J. Korean Math. Soc. **50** (2013), No. 1, pp. 1–16 http://dx.doi.org/10.4134/JKMS.2013.50.1.001

REPRESENTATION THEOREMS FOR MULTIVALUED PRAMARTS

Fettah Akhiat and Fatima Ezzaki

ABSTRACT. Existence of pramarts selectors for multivalued pramart whose values are convex weakly compact subsets of a separable Banach space E (resp. subsets of a dual space E^*) are established. Representation theorems for multivalued pramarts are also presented.

1. Introduction

Representation theorems of multivalued martingales, submartingales, supermartingales and uniform-amarts have been extensively studied in recent years by A. Choukairi [7], C. Hess [11], D. Q. Luu [14], Z. P. Wang and X. H. Xue [19] and S. Li and Y. Ogura [13]. It is known that every multivalued martingale is a multivalued submartingale and is a supermartingale and also a uniform-amart. So, any uniform-amart is a pramart. A naturel questions raised by A. Choukairi in [8] is the existence of pramarts selectors for multivalued pramart. The main purpose of this work is not only to solve this problem but also prove that a multivalued pramart has a Castaing representation by pramarts selectors. The paper is organized as follows. In Section 2 we recall some notations and definitions and summarize needed results. In Section 3 we give some decomposition results for convex weakly compact valued pramarts. In Section 4 we discuss the existence of pramart selectors of convex weakly compact valued pramarts. In Section 5 we present a decomposition results for multivalued pramart whose values are convex weakly compact in the dual of a separable Banach space and we show the existence of pramarts selectors of the above class of pramarts.

2. Preliminaries and background

Throughout this paper (Ω, \mathcal{F}, P) is a complete probability space, $(\mathcal{F}_n)_{n\geq 1}$ an increasing sequence of sub σ -algebras of \mathcal{F} such that \mathcal{F} is the σ -algebra generated by $\bigcup_{n\geq 1}\mathcal{F}_n$. E is a separable Banach space with the dual E^* and the strong dual E_b^* . \overline{B}_E (resp. \overline{B}_{E^*}) the closed unit ball of E (resp. E^*).

©2013 The Korean Mathematical Society

Received May 11, 2011; Revised May 21, 2012.

²⁰¹⁰ Mathematics Subject Classification. Primary 28B20, 60G42, 46A17, 46A20, 54A20. Key words and phrases. multifunctions, Banach space, dual space, pramarts, sub-pramarts, pramarts selectors.

 2^E is the set of all subsets of E. Let cc(E) (resp. cwk(E)) be the set of nonempty convex closed subsets of E (resp. weakly compact subsets of E). For $A \in 2^E \setminus \emptyset$, we denote by clA and $\overline{co}A$ the closure and the closed convex hull of A respectively, and define $|A| = \sup\{||x|| : x \in A\}$, the distance function and the support function associated with A are defined respectively by

$$d(x, A) = \inf\{\|x - y\|, y \in A\} \ (x \in E)$$

$$\delta^*(x^*, A) = \sup\{\langle x^*, y \rangle, y \in A\} \ (x^* \in E^*)$$

The Hausdorff distance between A and B is denoted by

$$\mathcal{H}(A,B) = \sup_{x^* \in \overline{B}_{E^*}} |\delta^*(x^*,A) - \delta^*(x^*,B)|.$$

The equivalent definition of Hausdorff distance is

$$\mathcal{H}(A,B) = \max\{\inf\{\lambda : B \subset A + \lambda\}, \inf\{\lambda : A \subset B + \lambda\}\},\$$

where

$$A + \lambda = \{x : d(x, A) \le \lambda\}$$

A multifunction (mappings for short) X is a map from Ω into 2^E . The domain of X is defined by

$$\operatorname{dom}(X) = \{ \omega \in \Omega : X(\omega) \neq \emptyset \}.$$

A selector of X is a function $f: \Omega \longrightarrow E$ such that $f(\omega)$ is a member of $X(\omega)$ for all $\omega \in \text{dom}(X)$.

A multifunction $X:\Omega\longrightarrow 2^E$ is said to be measurable, if for every open set $U\subset E,$ the set

$$X^{-}U = \{ \omega \in \Omega : X(\omega) \cap U \neq \emptyset \}$$

is a member of \mathcal{F} (see [6], [12]). A measurable multifunction is also called a random set. For each $n \in \mathbb{N} \cup \{\infty\}$, we denote by $\mathcal{L}^1_{cwk(E)}(\mathcal{F}_n)$ (resp. $\mathcal{L}^1_{cc(E)}(\mathcal{F}_n)$) the space of all \mathcal{F}_n -measurable cwk(E)-valued multifunctions $X : \Omega \to cwk(E)$ (resp. cc(E)-valued multifunctions $X : \Omega \to cc(E)$) such that $\omega \to |X(\omega)|$ is integrable. A sequence $(X_n)_{n\in\mathbb{N}}$ of cc(E)-valued multifunctions is adapted if each X_n is \mathcal{F}_n -measurable. A measurable selector of the random set X is an $(\mathcal{F}, \mathcal{B}(E))$ -measurable selector of X. A Castaing representation [6] of X is a sequence $f_n : \Omega \longrightarrow E$ of measurable selectors of X such that

$$X(\omega) = cl\{f_k(\omega) : k \ge 1\}$$
 for all $\omega \in dom(X)$.

