JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 3, June 1990

On the Radon-Nikodym Derivative of a Measure Taking Values in a Dual Banach Space

JAE MYUNG PARK

ABSTRACT. In this paper, we give the Radon-Nikodym derivative of a measure taking values in a dual Banach space.

Let X be a Banach space with dual X^* and (Ω, Σ, μ) a finite measure space. If $f: \Omega \to X^*$ is bounded and weakly measurable, then it can easily be shown that for every $E \in \Sigma$, there exists $x_E^* \in X^*$ such that for every $x \in X$,

$$x_E^*(x) = \int_E \hat{x} \circ f \, d\mu$$

and for every $E \in \Sigma$, there exists $x_E^{***} \in X^{***}$ such that for every $x^{**} \in X^{**}$,

$$x_E^{***}(x^{**}) = \int_E x^{**} \circ f \, d\mu.$$

The element x_E^* is called the weak^{*} integral of f over E, denoted by $(w^*) - \int_E f d\mu$, and x_E^{***} is called the Dunford integral of f over E, denoted by $(D) - \int_E f d\mu$.

In the case that $(D) - \int_E f d\mu \in X^*$ for each $E \in \Sigma$, then f is called *Pettis integrable* and we write $(P) - \int_E f d\mu$ instead of $(D) - \int_E f d\mu$ to denote the *Pettis integral of* f over E.

For a subset A of X^* , we denote the weak^{*} closed convex hull of A in X^* by $\overline{co}^{w^*}(A)$.

We are now able to prove the mean value theorem for the weak^{*} integral.

Received by the editors on 11 June 1990.

1980 Mathematics subject classifications: Primary 28B05.

LEMMA 1. Let $f: \Omega \to X^*$ be weak^{*} integrable with respect to μ . Then for each $E \in \Sigma$ with $\mu(E) > 0$,

$$\frac{1}{\mu(E)}\left((w^*) - \int_E f \, d\mu\right) \in \overline{co}^{w^*}(f(E)).$$

PROOF: Suppose there is a set $E \in \Sigma$ of positive μ -measure such that $\frac{1}{\mu(E)} \left((w^*) - \int_E f \, d\mu \right) \notin \overline{co}^{w^*}(f(E)).$

By the Hahn-Banach theorem and the fact that $(X^*, \text{weak}^*)^* = X$, we can select $x \in X$ and real α such that

$$\frac{1}{\mu(E)}\int_E \hat{x} \circ f \, d\mu < \alpha \leq \hat{x} \circ f(w)$$

for all $w \in E$. Integrating over E yields

$$\int_E \hat{x} \circ f \, d\mu < \alpha \mu(E) \leq \int_E \hat{x} \circ f \, d\mu,$$

a contradiction. This completes the proof.

The following theorem was proved by Bator in [1].

THEOREM 2. [1]. Let X be a Banach space and (Ω, Σ, μ) a finite measure space. Suppose $f: \Omega \to X^*$ is bounded and weakly measurable. Then f is Pettis integrable if and only if for every $x^{**} \in X^{**}$, there exists a bounded sequence (x_n) in X such that both of the following hold;

- (1) $\hat{x}_n \circ f$ converges a.e. to $x^{**} \circ f$, and
- (2) $\hat{x}_n((w^*) \int_E f d\mu)$ converges to $x^{**}((w^*) \int_E f d\mu)$ for every $E \in \Sigma$.

We get the following theorem from Lemma 1 and Theorem 2.

It gives the necessary conditions on the range of a dual Banach space valued function that will guarantee that function to be Pettis integrable.

THEOREM 3. Let X be a Banach space and (Ω, Σ, μ) a finite measure space. Suppose $f : \Omega \to X^*$ is bounded and weakly measurable. Then f is Pettis integrable if for every $x^{**} \in X^{**}$, there exist a

bounded sequence (x_n) in X and a measurable set A of measure zero such that

- (1) $\hat{x}_n \circ f$ converges to $x^{**} \circ f$ on ΩA , and
- (2) $f(\Omega A)$ is weak^{*} closed and convex.

PROOF: For $x^{**} \in X^{**}$, let (x_n) be a bounded sequence in X and A be a null set that satisfy the conditions (1) and (2). By Theorem 2, it suffices to show that $\hat{x}_n((w^*) - \int_E f d\mu)$ converges to $x^{**}((w^*) - \int_E f d\mu)$ for every $E \in \Sigma$.

If $\mu(E) = 0$, then $(w^*) - \int_E f \, d\mu = 0$ and the convergence holds trivially.

Let E be a measurable set of positive measure. With the help of Lemma 1, we have

$$\frac{1}{\mu(E)}\left((w^*) - \int_E f \, d\mu\right) = \frac{1}{\mu(E-A)}\left((w^*) - \int_{E-A} f \, d\mu\right)$$
$$\in \overline{co}^{w^*} f(E-A) \subseteq \overline{co}^{w^*} f(\Omega-A).$$

By the condition (2), we have

$$\overline{co}^{w^*}f(\Omega-A) = f(\Omega-A)$$

and

$$\frac{1}{\mu(E)}\left((w^*) - \int_E f \, d\mu\right) \in f(\Omega - A).$$

By the condition (1), $\hat{x}_n((w^*) - \int_E f d\mu)$ converges to

$$x^{**}\left((w^*)-\int_E f\,d\mu\right).$$

LEMMA 4. Let $f : \Omega \to X^*$, (Ω, Σ, μ) a finite measure space and $\nu : \Sigma \to X^*$ a μ -continuous vector measure.

