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REPRESENTATION THEOREMS

FOR MULTIVALUED PRAMARTS

Fettah Akhiat and Fatima Ezzaki

Abstract. Existence of pramarts selectors for multivalued pramart who-
se values are convex weakly compact subsets of a separable Banach space
E (resp. subsets of a dual space E

∗) are established. Representation
theorems for multivalued pramarts are also presented.

1. Introduction

Representation theorems of multivalued martingales, submartingales, super-
martingales and uniform-amarts have been extensively studied in recent years
by A. Choukairi [7], C. Hess [11], D. Q. Luu [14], Z. P. Wang and X. H. Xue [19]
and S. Li and Y. Ogura [13]. It is known that every multivalued martingale is a
multivalued submartingale and is a supermartingale and also a uniform-amart.
So, any uniform-amart is a pramart. A naturel questions raised by A. Choukairi
in [8] is the existence of pramarts selectors for multivalued pramart. The main
purpose of this work is not only to solve this problem but also prove that a
multivalued pramart has a Castaing representation by pramarts selectors. The
paper is organized as follows. In Section 2 we recall some notations and defini-
tions and summarize needed results. In Section 3 we give some decomposition
results for convex weakly compact valued pramarts. In Section 4 we discuss
the existence of pramart selectors of convex weakly compact valued pramarts.
In Section 5 we present a decomposition results for multivalued pramart whose
values are convex weakly compact in the dual of a separable Banach space and
we show the existence of pramarts selectors of the above class of pramarts.

2. Preliminaries and background

Throughout this paper (Ω,F , P ) is a complete probability space, (Fn)n≥1

an increasing sequence of sub σ-algebras of F such that F is the σ-algebra
generated by ∪n≥1Fn. E is a separable Banach space with the dual E∗ and

the strong dual E∗
b . BE (resp. BE∗) the closed unit ball of E (resp. E∗).
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2E is the set of all subsets of E. Let cc(E) (resp. cwk(E)) be the set of
nonempty convex closed subsets of E (resp. weakly compact subsets of E).
For A ∈ 2E\∅, we denote by clA and coA the closure and the closed convex
hull of A respectively, and define |A| = sup{||x|| : x ∈ A}, the distance function
and the support function associated with A are defined respectively by

d(x,A) = inf{‖x− y‖, y ∈ A} (x ∈ E).

δ∗(x∗, A) = sup{〈x∗, y〉, y ∈ A} (x∗ ∈ E∗).

The Hausdorff distance between A and B is denoted by

H(A,B) = sup
x∗∈BE∗

|δ∗(x∗, A)− δ∗(x∗, B)|.

The equivalent definition of Hausdorff distance is

H(A,B) = max{inf{λ : B ⊂ A+ λ}, inf{λ : A ⊂ B + λ}},

where

A+ λ = {x : d(x,A) ≤ λ}.

A multifunction (mappings for short) X is a map from Ω into 2E. The domain
of X is defined by

dom(X) = {ω ∈ Ω : X(ω) 6= ∅}.

A selector of X is a function f : Ω −→ E such that f(ω) is a member of X(ω)
for all ω ∈ dom(X).

A multifunction X : Ω −→ 2E is said to be measurable, if for every open set
U ⊂ E, the set

X−U = {ω ∈ Ω : X(ω) ∩ U 6= ∅}

is a member of F (see [6], [12]). A measurable multifunction is also called a ran-
dom set. For each n ∈ N∪ {∞}, we denote by L1

cwk(E)(Fn) (resp. L1
cc(E)(Fn))

the space of all Fn-measurable cwk(E)-valued multifunctions X : Ω → cwk(E)
(resp. cc(E)-valued multifunctions X : Ω → cc(E)) such that ω → |X(ω)| is
integrable. A sequence (Xn)n∈N of cc(E)-valued multifunctions is adapted if
each Xn is Fn-measurable. A measurable selector of the random set X is an
(F ,B(E))-measurable selector of X . A Castaing representation [6] of X is a
sequence fn : Ω −→ E of measurable selectors of X such that

X(ω) = cl{fk(ω) : k ≥ 1} for all ω ∈ dom(X).

We denote by L1
E(F) the space of (equivalence classes of) (F ,B(E))-measurable

functions f : Ω −→ E such that ω −→ ‖f(ω)‖ is integrable. Such an f is said
to be Bochner integrable. For every multifunction X : Ω −→ 2E and every
sub-σ-algebra B of F , we set

S1
X(B) = {f ∈ L1

E(B) : f(ω) ∈ X(ω) a.s.}.

It is known that S1
X(B) characterizes X up to P -null sets (see [12]). A mea-

surable multifunction X such that S1
X(B) is nonempty is declared integrable.

Using Hiai and Umegaki [12, Theorem 2.2], it is readily seen thatX is integrable
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if and only if d(0, X(·)) ∈ L1
E . Now, consider an integrable F -measurable mul-

tifunction X : Ω −→ cc(E). Following Hiai and Umegaki we define the multi-
valued conditional expectation of X relative to B as the B-measurable random
set G = EBX such that S1

G(B) = cl{EBf : f ∈ S1
X(F)}, the closure being

taken in L1
E (where EBf denotes the usual conditional expectation relative to

B of a Bochner integrable function f). In the special case where B = {E, ∅},
EBX is simply denoted by E(X) and is equal to cl{E(f) : f ∈ S1

X(F)}. New
existence results of conditional expectation for convex weakly compact valued
multifunctions and its applications to martingales are available in [1, 3].