We denote by $L^1_E(\mathcal{F})$ the space of (equivalence classes of) $(\mathcal{F}, \mathcal{B}(E))$ -measurable functions $f: \Omega \longrightarrow E$ such that $\omega \longrightarrow ||f(\omega)||$ is integrable. Such an f is said to be Bochner integrable. For every multifunction $X: \Omega \longrightarrow 2^E$ and every sub- σ -algebra \mathcal{B} of \mathcal{F} , we set

$$S_X^1(\mathcal{B}) = \{ f \in L_E^1(\mathcal{B}) : f(\omega) \in X(\omega) \text{ a.s.} \}.$$

It is known that $S_X^1(\mathcal{B})$ characterizes X up to P-null sets (see [12]). A measurable multifunction X such that $S_X^1(\mathcal{B})$ is nonempty is declared integrable. Using Hiai and Umegaki [12, Theorem 2.2], it is readily seen that X is integrable if and only if $d(0, X(\cdot)) \in L_E^1$. Now, consider an integrable \mathcal{F} -measurable multifunction $X : \Omega \longrightarrow cc(E)$. Following Hiai and Umegaki we define the multivalued conditional expectation of X relative to \mathcal{B} as the \mathcal{B} -measurable random set $G = E^{\mathcal{B}}X$ such that $S_G^1(\mathcal{B}) = cl\{E^{\mathcal{B}}f : f \in S_X^1(\mathcal{F})\}$, the closure being taken in L_E^1 (where $E^{\mathcal{B}}f$ denotes the usual conditional expectation relative to \mathcal{B} of a Bochner integrable function f). In the special case where $\mathcal{B} = \{E, \emptyset\}$, $E^{\mathcal{B}}X$ is simply denoted by E(X) and is equal to $cl\{E(f) : f \in S_X^1(\mathcal{F})\}$. New existence results of conditional expectation for convex weakly compact valued multifunctions and its applications to martingales are available in [1, 3].

We denote by \mathbb{T} the set of all bounded stopping times. A sequence $(X_n)_{n\geq 1}$ in $L^1_E(\mathcal{F})$ is of class (B) if

$$\sup_{\tau\in\mathbb{T}}\int_{\Omega}\|X_{\tau}\|dP<\infty.$$

3. Decomposition theorems for multivalued pramarts

Before going further, let us introduce the definitions of pramart in $\mathcal{L}^1_{cwk(E)}(\mathcal{F})$ and $L^1_E(\mathcal{F})$.

Definition 3.1. An adapted sequence $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}}$ in $L^1_E(\mathcal{F})$ is a pramart if, for every $\varepsilon > 0$, there is $\sigma_{\varepsilon} \in \mathbb{T}$ such that

$$\forall \sigma, \tau \in \mathbb{T}, \quad \tau \ge \sigma \ge \sigma_{\varepsilon} \Rightarrow P([\|X_{\sigma} - E^{\mathcal{F}_{\sigma}}X_{\tau}\| > \varepsilon]) < \varepsilon.$$

Definition 3.2. An adapted sequence $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}}$ in $\mathcal{L}^1_{cwk(E)}(\mathcal{F})$ is a pramart if, for every $\varepsilon > 0$, there is $\sigma_{\varepsilon} \in \mathbb{T}$ such that

$$\forall \sigma, \tau \in \mathbb{T}, \quad \tau \ge \sigma \ge \sigma_{\varepsilon} \Rightarrow P([\mathcal{H}(X_{\sigma}, E^{\mathcal{F}_{\sigma}}X_{\tau}) > \varepsilon]) < \varepsilon.$$

It is clear that if $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}}$ is a pramart in $\mathcal{L}^1_{cwk(E)}(\mathcal{F})$, then, for each $x^* \in \overline{B}_{E^*}$, the adapted sequence $(\delta^*(x^*, X_n), \mathcal{F}_n)_{n \in \mathbb{N}}$ is a real-valued pramart in $L^1_{\mathbb{R}}(\mathcal{F})$ because

$$|\delta^*(x^*, X_{\sigma}) - E^{\mathcal{F}_{\sigma}} \delta^*(x^*, X_{\tau})| \le \mathcal{H}(X_{\sigma}, E^{\mathcal{F}_{\sigma}} X_{\tau}).$$

Definition 3.3. An adapted sequence $(X_n, \mathcal{F}_n)_{n \in \mathbb{N}}$ in $L^1_{\mathbb{R}}(\mathcal{F})$ is a subpramart, if, for every $\varepsilon > 0$, there is $\sigma_{\varepsilon} \in \mathbb{T}$ such that

$$\forall \sigma, \tau \in \mathbb{T}, \quad \tau \ge \sigma \ge \sigma_{\varepsilon} \Rightarrow P(\{(X_{\sigma} - E^{\mathcal{F}_{\sigma}} X_{\tau})^+ \ge \varepsilon\}) \le \varepsilon.$$

