) = Π2(`1, X), it follows that the operator
∑

n en ⊗
xn ∈ Π1(`1, X) for any sequence (xn) ∈ C0(X). The injectivity of
`∞(BX∗) ensures that iX ◦∑

n en ⊗ xn ∈ I1(`1, `∞(BX∗)). This per-
mits us to define a continuous map Ψ : C0(X) → I1(`1, `∞(BX∗))
by Ψ(xn) =

∑
n en ⊗ iXxn. Notice that Ψ maps each finite sequence

into a nuclear operator and N1(`1, `∞(BX∗)) is a normed subspace of
I1(`1, `∞(BX∗)). From this we find that the range of Ψ is contained
in N1(`1, `∞(BX∗)).
Given S =

∑
n an⊗ en ∈ B(`∞(BX∗), `1), with an ∈ `weak

1 (`∞(BX∗)∗),
and (xn) ∈ C0(X), we use the trace duality to obtain the following :

〈Ψ∗S, (xn)〉 = 〈S, Ψ(xn)〉 = tr(S ◦
∑

n

en ⊗ iXxn)

=
∑

k

〈S ◦
∑

n

en ⊗ iXxn(ek), ek〉 =
∑

k

〈
∑

n

〈an, iXxk〉en, ek〉

=
∑

n

〈an, iXxn〉 =
∑

n

〈xn, iX
∗an〉.

Thus Ψ∗ : B(`∞(BX∗), `1) → `1(X∗) :
∑

n an ⊗ en 7→ (iX∗an)n.
As a result iX

∗ is 1-summing and thus 2-summing. Then iX
∗ admits a

factorization iX
∗ : `∞(BX∗)∗ b−→ H

a−→ X∗, where H is a Hilbert space.
The surjectivity of iX

∗ transfers to a. Summoning the open mapping
theorem we discover that X is isomorphic to a Hilbert space.
(iii)⇒(i). The hypothesis (iii) informs us that the identity operator idX

of X factors through a Hilbert space H as follows : idX : X
v−→ H

u−→ X.
Let us take any sequence (xn) ∈ C0(X). As we know, an operator T :
`1 → H : (αn) 7→ ∑

n αnvxn is 1-summing. Consequently u ◦ T : `1 →
X : (αn) 7→ ∑

n αnu ◦ vxn =
∑

n αnxn is 1-summing. Let iX ◦ u ◦ T :

`1
i−→ C(K)

j−→ `∞(BX∗) be a 1-summing factorization, where K is a
weak∗ compact norming subset of B`∞ and j is 1-summing. We apply
proposition 1.3 of [7] to deduce that there exists an `∞(BX∗)-valued
measure ν with bounded variation satisfying j(BC(K)) = rg(ν) and so
{iX(xn) : n ∈ N} ⊂ rg(‖i‖ν) , that is (xn) ∈ Riv(X). ¤

Using the same method as in the proof of theorem 4 in [9], we
establish the following useful characterization of Banach spaces X with
the property that every strong `p sequence in X lies inside the range
of an X-valued measure of bounded variation.
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Theorem 2. Let 1 < p < ∞. The following are equivalent state-
ments.

(i) `strong
p (X) ⊂ Rbv(X).

(ii) `strong
p (X) ⊂ Rbv(X∗∗).

(iii) For every sequence (x∗n) in X∗ such that the operator
∑

n x∗n⊗
en ∈ K(X, `1) , we have

∑
n ‖x∗n‖p′ < ∞.

(iv) idX∗ is (p′, 1)-summing.

Proof. (i)⇒(ii) is obvious.
(ii)⇒(iii). Let us take any sequence (xn) ∈ `strong

p (X). The hypothesis
(ii) provides a vector measure µ :

∑ → X∗∗ with bounded variation
for which {xn : n ∈ N} ⊂ rg µ. Choose An ∈ ∑

so that µ(An) =
xn for each n ∈ N. Define operators u : L∞(|µ|) → X∗∗ and v :
`1 → L∞(|µ|) via u(f) =

∫
fdµ and v(αn) =

∑
n αnχAn , respectively.