Then the set

$$H = \{x \in X : \hat{x} \circ f \in L_1(\mu) \text{ and } \hat{x} \circ \nu(A) = \int_A \hat{x} \circ f \, d\mu \text{ for } A \in \Sigma\}$$

is weak^{*} sequentially closed in the subspace X of X^{**} .

PROOF: From the definition of H, it follows that

(1)
$$\int_{A} |\hat{x} \circ f| d\mu \leq ||\hat{x}|| \, ||\nu|| (A) \quad \text{for } A \in \Sigma \text{ and } x \in H,$$

where $\|\nu\|$ denotes the semivariation of ν .

Suppose that $\{x_n\}$ is a sequence in H such that $\hat{x}_n(x^*) \to \hat{x}(x^*)$ for $x^* \in X^*$. By the Uniform Boundedness Theorem, $\sup\{\|\hat{x}_n\|: n = 1, 2, ...\} < \infty$. Hence, by (1) and the μ -continuity of $\|\nu\| \lim_{\mu(A)\to 0} \int_A |\hat{x}_n \circ f| d\mu = 0$ uniformly in $n \in N$. Since $\hat{x}_n \circ f \to \hat{x} \circ f$ on Ω , it follows from Vitali's convergence theorem that $\hat{x} \circ f \in L_1(\mu)$ and

$$\int_A \hat{x} \circ f \, d\mu = \lim_n \int_A \hat{x}_n \circ f \, d\mu = \lim_n \hat{x}_n \circ \nu(A) = \hat{x} \circ \nu(A)$$

for $A \in \Sigma$. This yields $x \in H$.

The next corollary now follows quickly in the same manner as the proof of Lemma 4.

COROLLARY 5. Let $f: \Omega \to X^*$, (Ω, Σ, μ) a finite measure space and $\nu: \Sigma \to X^*$ a μ -continuous vector measure.

Then the set

$$K = \{x^{**} \in X^{**} : x^{**} \circ f \in L_1(\mu)$$

and

$$x^{**} \circ \nu(A) = \int_A x^{**} \circ f \, d\mu \text{ for } A \in \Sigma$$

is weak* sequentially closed.

With the help of Lemma 4, we get the weak^{*} integrable Radon-Nikodym derivative of a measure $\nu : \Sigma \to X^*$.

THEOREM 6. Suppose $f : \Omega \to X^*$ is such that $\hat{x} \circ f \in L_1(\mu)$ for all $x \in M$ where M is a weak^{*} sequentially dense subset of X, and $\nu : \Sigma \to X^*$ is a vector measure with

$$\hat{x} \circ
u(A) = \int_A \hat{x} \circ f \, d\mu \quad ext{for } A \in \Sigma ext{ and } x \in M.$$

Then f is weak* integrable and $\nu(A) = (w^*) - \int_A f \, d\mu$ for $A \in \Sigma$.

PROOF: Since $\hat{x} \circ \nu(A) = \int_A \hat{x} \circ f \, d\mu$ for $x \in M$ and $A \in \Sigma$, $\hat{x} \circ \nu \ll \mu$ for all $x \in M$. Since M is a weak^{*} sequentially dense subset of X, $\hat{x} \circ \nu \ll \mu$ for all $x \in X$, and hence $\nu \ll \mu$. By Lemma 4, M is weak^{*} sequentially closed and so M = X. Hence we have that

$$\hat{x} \circ \nu(A) = \int_A \hat{x} \circ f \, d\mu$$
 for every $x \in X$.

This implies that f is weak^{*} integrable and $\nu(A) = (w^*) - \int_A f \, d\mu$ for $A \in \Sigma$.

With the help of Corollary 5, the next corollary follows in the same manner as the proof of Theorem 6.

COROLLARY 7. Suppose $f: \Omega \to X^*$ is such that $x^{**} \circ f \in L_1(\mu)$ for all $x^{**} \in M$ where M is a weak^{*} sequentially dense subset of X^{**} , and $\nu: \Sigma \to X^*$ is a vector measure with

$$x^{stst} \circ
u(A) = \int_A x^{stst} \circ f \, d\mu \quad ext{for } A \in \Sigma ext{ and } x^{stst} \in M.$$

Then f is Pettis integrable and $\nu(A) = (P) - \int_A f \, d\mu$ for $A \in \Sigma$.

References

- 1. E. Bator, Pettis integrability and the equality of the norms of the weak* integral and the Dunford integral, Proc. Amer. Math. Soc. 95 (1985), 265-270.
- J. Conway, "A Course in Functional Analysis," Springer-Verlag, New York, 1985.
- 3. J. Diestel and J.J. Uhl, Jr., "Vector Measures," Math. Surveys, No. 15, Amer. Math. Soc. Providence, R.I., 1977.
- 4. N. Dunford and J.T. Schwarz, "Linear Operators," Part I, Interscience, New York, 1958.
- 5. R. Geitz, Geometry and the Pettis integral, Trans. Amer. Math. Soc. 269 (1982), 535-548.
- 6. _____, Pettis integration, Proc. Amer. Math. Soc. 82 (1981), 81-86.
- 7. E. Giannakoulias, Some properties of vector measures taking values in a topological vector space, J. Austral Math. Soc. 43 (1987), 224–230.
- 8. R. Huff, Remarks on Pettis integration, Proc. Amer. Math. Soc. 96 (1986), 402-404.

•

JAE MYUNG PARK

- 9. Z. Lipecki and K. Musial, On the Radon-Nikodym derivative of a measure taking values in a Banach space with basis, Rev. Roum. Math. Pures et Appl. 6 (1978), 911-915.
- 10. V. Sazonov, On perfect measures, Amer. Math. Soc., Tranl. (2) 48 (1965), 229-254.

Department of Mathematics Chungnam National University Taejon 305-764, Korea