Definition 3.4. Let $(X_n^m, \mathcal{F}_n)_{n \in \mathbb{N}}$ be a sequence of real subpramarts. It is called a uniform sequence of positive subpramarts if for every $\varepsilon > 0$, there is $\sigma_0 \in \mathbb{T}$ such that if $\sigma, \tau \in \mathbb{T}$ with $\tau \ge \sigma \ge \sigma_0$, then

$$P(\{\sup_{m\in\mathbb{N}}(X_{\sigma}^{m}-E^{\mathcal{F}_{\sigma}}X_{\tau}^{m})^{+}\geq\varepsilon\})\leq\varepsilon.$$

Now we proceed to the decomposition of cwk(E)-valued pramarts.

Theorem 3.5. Assume that E_b^* is separable. Let $(X_n, \mathcal{F}_n)_{n\geq 1}$ be a bounded pramart in $\mathcal{L}^1_{cwk(E)}(\mathcal{F})$ such that there exists a cwk(E)-valued multifunction $K : \Omega \Longrightarrow cwk(E)$ satisfying $X_n(\omega) \subset K(w) \ \forall n \in \mathbb{N}, \forall \omega \in \Omega$. Then there exists a multifunction $X_{\infty} \in \mathcal{L}^1_{cwk(E)}(\mathcal{F})$ such that:

$$\lim_{n \to \infty} \mathcal{H}(X_n, E^{\mathcal{F}_n} X_\infty) = 0 \quad a.s.$$

Proof. Step 1 Claim: $\lim_{n\to\infty} \delta^*(x^*, X_n) = \delta^*(x^*, X_\infty)$ a.s. $\forall x^* \in \overline{B}_{E^*}$.

Let $M_1^* = (f_j^*)_{j \in \mathbb{N}}$ be a dense sequence in \overline{B}_{E^*} with respect to the Mackey topology $\tau(E^*, E)$. Since $(X_n)_{n \in \mathbb{N}}$ is bounded in $\mathcal{L}^1_{cwk(E)}(\mathcal{F})$, that is,

$$\sup_{n \in \mathbb{N}} \int_{\Omega} |X_n| dP = \sup_{n \in \mathbb{N}} \int_{\Omega} \sup_{x^* \in \overline{B}_{E^*}} |\delta^*(x^*, X_n)| dP < \infty$$

for each $j \in \mathbb{N}$, the L^1 -bounded pramart $(\delta^*(f_j^*, X_n))_{n \in \mathbb{N}}$ converge a.s. to an integrable function $\varphi_{x^*} \in L^1_{\mathbb{R}}(\mathcal{F})$. Let $\omega \in \Omega$, define the function $s(\cdot)$ by

$$s(f_j^*) = \lim_{n \to \infty} \delta^*(f_j^*, X_n(\omega)) \quad (j \in \mathbb{N})$$

s is sublinear and continuous for the Mackey topology $\tau(E^*, E)$. Consequently, there is $X_{\infty}(\omega) \in cwk(E)$ with $X_{\infty}(\omega) \subset K(\omega)$ such that

$$s(f_j^*) = \delta^*(f_j^*, X_\infty(\omega)) \quad (j \in \mathbb{N}).$$

Then there exists a negligible set $N \in \mathcal{F}$ such that for all $\omega \in \Omega \setminus N$

$$\lim_{n \to \infty} \delta^*(f_j^*, X_n(\omega)) = \delta^*(f_j^*, X_\infty(\omega)) \quad \forall j \in \mathbb{N}.$$

Since the functions $\delta^*(\cdot, X_n(\omega))$ and $\delta^*(\cdot, X(\omega))$ are continuous for the Mackey topology $\tau(E^*, E)$. So, we deduce that

$$\lim_{n\to\infty} \delta^*(x^*,X_n) = \delta^*(x^*,X_\infty) \quad \text{a.s.} \quad \forall x^*\in \overline{B}_{E^*}.$$

We check that $X_{\infty} \in \mathcal{L}^{1}_{cwk(E)}(\mathcal{F})$. Indeed, X_{∞} is measurable and for fixed $x^{*} \in \overline{B}_{E^{*}}$ and $\omega \in \Omega$, the function $n \longrightarrow \delta^{*}(x^{*}, X_{n}(\omega))$ is continuous from $\mathbb{N} \cup \{+\infty\}$ into \mathbb{R} , therefore the function $n \to \sup\{\delta^{*}(x^{*}, X_{n}(\omega)) : x^{*} \in \overline{B}_{E^{*}}\}$ is lower semi continuous on $\mathbb{N} \cup \{+\infty\}$ and so

$$|X_{\infty}|(\omega) \le \liminf_{n} |X_{n}|(\omega),$$

by Fatou Lemma we have

$$\int_{\Omega} |X_{\infty}| dP \leq \int_{\Omega} \liminf_{n} |X_{n}| dP$$

$$\leq \liminf_{n} \int_{\Omega} |X_{n}| dP \leq \sup_{n} \int_{\Omega} |X_{n}| dP < +\infty.$$

Step 2 Claim: $\lim_{n\to\infty} \mathcal{H}(X_n, E^{\mathcal{F}_n}X_\infty) = 0$ a.s.

