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On the Radon-Nikodym Derivative 
of a Measure Taking Values in a Dual Banach Space

Jae Myung Park

ABSTRACT. In this paper, we give the Radon-Nikodym deriva­
tive of a measure taking values in a dual Banach space.

Let X be a Banach space with dual X* and (Q, S, 사) a finite mea­

sure space. If / : J2 -今 X* is bounded and weakly measurable, then it 

can easily be shown that for every £7 G S, there exists x후 G X* such 

that for every x E

= I x o f dfi 

JE

and for every E G S, there exists a추서' € A?*** such that for every 

x** G X**,

禍*(흐**) = [ x** o f dfl.

Je

The element x후 is called the weafc* integral of f over E, denoted 

by (w*) — JE f dp,, and x추세‘ is called the Dunford integral of f over 

E, denoted by (2?) — fE f d#i.

In the case that (D) - fE f X* for each E G E, then f is called 

Pettis integrable and we write (P) — fE f df』＞ instead of (D) — JE f df丄 

to denote the Pettis integral of f over E.

For a subset A of X*, we denote the weak* closed convex hull of A 

in X* by cow’(A).

We are now able to prove the mean value theorem for the weak* 

integral.
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LEMMA 1. Let / : Q —> X* be weak* integrable with respect to(』,. 

Then for each E G S with fi(E) > 0,

Ig) e 石자。* Cf(E)).

PROOF: Suppose there is a set G E of positive 사-measure such 

나1at 石스 ((w*)— Je / 하0 i 하" (/(乃))•

By the Hahn-Banach theorem and the fact that (X*, weak*)* = X, 

we can select x E X and real a such that

iofd4i<a‘으 io f(w)

for all w E E. Integrating over E yields

x o f d/jb < < I x

Je
o fd서,

a contradiction. This completes the proof.

The following theorem was proved by Bator in [1].

THEOREM 2. [1]. Let X be a Banach space and (Q,S, fj,) a finite 

measure space. Suppose J : Q — X* is bounded and weakly measur­

able. Then f is Pettis integrable if and only if for every ⑦** G X**, 

there exists a bounded sequence (xn) in X such that both of the 

following hold;

(1) xn o f converges a.e. to 文** o f, and

(2) xn ((w*) — J》/서/』) converges to :r** ((w*) — JE f dpi) for ev­

ery E G S.

We get the following theorem from Lemma 1 and Theorem 2.

It gives the necessary conditions on the range of a dual Banach 

space valued function that will guarantee that function to be Pettis 

integrable.

THEOREM 3. Let X be a Banach space and (fl, E, /丄) a finite mea­

sure space. Suppose / : Q — X* is bounded and weakly measur­

able, Then f is Pettis integrable if for every € X**, there exist a 
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bounded sequence (xn) in X and a measurable set A of measure zero 

such that

(1) xn o f converges to ⑦** o f on Q, — A, and

(2) /(J) — A) is weak* closed and convex.

PROOF: For ⑦** G X**, let (:rn) be a bounded sequence in X 

and A be a null set that satisfy the conditions (1) and (2). By 

Theorem 2, it suffices to show that xn ((w*) — JE f dp) converges to 

文** — j스 f d/』) for every 6 E.

If = 0, then (w*) — fE f d/丄 = 0 and the convergence holds 

trivially.

Let £? be a measurable set of positive measure. With the help of 

Lemma 1, we have

느((☆)-=忌주((패-L/씨

e =w*/(乃 一 A) 흐 흐w*/(요 一 A).

By the condition (2), we have

—A) = /(Q —A)

and

요)-丄/씨 e/(Q-A).

By the condition (1), xn ((w*) — J日 /d/z) converges to

LEMMA 4. Let f : Q — X*, (Q, S, 서) a finite measure space and 

i/ : S — X* a ii-continuous vector measure.

Then the set

H = {xEX:xofe 丄 i(a0 and x o z/(A) =
J x o f d/jL for A G E}
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is weak* sequentially closed in the subspace X of X**.

PROOF: From the definition of 日, it follows that

(1) 서 \x o f\dfi < ||i|| ||이|(』4) for A 6 S and x e H, 

where || 이 | denotes the semi variation of v.

Suppose that {：rn} is a sequence in H such that (:r*) -나

for x* G X후. By the Uniform Boundedness Theorem, sup{||xn|| : n = 

1,2,... } < oo. Hence, by (1) and the //-continuity of || 에 lim fA \xnQ
W4)—4)

/| d/z = 0 uniformly in n G TV. Since o / —► i o / on 12, it follows

from Vitali’s convergence theorem that x o f E 刀1(/』) and

j x o f dfi = lim j 金n 令 f dfi = lim xn o i/(A) = x o i/(A)

for A G S. This yields x E H.

The next corollary now follows quickly in the same manner as the 

proof of Lemma 4.

COROLLARY 5. Let / : Q — X*, (Q, a finite measure space 

and 1/ : S -스 X느 a ^-continuous vector measure.

Then the set

K={x^ of &LM

and
:r**c〉i/(A) = I :r**o/印 forAG E}

is weak* sequentially closed.

With the help of Lemma 4, we get the weak* integrable Radon- 

Nikodym derivative of a measure 少 : S —► X*.

THEOREM 6. Suppose f : Q — X* is such that x o f E Li(/z) for 

all x E M where M is a weak* sequentially dense subset of X, and 

i/: S —> X* is a vector measure with

x o i/( A) = j xo fdn
for A € S and x E M.
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Then f is weak* integrable and p(A) = (w*) — fAf d/」i for A E E.

PROOF: Since xoy(A) = fA xof dfi tor x E M and A G S, xou <C 

for all a: G M. Since Af is a weak* sequentially dense subset of X, 

소 o 1/ 으 아 for all ⑦ € X, and hence p <《〔 아. By Lemma 4, M is weak* 

sequentially closed and so M = X. Hence we have that

x o i/( A) = I £ o f dpi for every x E X. 우

J A 서

This implies that f is weak* integrable and i/(A) = (w*) — fAf d(丄 for 

A e s.

With the help of Corollary 5, the next corollary follows in the same 

manner as the proof of Theorem 6.

COROLLARY 7. Suppose y : Q — X후 is such that :r** o / 6 刀i(M) 

for all:r** E M where M is a weak* sequentially dense subset of X**, 

and p : S —> X브 is a vector measure with

x** o i/(A) = J :r** o f d/丄 for A € S and :r** G M.

Then f is Pettis integrable and 沙(A) = (P) — fAf dfji for A G E.
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