These operators validate the following :

uv(αn) = u(
∑

n

αnχAn) =
∫ ∑

n

αnχAndµ =
∑

n

αnxn.

Since u is a 1-summing operator with domain L∞(|µ|), it follows that
u is Pietsch-integral, so integral. Consequently uv ∈ I1(`1, X∗∗) and
thus

∑
n en ⊗ xn ∈ I1(`1, X). This allows us to define a continuous

map Φ : `strong
p (X) → I1(`1, X) by Φ(xn) =

∑
n en ⊗ xn. Note that

Φ maps each finite sequence into a nuclear operator and N1(`1, X) is
a normed subspace of I1(`1, X). This implies that the range of Φ is
contained in N1(`1, X).
Given S =

∑
n x∗n ⊗ en ∈ B(`1, X) and (xn) ∈ `strong

p (X), we use the
trace duality to get the following :

〈Φ∗S, (xn)〉 = 〈S, Φ(xn)〉 = tr(S ◦
∑

n

en ⊗ xn)

∑

k

〈S ◦
∑

n

en⊗xn(ek), ek〉 =
∑

k

〈
∑

n

〈x∗n, xk〉en, ek〉 =
∑

n

〈x∗n, xn〉.

Thus Φ∗ : B(X, `1) → `strong
p′ (X∗) :

∑
n x∗n⊗ en 7→ (x∗n)n. In particular

Φ∗ takes K(X, `1) into `strong
p′ (X∗).

(iii)⇒(iv). The hypothesis (iii) guarantees that every weak `1 sequence
in X∗ is a strong `p′ sequence. In other words, idX∗ is (p′, 1)-summing.
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(iv)⇒(i). The hypothesis (iv) enables us to define a map φ : B(X, `1) →
`strong
p′ (X∗) by φ(

∑
n x∗n⊗en) = (x∗n)n. Using the trace duality we have

that φ∗ takes `strong
p (X) into N1(`1, X).

Now let us select any sequence (xn) ∈ `strong
p (X). Then the map

T : `1 → X given by T (αn) =
∑

n αnxn is nuclear, so Pietsch-integral.

Hence T admits a factorization T : `1
a−→ C(Ω) b−→ X, where Ω is

some compact Hausdorff space, a is bounded and b is 1-summing. An
appeal to proposition 1.3 of [7] reveals that there exists an X-valued
measure ν with bounded variation for which b(BC(Ω)) = rg(ν) and
hence {xn : n ∈ N} ⊂ rg(‖a‖ν) , that is (xn) ∈ Rbv(X). ¤

As a corollary we drive another usable sufficient condition which
implies that every strong `2 sequence in a Banach space X lies inside
the range of an X-valued measure of bounded variation.

Corollary 3. If Π1(X∗, Y ) = Π2(X∗, Y ) for every Banach space

Y , then `strong
2 (X) ⊂ Rbv(X).

Proof. For each n ∈ N, take any operator T : `n
∞ → X∗. Consider

a composition E
a−→ `n

∞
T−→ X∗ b−→ F

U−→ E of operators with E and F
finite dimensional. In view of our hypothesis, we have

| tr(UbTa)| ≤ ı1(UbT )‖a‖ = π1(UbT )‖a‖ ≤ C‖b‖ ‖T‖π2(U)‖a‖.

This ensures that π2(T ) = π∗2(T ) ≤ C‖T‖. By localization we get that

(∗∗) I∞(Y, X∗) = Π2(Y, X∗) for every Banach space Y .

Now we select a sequence (x∗n) ∈ `weak
1 (X∗). Let v : C0 → X∗ be the

operator defined by v en = x∗n for all n, so that ‖v‖ = ‖(x∗n)‖weak
1 . Then

it follows from (∗∗) that v is 2-summing and thus (x∗n) ∈ `strong
2 (X∗).