Let $D_1^* = (e_j^*)_{j \in \mathbb{N}}$ be a dense sequence in the closed unit ball \overline{B}_{E^*} . We have

$$\mathcal{H}(X_n, E^{\mathcal{F}_n}X_\infty) = \sup_{j \in \mathbb{N}} |\delta^*(e_j^*, X_n) - \delta^*(e_j^*, E^{\mathcal{F}_n}X_\infty)|.$$

As $(\delta^*(e_j^*, X_n) - \delta^*(e_j^*, E^{\mathcal{F}_n}X_\infty))_{n \in \mathbb{N}}$ are real-valued pramarts in $L^1_{\mathbb{R}}(\mathcal{F})$ which converges a.s. to 0, and $((|\delta^*(e_j^*, X_n) - \delta^*(e_j^*, E^{\mathcal{F}_n}X_\infty)|)_{n \in \mathbb{N}})_{j \in \mathbb{N}}$ is a uniform sequence of positive subpramarts, applying lemma VIII.1.15 in [9] we have

$$\lim_{n \to \infty} \mathcal{H}(X_n, E^{\mathcal{F}_n} X_\infty) = \lim_{n \to \infty} \sup_{j \in \mathbb{N}} |\delta^*(e_j^*, X_n) - \delta^*(e_j^*, E^{\mathcal{F}_n} X_\infty)|$$
$$= \sup_{j \in \mathbb{N}} \lim_{n \to \infty} |\delta^*(e_j^*, X_n) - \delta^*(e_j^*, E^{\mathcal{F}_n} X_\infty)| = 0$$
set surely.

almost surely.

Now we give a quasi-decomposition theorem for convex weakly compact valued pramart.

Theorem 3.6. Assume that E_b^* is separable. Let $(X_n, \mathcal{F}_n)_{n\geq 1}$ be a bounded pramart in $\mathcal{L}^1_{cwk(E)}(\mathcal{F})$ such that, there exists a cwk(E)-valued multifunction $K: \Omega \Longrightarrow cwk(E)$ satisfying $X_n(\omega) \subset K(w) \ \forall n \in \mathbb{N}, \forall \omega \in \Omega$. Then there exist a multivalued martingale $(M_n)_{n\geq 1}$ and $(Z_n)_{n\geq 1}$ in $\mathcal{L}^1_{cwk(E)}(\mathcal{F})$ such that

$$X_n(w) \subset M_n(w) + Z_n(w) \quad a.s.$$
$$|Z_n| \longrightarrow 0 \quad a.s. \quad as \quad n \to +\infty.$$

Proof. By Theorem 3.5 there exists $X_{\infty} \in \mathcal{L}^1_{cwk(E)}(\mathcal{F})$ such that

$$\lim_{n \to \infty} \mathcal{H}(X_n, E^{\mathcal{F}_n} X_\infty) = 0 \quad \text{a.s.}$$

Let $M_n = E^{\mathcal{F}_n} X_{\infty}$, then $(M_n)_{n \in \mathbb{N}}$ is a multivalued martingale, and

$$\lim_{n \to \infty} \mathcal{H}(X_n, M_n) = 0 \quad \text{a.s.}$$

If we set $\rho_n = \mathcal{H}(X_n, M_n)$, define Z_n by

$$Z_n = \{ x \in E \setminus ||x|| \le \mathcal{H}(X_n, M_n) = \rho_n \} = \overline{B}_E(0, \rho_n).$$

Then by definition of the Hausdorff distance we have

$$X_n(w) \subset M_n(w) + \mathcal{H}(X_n(w), M_n(w)) = M_n(w) + \rho_n(w)$$
 a.s

So $X_n(w) \subset M_n(w) + Z_n(w)$ a.s. Indeed, we must prove that

$$\{x: \ d(x, M_n(w)) \le \rho_n(w)\} = M_n(w) + \overline{B}_E(0, \rho_n(w)).$$

First, if $d(x, M_n(w)) \leq \rho_n(w)$, then for each k > 0, there exists $a_k \in M_n(w)$ such that

$$||x - a_k|| \le \rho_n(w) + \frac{1}{k}.$$

That is

$$x - a_k \in \overline{B}_E(0, \rho_n(w) + \frac{1}{k}).$$

So, there exists $y_k \in \overline{B}_E(0, \rho_n(w) + \frac{1}{k})$ such that $x - a_k = y_k$ and

$$x = a_k + y_k \in M_n(w) + \overline{B}_E(0, \rho_n(w) + \frac{1}{k}), \quad \forall k > 0.$$