We denote by T the set of all bounded stopping times. A sequence (Xn)n≥1

in L1
E(F) is of class (B) if

sup
τ∈T

∫

Ω

‖Xτ‖dP < ∞.

3. Decomposition theorems for multivalued pramarts

Before going further, let us introduce the definitions of pramart in L1
cwk(E)(F)

and L1
E(F).

Definition 3.1. An adapted sequence (Xn,Fn)n∈N in L1
E(F) is a pramart if,

for every ε > 0, there is σε ∈ T such that

∀σ, τ ∈ T, τ ≥ σ ≥ σε ⇒ P ([‖Xσ − EFσXτ‖ > ε]) < ε.

Definition 3.2. An adapted sequence (Xn,Fn)n∈N in L1
cwk(E)(F) is a pramart

if, for every ε > 0, there is σε ∈ T such that

∀σ, τ ∈ T, τ ≥ σ ≥ σε ⇒ P ([H(Xσ, E
FσXτ ) > ε]) < ε.

It is clear that if (Xn,Fn)n∈N is a pramart in L1
cwk(E)(F), then, for each

x∗ ∈ BE∗ , the adapted sequence (δ∗(x∗, Xn),Fn)n∈N is a real-valued pramart
in L1

R
(F) because

|δ∗(x∗, Xσ)− EFσδ∗(x∗, Xτ )| ≤ H(Xσ, E
FσXτ ).

Definition 3.3. An adapted sequence (Xn,Fn)n∈N in L1
R
(F) is a subpramart,

if, for every ε > 0, there is σε ∈ T such that

∀σ, τ ∈ T, τ ≥ σ ≥ σε ⇒ P ({(Xσ − EFσXτ )
+ ≥ ε}) ≤ ε.

Definition 3.4. Let (Xm
n ,Fn)n∈N be a sequence of real subpramarts. It is

called a uniform sequence of positive subpramarts if for every ε > 0, there is
σ0 ∈ T such that if σ, τ ∈ T with τ ≥ σ ≥ σ0, then

P ({ sup
m∈N

(Xm
σ − EFσXm

τ )+ ≥ ε}) ≤ ε.

Now we proceed to the decomposition of cwk(E)-valued pramarts.
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Theorem 3.5. Assume that E∗
b is separable. Let (Xn,Fn)n≥1 be a bounded

pramart in L1
cwk(E)(F) such that there exists a cwk(E)-valued multifunction

K : Ω =⇒ cwk(E) satisfying Xn(ω) ⊂ K(w) ∀n ∈ N, ∀ω ∈ Ω. Then there

exists a multifunction X∞ ∈ L1
cwk(E)(F) such that:

lim
n→∞

H(Xn, E
FnX∞) = 0 a.s.

Proof. Step 1 Claim: limn→∞ δ∗(x∗, Xn) = δ∗(x∗, X∞) a.s. ∀x∗ ∈ BE∗ .
Let M∗

1 = (f∗
j )j∈N be a dense sequence in BE∗ with respect to the Mackey

topology τ(E∗, E). Since (Xn)n∈N is bounded in L1
cwk(E)(F), that is,

sup
n∈N

∫

Ω

|Xn|dP = sup
n∈N

∫

Ω

sup
x∗∈BE∗

|δ∗(x∗, Xn)|dP < ∞

for each j ∈ N, the L1-bounded pramart (δ∗(f∗
j , Xn))n∈N converge a.s. to an

integrable function ϕx∗ ∈ L1
R
(F). Let ω ∈ Ω, define the function s(·) by

s(f∗
j ) = lim

n→∞
δ∗(f∗

j , Xn(ω)) (j ∈ N).

s is sublinear and continuous for the Mackey topology τ(E∗, E). Consequently,
there is X∞(ω) ∈ cwk(E) with X∞(ω) ⊂ K(ω) such that

s(f∗
j ) = δ∗(f∗

j , X∞(ω)) (j ∈ N).

Then there exists a negligible set N ∈ F such that for all ω ∈ Ω\N

lim
n→∞

δ∗(f∗
j , Xn(ω)) = δ∗(f∗

j , X∞(ω)) ∀j ∈ N.

Since the functions δ∗(·, Xn(ω)) and δ∗(·, X(ω)) are continuous for the Mackey
topology τ(E∗, E). So, we deduce that

lim
n→∞

δ∗(x∗, Xn) = δ∗(x∗, X∞) a.s. ∀x∗ ∈ BE∗ .