Theorem 2 steps in to conclude that `strong
2 (X) ⊂ Rbv(X). ¤

Next we find a special kind of Banach space X with the property
that any sequence lying in the range of an X-valued measure actually
lies in the range of an X∗∗-valued measure of bounded variation.
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Proposition 4. Suppose X and X∗ satisfy Grothendieck’s theo-
rem. Then R(X) ⊂ Rbv(X∗∗).

Proof. Let S =
∑

n x∗n ⊗ en ∈ B(X, `1). As X∗ satisfies Grothen-
dieck’s theorem, we have that S ∈ Π2(X, `1) and hence there exists a
factorization S : X

v−→ `2
u−→ `1. Since X satisfies Grothendieck’s the-

orem, it follows that v ∈ Π1(X, `2) and so S ∈ Π1(X, `1). This forces
that there is a constant C such that π1(S) ≤ C‖S‖. We consider the
map ΨS : R(X) → R which is defined by ΨS(zn) =

∑
n〈zn, x∗n〉. If

(zn) ∈ R(X), given ε > 0 there exists a vector measure µ :
∑ → X

such that {zn : n ∈ N} ⊂ rg µ and tsv(µ) ≤ ε + ‖(zn)‖r. Let λ be a
control measure for µ and let I : L∞(λ) → X : f 7→ ∫

fdµ be the in-
tegration operator. Then S ◦ I ∈ Π1(L∞(λ), `1). The Radon-Nikodym
property of `1 indicates that S ◦ I is nuclear and so is (S ◦ I)∗. Notice
that

(·) ‖(S ◦ I)∗en‖ = sup{|〈(S ◦ I)∗en, f〉| : ‖f‖∞ ≤ 1}

sup{|〈
∫

fdµ, x∗n〉| : ‖f‖∞ ≤ 1} = sup{|
∫

fd(x∗n ◦ µ)| : ‖f‖∞ ≤ 1}.

Choose An ∈
∑

such that µ(An) = zn for each n ∈ N. Then it follows
from (·) that

∑
n

|
∫

χAnd(x∗n ◦ µ)| =
∑

n

|x∗n ◦ µ(An)| =
∑

n

|〈x∗n, zn〉|

≤
∑

n

‖(S ◦ I)∗en‖ = ν1((S ◦ I)∗) ≤ ν1(S ◦ I) = π1(S ◦ I)

= tv(S ◦ µ) ≤ π1(S) tsv(µ) ≤ π1(S)(ε + ‖(zn)‖r).

This gives that ‖ΨS‖ ≤ π1(S) ≤ C ‖S‖.
Now take any sequence (xn) ∈ R(X). Taking note of the fact that

the closed convex hull of the range of a vector measure is the range
of another vector measure, we deduce that the map U : C0 → R(X) :
(αn) 7→ (αnxn) is continuous. The upshot of all this is that the map
Φ : B(X, `1) → `1 : S 7→ U∗(ΨS) is continuous.
Observe that

〈U∗(ΨS), (αn)〉 = 〈ΨS , U(αn)〉 = ΨS(αnxn) =
∑

n

〈αnxn, x∗n〉
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and so U∗(ΨS) = (〈xn, x∗n〉)n.
Given S =

∑
n x∗n ⊗ en and (βn) ∈ `∞, we use the trace duality to

obtain the following :

〈Φ∗(βn), S〉 = 〈(βn),Φ(S)〉 =
∑

n

〈βnxn, x∗n〉 = tr(S ◦ Φ∗(βn))

∑

k

〈S ◦ Φ∗(βn)ek, ek〉 =
∑

k

〈
∑

n

〈x∗n, Φ∗(βn)ek〉en, ek〉

=
∑

n

〈x∗n, Φ∗(βn)en〉.

Therefore Φ∗ : `∞ → I(`1, X) : (βn) 7→ ∑
n en ⊗ βnxn. Then T =∑

n en ⊗ xn ∈ I(`1, X) and thus T admits an integral factorization

κX ◦ T : `1
i−→ C(K)

j−→ X∗∗, where K is a weak∗ compact norming
subset of B`∞ and j is 1-summing. Proposition 1.3 of [7] furnishes
an X∗∗-valued measure ν of bounded variation such that j(BC(K)) =
rg(ν) and hence {xn : n ∈ N} ⊂ rg(‖i‖ν) , that is (xn) ∈ Rbv(X∗∗). ¤

Which Banach spaces X have the property that every sequence ly-
ing in the range of an X-valued measure actually lies in the range of
a vector measure of bounded variation ? The theorem stated below
handles this question.