Since $a_k \in M_n(w)$ and $y_k \in \overline{B}_E(0, \rho_n(w) + \frac{1}{k})$ this implies that there exists $a \in M_n(w)$ such that

$$\lim_{k \to \infty} \langle x^*, a_k \rangle = \langle x^*, a \rangle \quad \forall x^* \in E^*,$$

and

$$\begin{split} \lim_{k \to \infty} \langle x^*, x - a_k \rangle &= \langle x^*, x - a \rangle \\ &= \lim_{k \to \infty} \langle x^*, y_k \rangle \\ &\leq \limsup_{k \to \infty} \delta^* (x^*, \overline{B}_E(0, \rho_n(w) + \frac{1}{k})) \end{split}$$

That is

$$\langle x^*, x - a \rangle \le \delta^*(x^*, \overline{B}_E(0, \rho_n(w))) \quad \forall x^* \in E^*.$$

According to Proposition III.35 in [6], we deduce that $y = x - a \in \overline{B}_E(0, \rho_n(w))$. Finally $x \in M_n(w) + \overline{B}_E(0, \rho_n(w))$.

Conversely, if $x \in M_n(w) + \overline{B}_E(0, \rho_n(w))$, this implies that $\exists a \in M_n(w)$, $\exists z \in \overline{B}_E(0, \rho_n(w))$ such that

$$x = a + z$$
.

Indeed, since $x \in M_n(w) + \overline{B}_E(0, \rho_n(w))$, then there exists $(x_k)_{k\geq 1}$ such that $x = \lim_k x_k$ and $x_k = a_k + z_k$ with $a_k \in M_n$ and $z_k \in \overline{B}_E(0, \rho_n(w))$, hence there exist k_j subsequence of k and $a \in M_n$ such that

$$\lim_{i \to \infty} \langle x^*, a_{k_j} \rangle = \langle x^*, a \rangle$$

On the other hand $x_{k_j} = a_{k_j} + z_{k_j}$ thus

$$\lim_{j \to \infty} \langle x^*, x_{k_j} - a_{k_j} \rangle = \langle x^*, x - a \rangle = \lim_{j \to \infty} \langle x^*, z_{k_j} \rangle = \langle x^*, z \rangle.$$

So, $z \in \overline{B}_E(0, \rho_n(w))$ and x = a + z. Consequently

$$||x - a|| = ||z|| \le \rho_n(w)$$

and

$$d(x, M_n(w)) \le \rho_n(w).$$

Finally, $X_n(w) \subset M_n(w) + Z_n(w)$ a.s. and

$$|Z_n| \leq \mathcal{H}(X_n, M_n) \longrightarrow_{n \to +\infty} 0$$
 a.s.

The following result is a consequence of Theorem 3.5.

Corollary 3.7. Assume that E_b^* is separable. Let $(X_n, \mathcal{F}_n)_{n\geq 1}$ be a bounded pramart in $L_E^1(\mathcal{F})$ such that there exists a multifunction $K \in \mathcal{L}^1_{cwk(E)}(\mathcal{F})$ satisfying $X_n(\omega) \in K(w) \ \forall n \in \mathbb{N}, \forall \omega \in \Omega$. Then there are a unique regular martingale (Y_n) in $L_E^1(\mathcal{F})$ and a pramart (Z_n) in $L_E^1(\mathcal{F})$ such that

$$X_n = Y_n + Z_n, \quad \forall n \in \mathbb{N},$$
$$|Z_n| \longrightarrow 0 \quad a.s. \quad as \quad n \to +\infty.$$

Proof. By Theorem 3.5 there exists X_{∞} in $L^1_E(\mathcal{F})$ such that

$$\lim_{n \to \infty} \|X_n - E^{\mathcal{F}_n} X_\infty\| = 0 \quad \text{a.s.}$$

Then, by setting $Y_n = E^{\mathcal{F}_n} X_\infty$ for all $n \in \mathbb{N}$, we have $X_n = Y_n + X_n - Y_n = Y_n + Z_n$, where $Z_n = X_n - Y_n$ is obviously a pramart and $\lim_n ||Z_n|| = \lim_n ||X_n - Y_n|| = 0$ a.s. The uniqueness is more or less classical. Suppose

$$X_n = Y_n' + Z_n'$$

with the required properties in the corollary. Then

$$\lim_{n \to \infty} Z_n = \lim_{n \to \infty} Z'_n = 0 \quad \text{a.s.}$$

For each m fixed in \mathbb{N} we have

$$Y_m - Y'_m = \lim_{n \to \infty} (E^{\mathcal{F}_n} Y_m - E^{\mathcal{F}_n} Y'_m)$$
$$= \lim_{n \to \infty} (Y_n - Y'_n) = \lim_{n \to \infty} (Z_n - Z'_n) = 0 \quad \text{a.s.}$$

for every $m \in \mathbb{N}$.

4. Representation theorems for multivalued pramarts

In this present section we give our first results of existence of pramart selectors for cwk(E)-valued pramart.