We check that X∞ ∈ L1
cwk(E)(F). Indeed, X∞ is measurable and for fixed

x∗ ∈ BE∗ and ω ∈ Ω, the function n −→ δ∗(x∗, Xn(ω)) is continuous from
N ∪ {+∞} into R, therefore the function n → sup{δ∗(x∗, Xn(ω)) : x

∗ ∈ BE∗}
is lower semi continuous on N ∪ {+∞} and so

|X∞|(ω) ≤ lim inf
n

|Xn|(ω),

by Fatou Lemma we have∫

Ω

|X∞|dP ≤

∫

Ω

lim inf
n

|Xn|dP

≤ lim inf
n

∫

Ω

|Xn|dP ≤ sup
n

∫

Ω

|Xn|dP < +∞.

Step 2 Claim: limn→∞ H(Xn, E
FnX∞) = 0 a.s.

Let D∗
1 = (e∗j )j∈N be a dense sequence in the closed unit ball BE∗ . We have

H(Xn, E
FnX∞) = sup

j∈N

|δ∗(e∗j , Xn)− δ∗(e∗j , E
FnX∞)|.
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As (δ∗(e∗j , Xn)− δ∗(e∗j , E
FnX∞))n∈N are real-valued pramarts in L1

R
(F) which

converges a.s. to 0, and ((|δ∗(e∗j , Xn) − δ∗(e∗j , E
FnX∞)|)n∈N)j∈N is a uniform

sequence of positive subpramarts, applying lemma VIII.1.15 in [9] we have

lim
n→∞

H(Xn, E
FnX∞) = lim

n→∞
sup
j∈N

|δ∗(e∗j , Xn)− δ∗(e∗j , E
FnX∞)|

= sup
j∈N

lim
n→∞

|δ∗(e∗j , Xn)− δ∗(e∗j , E
FnX∞)| = 0

almost surely. �

Now we give a quasi-decomposition theorem for convex weakly compact
valued pramart.

Theorem 3.6. Assume that E∗
b is separable. Let (Xn,Fn)n≥1 be a bounded

pramart in L1
cwk(E)(F) such that, there exists a cwk(E)-valued multifunction

K : Ω =⇒ cwk(E) satisfying Xn(ω) ⊂ K(w) ∀n ∈ N, ∀ω ∈ Ω. Then there exist

a multivalued martingale (Mn)n≥1 and (Zn)n≥1 in L1
cwk(E)(F) such that

Xn(w) ⊂ Mn(w) + Zn(w) a.s.

|Zn| −→ 0 a.s. as n → +∞.

Proof. By Theorem 3.5 there exists X∞ ∈ L1
cwk(E)(F) such that

lim
n→∞

H(Xn, E
FnX∞) = 0 a.s.

Let Mn = EFnX∞, then (Mn)n∈N is a multivalued martingale, and

lim
n→∞

H(Xn,Mn) = 0 a.s.

If we set ρn = H(Xn,Mn), define Zn by

Zn = {x ∈ E \ ‖x‖ ≤ H(Xn,Mn) = ρn} = BE(0, ρn).

Then by definition of the Hausdorff distance we have

Xn(w) ⊂ Mn(w) +H(Xn(w),Mn(w)) = Mn(w) + ρn(w) a.s.

So Xn(w) ⊂ Mn(w) + Zn(w) a.s. Indeed, we must prove that

{x : d(x,Mn(w)) ≤ ρn(w)} = Mn(w) +BE(0, ρn(w)).

First, if d(x,Mn(w)) ≤ ρn(w), then for each k > 0, there exists ak ∈ Mn(w)
such that

‖x− ak‖ ≤ ρn(w) +
1

k
.

That is

x− ak ∈ BE(0, ρn(w) +
1

k
).

So, there exists yk ∈ BE(0, ρn(w) +
1
k
) such that x− ak = yk and

x = ak + yk ∈ Mn(w) +BE(0, ρn(w) +
1

k
), ∀k > 0.
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Since ak ∈ Mn(w) and yk ∈ BE(0, ρn(w) +
1
k
) this implies that there exists

a ∈ Mn(w) such that

lim
k→∞

〈x∗, ak〉 = 〈x∗, a〉 ∀x∗ ∈ E∗,

and

lim
k→∞

〈x∗, x− ak〉 = 〈x∗, x− a〉

= lim
k→∞

〈x∗, yk〉

≤ lim sup
k→∞

δ∗(x∗, BE(0, ρn(w) +
1

k
)).

That is

〈x∗, x− a〉 ≤ δ∗(x∗, BE(0, ρn(w))) ∀x∗ ∈ E∗.

According to Proposition III.35 in [6], we deduce that y = x−a ∈ BE(0, ρn(w)).
Finally x ∈ Mn(w) +BE(0, ρn(w)).

Conversely, if x ∈ Mn(w) + BE(0, ρn(w)), this implies that ∃a ∈ Mn(w),
∃z ∈ BE(0, ρn(w)) such that

x = a+ z.

Indeed, since x ∈ Mn(w) + BE(0, ρn(w)), then there exists (xk)k≥1 such that

x = limk xk and xk = ak + zk with ak ∈ Mn and zk ∈ BE(0, ρn(w)), hence
there exist kj subsequence of k and a ∈ Mn such that

lim
j→∞

〈x∗, akj
〉 = 〈x∗, a〉.

On the other hand xkj
= akj

+ zkj
thus

lim
j→∞

〈x∗, xkj
− akj

〉 = 〈x∗, x− a〉 = lim
j→∞

〈x∗, zkj
〉 = 〈x∗, z〉.