Theorem 5. The following statements are equivalent.

(i) R(X) ⊂ Riv(X).
(ii) Π1(X, `1) = Π2(X, `1).

Proof. (i)⇒(ii). Let us select any sequence (xn) ∈ Rc(X). We
use this sequence to define an operator T : `1 → X via T (αn) =∑

αnxn. We call on proposition 1.4 of [7] to derive that there exists an
unconditionally convergent series

∑
k yk in X so that xn =

∑
k δk,nyk,

where ‖(δk,n)k‖∞ ≤ 1. We exploit the fact that there exist a weakly
summable sequence (zk) in X and a sequence (λk) in BC0 for which
yk = λkzk to see that T ∈ N∞(`1, X). In fact T =

∑
k λkδk ⊗ zk,

where δk = (δk,n)n. The hypothesis (i) assures us that there exist an
isometric J : X → X0 and a vector measure µ :

∑ → X0 with bounded
variation such that {Jxn : n ∈ N} ⊂ rg µ. Choose An ∈ ∑

so that
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µ(An) = Jxn for each n ∈ N. Define operators u : L∞(|µ|) → X0

and v : `1 → L∞(|µ|) via u(f) =
∫

fdµ and v(αn) =
∑

αnχAn
,

respectively. These operators validate the following :

uv(αn) = u(
∑

n

αnχAn
) =

∫ ∑
n

αnχAn
dµ =

∑
n

αnJxn = JTαn.

Since u is 1-summing, the same is true of uv = JT . As J is an isometric,
T is 1-summing. This yields that N∞(`1, X) ⊂ Π1(`1, X), We make
use of the fact that Π1(`1, X) = Π2(`1, X) and ν2(S) = π2(S) for any
finite rank operator S to obtain that N∞(`1, X) ⊂ N2(`1, X). Using
the trace duality we draw that Π2(X, `1) ⊂ Π1(X, `1). This gives the
desired equality because Π1(X, `1) ⊂ Π2(X, `1).
(ii)⇒(i). Take any sequence (xn) ∈ R(X). Consider an operator
T =

∑
n en ⊗ xn ∈ B(`1, X). Let us assume that S =

∑
n x∗n ⊗ en ∈

N2(X, `1). Since S is 2-summing, it follows from the hypothesis (ii)
that S is 1-summing. By virtue of theorem 3.4 of [8], we have that
S ◦ T : `1 → `1 is nuclear. Since 〈S ◦ T (αn), ei〉 =

∑
n〈xn, x∗i 〉αn, we

apply proposition 6.3.6 of [6] to produce that
∑

i supn |〈xn, x∗i 〉| < ∞
and so

∑
i |〈xi, x

∗
i 〉| < ∞. This permits us to define a continuous

map Φ : N2(X, `1) → `1 by Φ(
∑

n x∗n ⊗ en) = (〈xn, x∗n〉)n. From the
proof of proposition 4 we know that Φ∗ : `∞ → Π2(`1, X) is given
by Φ∗(βn) =

∑
n en ⊗ βnxn. Then T =

∑
n en ⊗ xn ∈ Π2(`1, X)

and so T ∈ Π1(`1, X) because Π1(`1, X) = Π2(`1, X). Let iX ◦ T :

`1
i−→ C(K)

j−→ `∞(BX∗) be a 1-summing factorization, where K is a
weak∗ compact norming subset of B`∞ and j is 1-summing. Thanks to
proposition 1.3 of [7] there exists an `∞(BX∗)-valued measure ν with
bounded variation satisfying j(BC(K)) = rg(ν) and hence {iX(xn) :
n ∈ N} ⊂ rg(‖i‖ν) , that is (xn) ∈ Riv(X). ¤
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