Definition 4.1. A sequence $(f_n, \mathcal{F}_n)_{n \ge 1}$ is called a pramart selector of $(X_n, \mathcal{F}_n)_{n \ge 1}$ if

(i) $f_n \in S^1_{X_n}(\mathcal{F}_n)$ for all $n \in \mathbb{N}$.

(ii) $(f_n, \mathcal{F}_n)_{n \ge 1}$ is a pramart in $L^1_E(\mathcal{F})$. In this case we write $(f_n, \mathcal{F}_n)_{n \ge 1} \in PS(X_n)$ and let $PS(X_n)$ denote the set of all pramart selectors of $(X_n, \mathcal{F}_n)_{n \ge 1}$.

To get further representation theorem, we need the following lemmas.

Lemma 4.2. Let $(X_n)_{n\geq 1}$ be a sequence in $L^1_E(\mathcal{F})$. If $(X_n)_{n\geq 1}$ is of class (B) and (X_n) converge in probability. Then $(X_n)_{n\geq 1}$ is a pramart in $L^1_E(\mathcal{F})$.

Proof. See [20, Lemma 6].

Lemma 4.3. If $\mathcal{B}_1 \subset \mathcal{B}_0$ are two sub- σ -fields of \mathcal{F} , $X \in \mathcal{L}^1_{cc(E)}(\mathcal{B}_1)$, $Y \in \mathcal{L}^1_{cc(E)}(\mathcal{B}_0)$ and $\theta : \Omega \longrightarrow \mathbb{R}^+ \setminus \{0\}$ is a \mathcal{B}_1 -measurable function, then for each $f \in S^1_X(\mathcal{B}_1)$ we can find $g \in S^1_Y(\mathcal{B}_0)$ such that

$$\|f(w) - E^{\mathcal{B}_1}g(w)\| \le \mathcal{H}(X(w), E^{\mathcal{B}_1}Y(w)) + \theta(w) \quad a.s.$$

Consequently, if Y is \mathcal{B}_1 -measurable, then there exist some $g \in S^1_Y(\mathcal{B}_1)$ such that

$$||f(w) - g(w)|| \le \mathcal{H}(X(w), Y(w)) + \theta(w) \quad a.s.$$

Proof. See [16, Lemma 3.3].

Example 4.4. Let $(f_n, \mathcal{F}_n)_{n \geq 1}$ be a vector valued pramart and $(r_n, \mathcal{F}_n)_{n \geq 1}$ be a real valued pramart. Take \overline{B}_E the closed unit ball of E, let $A \in \mathcal{F}$. Define

$$X_n = f_n 1_A + r_n 1_{A^c} \overline{B}_E$$

Then $(X_n)_{n\geq 1}$ is a multivalued pramart. Indeed, for $\tau, \sigma \in \mathbb{T}$ $(\tau \geq \sigma)$

$$\begin{aligned} P(\mathcal{H}(X_{\sigma}, E^{\mathcal{F}_{\sigma}}X_{\tau}) > \varepsilon) \\ &= P(\mathcal{H}(f_{\sigma}1_{A} + r_{\sigma}1_{A^{c}}\overline{B}_{E}, E^{\mathcal{F}_{\sigma}}(f_{\tau}1_{A} + r_{\tau}1_{A^{c}}\overline{B}_{E})) > \varepsilon) \\ &\leq P(\|f_{\sigma}1_{A} - E^{\mathcal{F}_{\sigma}}f_{\tau}1_{A}\| + |\overline{B}_{E}|.|r_{\sigma}1_{A^{c}} - E^{\mathcal{F}_{\sigma}}r_{\tau}1_{A^{c}}| > \varepsilon) \\ &\leq P(\|f_{\sigma}1_{A} - E^{\mathcal{F}_{\sigma}}f_{\tau}1_{A}\| + |r_{\sigma}1_{A^{c}} - E^{\mathcal{F}_{\sigma}}r_{\tau}1_{A^{c}}| > \varepsilon) \\ &\leq P(\|f_{\sigma}1_{A} - E^{\mathcal{F}_{\sigma}}f_{\tau}1_{A}\| > \frac{\varepsilon}{2}) + P(|r_{\sigma}1_{A^{c}} - E^{\mathcal{F}_{\sigma}}r_{\tau}1_{A^{c}}| > \frac{\varepsilon}{2}) \\ &\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

It is easy to see that every sequence $(g_n)_{n>1}$ define by

$$g_n = f_n 1_A + r_n 1_{A^c} x$$
 for each $x \in \overline{B}_E$

is a pramart selector of $(X_n)_{n\geq 1}$.

Definition 4.5. Given $(X_n)_{n\geq 1}$ in $\mathcal{L}^1_{cwk(E)}(\mathcal{F})$. We say that assumption (A) holds, if every sequence of selectors of $(X_n)_{n\geq 1}$ is of class (B).