So, z ∈ BE(0, ρn(w)) and x = a+ z. Consequently

‖x− a‖ = ‖z‖ ≤ ρn(w)

and

d(x,Mn(w)) ≤ ρn(w).

Finally, Xn(w) ⊂ Mn(w) + Zn(w) a.s. and

|Zn| ≤ H(Xn,Mn) −→n→+∞ 0 a.s. �

The following result is a consequence of Theorem 3.5.

Corollary 3.7. Assume that E∗
b is separable. Let (Xn,Fn)n≥1 be a bounded

pramart in L1
E(F) such that there exists a multifunction K ∈ L1

cwk(E)(F) sat-

isfying Xn(ω) ∈ K(w) ∀n ∈ N, ∀ω ∈ Ω. Then there are a unique regular

martingale (Yn) in L1
E(F) and a pramart (Zn) in L1

E(F) such that

Xn = Yn + Zn, ∀n ∈ N,

|Zn| −→ 0 a.s. as n → +∞.
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Proof. By Theorem 3.5 there exists X∞ in L1
E(F) such that

lim
n

‖Xn − EFnX∞‖ = 0 a.s.

Then, by setting Yn = EFnX∞ for all n ∈ N, we have Xn = Yn + Xn −
Yn = Yn + Zn, where Zn = Xn − Yn is obviously a pramart and limn ‖Zn‖ =
limn ‖Xn − Yn‖ = 0 a.s. The uniqueness is more or less classical. Suppose

Xn = Y ′
n + Z ′

n

with the required properties in the corollary. Then

lim
n→∞

Zn = lim
n→∞

Z ′
n = 0 a.s.

For each m fixed in N we have

Ym − Y ′
m = lim

n→∞
(EFnYm − EFnY ′

m)

= lim
n→∞

(Yn − Y ′
n) = lim

n→∞
(Zn − Z ′

n) = 0 a.s.

for every m ∈ N. �

4. Representation theorems for multivalued pramarts

In this present section we give our first results of existence of pramart selec-
tors for cwk(E)-valued pramart.

Definition 4.1. A sequence (fn,Fn)n≥1 is called a pramart selector of
(Xn,Fn)n≥1 if

(i) fn ∈ S1
Xn

(Fn) for all n ∈ N.

(ii) (fn,Fn)n≥1 is a pramart in L1
E(F). In this case we write (fn,Fn)n≥1 ∈

PS(Xn) and let PS(Xn) denote the set of all pramart selectors of (Xn,Fn)n≥1.

To get further representation theorem, we need the following lemmas.

Lemma 4.2. Let (Xn)n≥1 be a sequence in L1
E(F). If (Xn)n≥1 is of class (B)

and (Xn) converge in probability. Then (Xn)n≥1 is a pramart in L1
E(F).

Proof. See [20, Lemma 6]. �

Lemma 4.3. If B1 ⊂ B0 are two sub-σ-fields of F , X ∈ L1
cc(E)(B1) , Y ∈

L1
cc(E)(B0) and θ : Ω −→ R

+\{0} is a B1-measurable function, then for each

f ∈ S1
X(B1) we can find g ∈ S1

Y (B0) such that

‖f(w)− EB1g(w)‖ ≤ H(X(w), EB1Y (w)) + θ(w) a.s.

Consequently, if Y is B1-measurable, then there exist some g ∈ S1
Y (B1) such

that

‖f(w)− g(w)‖ ≤ H(X(w), Y (w)) + θ(w) a.s.

Proof. See [16, Lemma 3.3]. �
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Example 4.4. Let (fn,Fn)n≥1 be a vector valued pramart and (rn,Fn)n≥1

be a real valued pramart. Take BE the closed unit ball of E, let A ∈ F . Define

Xn = fn1A + rn1AcBE .

Then (Xn)n≥1 is a multivalued pramart. Indeed, for τ, σ ∈ T (τ ≥ σ)

P (H(Xσ, E
FσXτ ) > ε)

= P (H(fσ1A + rσ1AcBE , E
Fσ(fτ1A + rτ1AcBE)) > ε)

≤ P (‖fσ1A − EFσfτ1A‖+ |BE |.|rσ1Ac − EFσrτ1Ac | > ε)

≤ P (‖fσ1A − EFσfτ1A‖+ |rσ1Ac − EFσrτ1Ac | > ε)

≤ P (‖fσ1A − EFσfτ1A‖ >
ε

2
) + P (|rσ1Ac − EFσrτ1Ac | >

ε

2
)

≤
ε

2
+

ε

2
= ε.

It is easy to see that every sequence (gn)n≥1 define by

gn = fn1A + rn1Acx for each x ∈ BE

is a pramart selector of (Xn)n≥1.

Definition 4.5. Given (Xn)n≥1 in L1
cwk(E)(F). We say that assumption (A)

holds, if every sequence of selectors of (Xn)n≥1 is of class (B).