Theorem 4.6. Assume that E_b^* is separable. Let $(X_n, \mathcal{F}_n)_{n\geq 1}$ be a bounded pramart in $\mathcal{L}^1_{cwk(E)}(\mathcal{F})$ such that there exists a cwk(E)-valued multifunction $K: \Omega \Longrightarrow cwk(E)$ satisfying $X_n(\omega) \subset K(w) \ \forall n \in \mathbb{N}, \forall \omega \in \Omega \text{ and if assumption}$ (A) holds. Then

$$S^1_{X_k}(\mathcal{F}_k) = \pi_k(PS(X_n)).$$

Where for every $(f_n) \in PS(X_n)$, $\pi_k((f_n)) = f_k$ (π_k is the usual projection to the kth element of the sequence $(f_n)_{n \geq 1}$).

Proof. By Theorem 3.5 there is $X_{\infty} \in \mathcal{L}^1_{cwk(E)}(\mathcal{F})$ such that

$$\lim_{n \to \infty} \mathcal{H}(X_n, E^{\mathcal{F}_n} X_\infty) = 0 \quad \text{a.s}$$

Let $M_n = E^{\mathcal{F}_n} X_{\infty}$, for each $n \in \mathbb{N}$ we set $\rho_n(w) = \mathcal{H}(X_n(w), M_n(w))$, and let $r_n(w) = \rho_n(w) + \frac{1}{2^n}, \forall n \ge 1$.

Now, let $k \geq 1$ and let $f_k \in S^1_{X_k}(\mathcal{F}_k)$. From [14] see also [11], we know that there exists a sequence $(h_n^i, \mathcal{F}_n)_{i\geq 1}$ in $MS(M_n)$ (here $MS(M_n)$ is the set of all martingales selectors of M_n) such that for every $n \geq 1$,

$$M_n(w) = cl\{h_n^i(\omega); \quad i \ge 1\}, \quad \forall \omega \in \Omega.$$

Define $\tau: \Omega \longrightarrow \mathbb{N}$ and $h_k^{\tau}: \Omega \longrightarrow E$ by

$$\tau(w) = \inf\{i \ge 1, \|\widehat{f}_k(\omega) - h_k^i(\omega)\| \le d(\widehat{f}_k(w), M_k(w)) + \frac{1}{2^k}\}$$

and

$$h_k(w) = \sum_{i=1}^{+\infty} 1_{\{\tau=i\}}(\omega) h_k^i(w) = h_k^{\tau(\omega)}(w).$$

Obviously $\tau \in \mathcal{F}_k$ and $h_k(w) \in M_k(w)$. Also we have

(4.6.1)
$$\begin{aligned} \|\widehat{f}_{k}(w) - h_{k}(w)\| &= \sum_{i \ge 1} \mathbb{1}_{\{\tau=i\}}(\omega) \|\widehat{f}_{k}(w) - h_{k}^{i}(w)\| \\ &\leq d(\widehat{f}_{k}(w), M_{k}(w)) + \frac{1}{2^{k}} \le r_{k}(w) \quad \text{a.s.} \end{aligned}$$

Next define

$$h_n(w) = \begin{cases} \sum_{i \ge 1} 1_{\{\tau=i\}}(\omega) h_n^i(w), & \text{if } n \ge k; \\ E(h_k(w)/\mathcal{F}_n), & \text{if } n < k. \end{cases}$$

Then $(h_n, \mathcal{F}_n)_{n\geq 1}$ is in $MS(M_n)$. For each $h_n(w) \in M_n(w)$ by using Lemma 4.3 we can find a sequence $f_n \in S^1_{X_n}(\mathcal{F}_n)$ such that

(4.6.2)
$$||f_n(w) - h_n(w)|| \le r_n(w)$$
 a.s.

Next we shall prove that $(f_n, \mathcal{F}_n)_{n\geq 1} \in PS(X_n)$. Indeed, firstly we can write $f_n = h_n + (f_n - h_n) = h_n + z_n$ where $z_n = f_n - h_n$, on the other hand from (4.6.2) z_n converge to zero a.s. as $n \to +\infty$, and

$$\int_{\Omega} \|z_{\tau}\| dP \le \int_{\Omega} \|f_{\tau}\| dP + \int_{\Omega} |X_{\infty}| dP$$

then

$$\sup_{\tau \in \mathbb{T}} \int_{\Omega} \|z_{\tau}\| dP \le \sup_{\tau \in \mathbb{T}} \int_{\Omega} \|f_{\tau}\| dP + \int_{\Omega} |X_{\infty}| dP < \infty.$$

Hence by Lemma 4.2, z_n is a pramart. This with $(h_n)_{n\geq 1}$ being a martingale, implies that $(f_n)_{n\geq 1}$ is a pramart and it's martingale component in the decomposition of Corollary 3.7 is given by $(h_n)_{n\geq 1}$. By (4.6.1) and (4.6.2) we can take $f_k = \hat{f}_k$ and so $\hat{f}_k \in \pi_k((f_n)) \in \pi_k(PS(X_n))$. Hence $S^1_{X_k}(\mathcal{F}_k) \subset \pi_k(PS(X_n))$. It is obvious that $S^1_{X_k}(\mathcal{F}_k) \supset \pi_k(PS(X_n))$. So we have the result. \Box

Now we are ready to state the following representation theorem of cwk(E)-valued pramarts.