Theorem 4.6. Assume that E∗
b is separable. Let (Xn,Fn)n≥1 be a bounded

pramart in L1
cwk(E)(F) such that there exists a cwk(E)-valued multifunction

K : Ω =⇒ cwk(E) satisfying Xn(ω) ⊂ K(w) ∀n ∈ N, ∀ω ∈ Ω and if assumption

(A) holds. Then

S1
Xk

(Fk) = πk(PS(Xn)).

Where for every (fn) ∈ PS(Xn), πk((fn)) = fk (πk is the usual projection to

the kth element of the sequence (fn)n≥1).

Proof. By Theorem 3.5 there is X∞ ∈ L1
cwk(E)(F) such that

lim
n→∞

H(Xn, E
FnX∞) = 0 a.s.

Let Mn = EFnX∞, for each n ∈ N we set ρn(w) = H(Xn(w),Mn(w)), and let
rn(w) = ρn(w) +

1
2n , ∀n ≥ 1.

Now, let k ≥ 1 and let f̂k ∈ S1
Xk

(Fk). From [14] see also [11], we know that

there exists a sequence (hi
n,Fn)i≥1 in MS(Mn) (here MS(Mn) is the set of all

martingales selectors of Mn) such that for every n ≥ 1,

Mn(w) = cl{hi
n(ω); i ≥ 1}, ∀ω ∈ Ω.

Define τ : Ω −→ N and hτ
k : Ω −→ E by

τ(w) = inf{i ≥ 1, ‖f̂k(ω)− hi
k(ω)‖ ≤ d(f̂k(w),Mk(w)) +

1

2k
}
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and

hk(w) =

+∞∑

i=1

1{τ=i}(ω)h
i
k(w) = h

τ(ω)
k (w).

Obviously τ ∈ Fk and hk(w) ∈ Mk(w). Also we have

(4.6.1)

‖f̂k(w)− hk(w)‖ =
∑

i≥1

1{τ=i}(ω)‖f̂k(w) − hi
k(w)‖

≤ d(f̂k(w),Mk(w)) +
1

2k
≤ rk(w) a.s.

Next define

hn(w) =





∑
i≥1 1{τ=i}(ω)h

i
n(w), if n ≥ k;

E(hk(w)/Fn), if n < k.

Then (hn,Fn)n≥1 is in MS(Mn). For each hn(w) ∈ Mn(w) by using Lemma
4.3 we can find a sequence fn ∈ S1

Xn
(Fn) such that

(4.6.2) ‖fn(w) − hn(w)‖ ≤ rn(w) a.s.

Next we shall prove that (fn,Fn)n≥1 ∈ PS(Xn). Indeed, firstly we can write
fn = hn + (fn − hn) = hn + zn where zn = fn − hn, on the other hand from
(4.6.2) zn converge to zero a.s. as n → +∞, and

∫

Ω

‖zτ‖dP ≤

∫

Ω

‖fτ‖dP +

∫

Ω

|X∞|dP

then

sup
τ∈T

∫

Ω

‖zτ‖dP ≤ sup
τ∈T

∫

Ω

‖fτ‖dP +

∫

Ω

|X∞|dP < ∞.

Hence by Lemma 4.2, zn is a pramart. This with (hn)n≥1 being a martingale,
implies that (fn)n≥1 is a pramart and it’s martingale component in the decom-
position of Corollary 3.7 is given by (hn)n≥1. By (4.6.1) and (4.6.2) we can take

fk = f̂k and so f̂k ∈ πk((fn)) ∈ πk(PS(Xn)). Hence S1
Xk

(Fk) ⊂ πk(PS(Xn)).

It is obvious that S1
Xk

(Fk) ⊃ πk(PS(Xn)). So we have the result. �

Now we are ready to state the following representation theorem of cwk(E)-
valued pramarts.

Theorem 4.7. Assume that E∗
b is separable. Let (Xn)n≥1 be a pramart in

L1
cwk(E)(F) such that, there exists a cwk(E)-valued multifunction K : Ω =⇒

cwk(E) satisfying Xn(ω) ⊂ K(w) ∀n ∈ N, ∀ω ∈ Ω and if assumption (A)
holds. Then there exists a sequence (fk

n)k≥1 in PS(Xn) such that for every

n ≥ 1,

Xn(w) = cl{fk
n(w), k ≥ 1}, ∀ω ∈ Ω.



10 FETTAH AKHIAT AND FATIMA EZZAKI

Proof. By Castaing representation theorem, we have that, for any k ∈ N, there
exists a sequence {gk,i : i ∈ N} ⊂ S1

Xk
(Fk) such that Xk(w) = cl{gk,i(w) : i ∈

N} for all ω ∈ Ω. By virtue of Theorem 4.6, there exists a sequence of pramart
selectors {hk,i,j

n : j ∈ N} in PS(Xn) such that

lim
j→∞

‖πk(h
k,i,j
n )− gk,i‖1 = 0 for all k, i ∈ N.

Then

(4.7.1) lim
j→∞

‖hk,i,j
k − gk,i‖1 = 0 for all k, i ∈ N.

But as from every L1-convergent sequence we can extract an almost surely
convergent subsequence, so by (4.7.1) without any loss of generality we have

Xk(w) = cl{hk,i,j
k (w) : i, j ∈ N} for all k ∈ N.

Finally, if {f l
n : l ∈ N} denotes the sequence {hk,i,j

n : k, i, j ∈ N}, then the
result is automatically satisfied. �

5. Multivalued pramarts in dual space

Let (Ω,F , P ) be a complete probability space, (Fn)n∈N an increasing se-
quence of sub-σ-algebras of F such that F is the σ-algebra generated by
∪n≥1Fn. Let E be a separable Banach space, E∗ the topological dual of E,

BE (resp. BE∗) the closed unit ball of E (resp. E∗), D = (xp)p∈N a dense

sequence in BE . We denote by E∗
b the strong dual endowed with the topology

associated with the dual norm || · ||E∗

b
, by E∗

s the topological dual E∗ endowed

with the topology σ(E∗, E) of pointwise convergence, alias w∗ topology. Not-
ing that E∗ is the countable union of closed balls, we deduce that the space E∗

s

is Suslin. A 2E
∗

s -valued multifunction (alias mapping for short) X : Ω ⇒ E∗
s

is F -measurable if its graph belongs to F ⊗ B(E∗
s ). Given a F -measurable

mapping X : Ω ⇒ E∗
s and a Borel set G ∈ B(E∗

s ), the set

X−G = {ω ∈ Ω : X(ω) ∩G 6= ∅}

is F -measurable, that is X−G ∈ F . In view of the completeness hypothesis on
the probability space, this is a consequence of the Projection Theorem (see e.g.
Theorem III.23 of [6]) and of the equality

X−G = projΩ {Gr(X) ∩ (Ω×G)}.

In particular, if X : Ω ⇒ E∗
s is F -measurable, the domain of X , defined by

domX = {ω ∈ Ω : X(ω) 6= ∅}

is F -measurable, because domX = X−E∗
s . Here L1

E∗ [E](F) is the space of
all F -measurable mappings u : Ω −→ E∗

s such that the function |u| : ω 7→
||u(ω)||E∗

b
is integrable. For any 2E

∗

s -valued mapping X : Ω ⇒ E∗
s , we de-

note by S1
X(F) the set of all L1

E∗ [E](F)-selectors of X . By cwk(E∗
s ) we

denote the set of all nonempty convex σ(E∗, E)-compact subsets of E∗
s . A

mapping X : Ω → cwk(E∗
s ) is scalarly F -measurable if the function ω →
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δ∗(x,X(ω)) is F -measurable for every x ∈ E. Let us recall that any scalarly
F -measurable cwk(E∗

s )-valued mapping is F -measurable. Indeed, let (ek)k∈N

be a sequence in E which separates the points of E∗, then we have x ∈ X(ω)
if and only if, 〈ek, x〉 ≤ δ∗(ek, X(ω)) for all k ∈ N. Further, we denote by
L1
cwk(E∗

s )
(Ω,F , P ) (shortly L1

cwk(E∗

s )
(F)) the space of all integrably bounded

multifunctions X such that the function |X | : ω → |X(ω)| is integrable, here
|X(ω)| := supy∗∈X(ω) ||y

∗||E∗

b
, by the above consideration, it is easy to see that

|X | is F -measurable. Let H∗
E∗

b
be the Hausdorff distance associated with the

dual norm || · ||E∗

b
on bounded closed convex subsets in E∗, and X,Y be two

convex weak∗ compact valued measurable mapping, then H∗
E∗

b
(X,Y ) is mea-

surable because H∗
E∗

b
(X,Y ) = supj∈N

[δ∗(ej , X) − δ∗(ej , Y )], where (ej)j∈N is

a dense sequence in BE . A sequence (Xn)n∈N in L1
cwk(E∗

s )
(F) is bounded if

(|Xn|)n∈N is bounded in L1
R
(Ω,F , P ) (shortly L1

R
(F)). For the existence and

uniqueness of the conditional expectation in L1
cwk(E∗

s )
(F) and L1

E∗ [E](F), we

refer the reader to [3, 18]. In the sequel we assume that E∗
b is separable.

Before going further, let us introduce the definition of pramarts in
L1
cwk(E∗

s )
(F) and L1

E∗ [E](F).

Definition 5.1. An adapted sequence (Xn)n∈N in L1
cwk(E∗

s )
(F) is a pramart

if for every ε > 0, there exists σε ∈ T such that

∀σ, τ ∈ T, τ ≥ σ ≥ σε ⇒ P (H∗
E∗

b
(Xσ, E

FσXτ ) > ε) < ε,

where H∗
E∗

b
stands for the Hausdorff distance associated with the dual norm

|| · ||E∗

b
on cwk(E∗

s ).

Further, if (Xn)n∈N is single-valued, definition 5.1 is reduced to:

Definition 5.2. An adapted sequence (Xn)n∈N in L1
E∗ [E](F) is a pramart if

for every ε > 0, there exists σε ∈ T such that

∀σ, τ ∈ T, τ ≥ σ ≥ σε ⇒ P (||Xσ − EFσXτ ||E∗

b
> ε) < ε.

Similarly if (Xn)n∈N is a pramart in L1
E∗ [E](F), then for every x in the unit

ball BE of E, the sequence (〈x,Xn〉)n∈N is a pramart in L1
R
(F), since we have

||Xσ − EFσXτ ||E∗

b
= sup

x∈BE

[〈x,Xσ − EFσXτ 〉].

Here we give an elementary lemma that we will be needed later.

Lemma 5.3. Let (An)n∈N be a sequence in cwk(E∗
s ) and D denotes a dense

sequence in BE such that

(i) For every x ∈ D, limn→∞ δ∗(x,An) exist a.s.
(ii) supn∈N |An| < ∞.

Then there exists A∞ ∈ cwk(E∗
s ) satisfying

lim
n→∞

δ∗(x,An) = δ∗(x,A∞) (x ∈ E).
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Proof. For each x ∈ D, define the function r(·) by

r(x) = lim
n→+∞

δ∗(x,An).

r is sublinear and continuous because by condition (ii) we have

sup
‖x‖≤1

|r(x)| = sup
‖x‖≤1

| lim
n→∞

δ∗(x,An)|

≤ sup
n∈N

|An| < ∞.

Hence by [17, Lemma 1] there exists A∞ ∈ cwk(E∗
s ) such that

r(x) = δ∗(x,A∞) ∀x ∈ BE . �

Now we are ready to state the decomposition of cwk(E∗
s )-valued pramarts.

Theorem 5.4. Let (Xn)n∈N be a bounded pramart in L1
cwk(E∗

s )
(F). Then there

exists X∞ ∈ L1
cwk(E∗

s )
(F) such that

(i) lim
n→∞

δ∗(x,Xn) = δ∗(x,X∞) a.s. ∀x ∈ BE ,

(ii) lim
n→∞

H∗
E∗

b
(Xn, E

FnX∞) = 0 a.s.

Proof. Step 1 Claim: limn→∞ δ∗(x,Xn) = δ∗(x,X∞) a.s. ∀x ∈ BE .
Let D1 = (ej)j∈N denotes a dense sequence in BE . As (Xn)n∈N is a

bounded pramart in L1
cwk(E∗

s )
(F), for each j ∈ N, (δ∗(ej , Xn))n∈N is a bounded

real-valued pramart in L1
R
(F). So for each j ∈ N, (δ∗(ej , Xn))n∈N converges

a.s. to an integrable function mj in L1
R
(F). By hypotheses of theorem, since

(Xn,Fn)n≥1 is a multivalued pramart, then for every n ∈ N, (|Xn|,Fn)n≥1 is
a sequence of real subpramarts which are bounded in L1

R
(F). So by [9, Lemma

VIII.2.4.1] we deduce that

sup
n∈N

|Xn| < ∞ a.s.

Hence Lemma 5.3 gives X∞ ∈ cwk(E∗
s ) such that

lim
n→∞

δ∗(x,Xn) = δ∗(x,X∞) a.s. ∀x ∈ BE .

Finally by Fatou Lemma, We check that X∞ ∈ L1
cwk(E∗

s )
(F).

Step 2 Claim: limn→∞ H∗
E∗

b
(Xn, E

FnX∞) = 0 a.s.

Let D1 = (ej)j∈N denote a dense sequence in BE . We have

H∗
E∗

b
(Xn, E

FnX∞) = sup
j∈N

|δ∗(ej , Xn)− δ∗(ej , E
FnX∞)|.

As (δ∗(ej , Xn)− δ∗(ej, E
FnX∞))n∈N are real-valued pramarts in L1

R
(F) which

converges a.s. to 0, and ((|δ∗(ej, Xn) − δ∗(ej , E
FnX∞)|)n∈N)j∈N is a uniform

sequence of positive subramarts, applying Lemma VIII.1.15 in [9] we have

lim
n→∞

H∗
E∗

b
(Xn, E

FnX∞) = lim
n→∞

sup
j∈N

|δ∗(ej , Xn)− δ∗(ej , E
FnX∞)|
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= sup
j∈N

lim
n→∞

|δ∗(ej , Xn)− δ∗(ej , E
FnX∞)| = 0

almost surely. �

Comments: In [4] when the Banach space is weakly compactly generated
(WCG), the authors give the weak star Kuratowski (w∗K for short) converges
of pramarts in L1

cwk(E∗

s )
(F). Recall that the Banach space E is weakly com-

pactly generated (WCG) if there exists a weakly compact subset of E whose
linear span is dense in E.

Corollary 5.5. Let (Xn)n∈N be a bounded pramart in L1
E∗ [E](F). Then there

exist a martingale (Yn)n∈N in L1
E∗ [E](F) and a pramart (Zn)n∈N in L1

E∗ [E](F)
such that Xn = Yn + Zn, ∀n ∈ N and such that (Zn)n∈N norm converges to 0
a.s.

Proof. As (〈x,Xn〉)n∈N is a real-valued bounded pramart in L1
R
for each x ∈

BE , (〈x,Xn〉)n∈N converges a.s to an integrable function mx. Then Theorem
5.4(ii) provides a X∞ ∈ L1

E∗ [E](F) such that

lim
n→∞

‖Xn − EFnX∞‖E∗

b
= 0 a.s.

the result follows by putting Yn = EFnX∞ and Zn = Xn − EFnX∞. �

Now we state the existence of martingales selectors for cwk(E∗
s )-valued su-

permartingales (Xn)n≥1 in L1
cwk(E∗

s )
(F) via a projective limit technique. See

([11, Proposition 3.7]) for details. For this purpose we shall recall the definition
of the projective limit of a sequence of sets. Let (Γn)n≥1 be a sequence of sets
and for any m,n ≥ 1 such that m ≤ n, a map umn : Γn −→ Γm. Also assume
the two following hypotheses:

(i) ∀m ≥ 1, umm = idΓm
= the identity map of Γm.

(ii) ∀m,n, p ≥ 1 such that m ≤ n ≤ p, ump = umn ◦ unp.
The sequence (Γn)n≥1, together with the maps umn is called a projective

system. If the Γn are topological spaces and if the umn are continuous we speak
of a projective system of topological spaces. Let Γ be the cartesian product of
the Γn for n ≥ 1 and prn the projection from Γ onto Γn. The subset S of Γ
defined by

S := {x = (xn)n≥1/ prm(x) = umn ◦ prn(x) ∀m,n ≥ 1, m ≤ n}

is called the projective limit of the projective system defined above.

Lemma 5.6. Let (Xn,Fn)n≥1 be a supermartingales in L1
cwk(E∗

s )
(F). Then

(Xn,Fn)n≥1 admits a martingale selector (fn,Fn)n≥1 in L1
E∗ [E](F).

Proof. By [6, Theorem VIII.34], for m < n and for f ∈ L1
E∗ [E](Fn), the

conditional expectation EFmf exists and belongs to the space L1
E∗ [E](Fm).

Now thinks to Proposition VIII.33 in [6]

EFm : L1
E∗ [E](Fn) −→ L1

E∗ [E](Fm)
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is continuous for the topologies

σ(L1
E∗ [E](Fn), L

∞
E (Fn))

and

σ(L1
E∗ [E](Fm), L∞

E (Fm))

respectively. Further by [6, Theorem VIII.34] the L1
E∗ [E](Fn)-selectors set

S1
Xn

(Fn) is convex σ(L1
E∗ [E](Fn), L

∞
E (Fn)) compact. Now let us set

umn(f) := EFmf, ∀f ∈ S1
Xn

(Fn).

Then by the supermartingale property we have

umn(S
1
Xn

(Fn)) ⊂ (S1
Xm

(Fm)).

Therefore the sequence (S1
Xn

(Fn))n≥1 together with the sequence of continuous

mappings (umn)m<n is a projective system of compact spaces in L1
E∗ [E](F).

Therefore, by [2, Proposition 8, p.I.64] this system admits a nonempty projec-
tive limit which is the set MS(Xn) of L

1
E∗ [E](F)-martingales selectors of (Xn).

(i.e., any member (fk)k≥1 of the projective limit satisfies, for anym,n ∈ N such
that m < n,

prm((fk)) = umn ◦ prn((fk))

or, equivalently, fm = EFmfn. So we have (fk) ∈ MS(Xn)). �

Now we proceed to the existence of pramart selector of pramart in
L1
cwk(E∗

s )
(F).

Theorem 5.7. Let (Xn)n∈N be a bounded pramart in L1
cwk(E∗

s )
(F), if assump-

tion (A) holds. Then (Xn)n∈N admits a pramart selector (fn)n≥1 in L1
E∗ [E](F),

that is (fn)n∈N is an integrable pramart and fn(ω) ∈ Xn(ω) for all n ≥ 1 and

for all ω ∈ Ω.

Proof. Applying Theorem 5.4 to (Xn)n≥1 which provides a multifunctionX∞ ∈
L1
cwk(E∗

s )
(F) such that

lim
n→∞

H∗
E∗

b
(Xn, E

FnX∞) = 0 a.s.

let us set Mn = EFnX∞ and rn = H∗
E∗

b
(Xn, E

FnX∞) + 1
2n . Since (Mn)n≥1 is

a cwk(E∗
s )-valued martingale, by Lemma 5.6 there exists (gn)n≥1 a martingale

selector of Mn. By same argument in the proof of Theorem 4.6, for each gn we
pick a Fn-measurable selector of Xn such that

(5.7.1) ‖fn − gn‖E∗

b
≤ rn.

Writing fn = gn + (fn − gn) = gn + zn where zn = fn − gn, by (5.7.1) (zn)n≥1

converge a.s to zero when n goes to ∞, and for all τ ∈ T we have
∫

Ω

‖zτ‖dP ≤

∫

Ω

‖fτ‖dP +

∫

Ω

|X∞|dP < ∞,
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sup
τ∈T

∫

Ω

‖zτ‖dP ≤ sup
τ∈T

∫

Ω

‖fτ‖dP +

∫

Ω

|X∞|dP < ∞,

then

sup
τ∈T

∫

Ω

‖zτ‖dP < ∞.

Hence by Lemma 4.2, zn is a pramart. By Corollary 5.5 (fn)n≥1 is a pramart
selector, because (gn)n≥1 is a L1

E∗ [E](F) martingale and (zn)n≥1 is a pramart
norm converges to 0 a.s. �
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