Theorem 4.7. Assume that E_b^* is separable. Let $(X_n)_{n\geq 1}$ be a pramart in $\mathcal{L}^1_{cwk(E)}(\mathcal{F})$ such that, there exists a cwk(E)-valued multifunction $K : \Omega \Longrightarrow cwk(E)$ satisfying $X_n(\omega) \subset K(w) \quad \forall n \in \mathbb{N}, \forall \omega \in \Omega \text{ and if assumption } (A)$ holds. Then there exists a sequence $(f_n^k)_{k\geq 1}$ in $PS(X_n)$ such that for every $n \geq 1$,

$$X_n(w) = cl\{f_n^k(w), k \ge 1\}, \quad \forall \omega \in \Omega.$$

Proof. By Castaing representation theorem, we have that, for any $k \in \mathbb{N}$, there exists a sequence $\{g^{k,i}: i \in \mathbb{N}\} \subset S^1_{X_k}(\mathcal{F}_k)$ such that $X_k(w) = cl\{g^{k,i}(w): i \in \mathbb{N}\}$ for all $\omega \in \Omega$. By virtue of Theorem 4.6, there exists a sequence of pramart selectors $\{h_n^{k,i,j}: j \in \mathbb{N}\}$ in $PS(X_n)$ such that

$$\lim_{j \to \infty} \|\pi_k(h_n^{k,i,j}) - g^{k,i}\|_1 = 0 \quad \text{for all} \quad k, i \in \mathbb{N}.$$

Then

(4.7.1)
$$\lim_{j \to \infty} \|h_k^{k,i,j} - g^{k,i}\|_1 = 0 \text{ for all } k, i \in \mathbb{N}.$$

But as from every L^1 -convergent sequence we can extract an almost surely convergent subsequence, so by (4.7.1) without any loss of generality we have

$$X_k(w) = cl\{h_k^{k,i,j}(w) : i, j \in \mathbb{N}\} \text{ for all } k \in \mathbb{N}.$$

Finally, if $\{f_n^l : l \in \mathbb{N}\}$ denotes the sequence $\{h_n^{k,i,j} : k, i, j \in \mathbb{N}\}$, then the result is automatically satisfied.

5. Multivalued pramarts in dual space

Let (Ω, \mathcal{F}, P) be a complete probability space, $(\mathcal{F}_n)_{n \in \mathbb{N}}$ an increasing sequence of sub- σ -algebras of \mathcal{F} such that \mathcal{F} is the σ -algebra generated by $\bigcup_{n \geq 1} \mathcal{F}_n$. Let E be a separable Banach space, E^* the topological dual of E, \overline{B}_E (resp. \overline{B}_{E^*}) the closed unit ball of E (resp. E^*), $D = (x_p)_{p \in \mathbb{N}}$ a dense sequence in \overline{B}_E . We denote by E_b^* the strong dual endowed with the topology associated with the dual norm $|| \cdot ||_{E_b^*}$, by E_s^* the topological dual E^* endowed with the topology $\sigma(E^*, E)$ of pointwise convergence, alias w^* topology. Noting that E^* is the countable union of closed balls, we deduce that the space E_s^* is Suslin. A $2^{E_s^*}$ -valued multifunction (alias mapping for short) $X : \Omega \Rightarrow E_s^*$ is \mathcal{F} -measurable if its graph belongs to $\mathcal{F} \otimes \mathcal{B}(E_s^*)$. Given a \mathcal{F} -measurable mapping $X : \Omega \Rightarrow E_s^*$ and a Borel set $G \in \mathcal{B}(E_s^*)$, the set

$$X^{-}G = \{ \omega \in \Omega : X(\omega) \cap G \neq \emptyset \}$$

is \mathcal{F} -measurable, that is $X^-G \in \mathcal{F}$. In view of the completeness hypothesis on the probability space, this is a consequence of the Projection Theorem (see e.g. Theorem III.23 of [6]) and of the equality

$$X^{-}G = \operatorname{proj}_{\Omega} \{ Gr(X) \cap (\Omega \times G) \}.$$

In particular, if $X : \Omega \Rightarrow E_s^*$ is \mathcal{F} -measurable, the domain of X, defined by

$$\operatorname{dom} X = \{ \omega \in \Omega : X(\omega) \neq \emptyset \}$$

is \mathcal{F} -measurable, because dom $X = X^- E_s^*$. Here $L_{E^*}^1[E](\mathcal{F})$ is the space of all \mathcal{F} -measurable mappings $u : \Omega \longrightarrow E_s^*$ such that the function $|u| : \omega \mapsto$ $||u(\omega)||_{E_b^*}$ is integrable. For any $2^{E_s^*}$ -valued mapping $X : \Omega \Rightarrow E_s^*$, we denote by $\mathcal{S}_X^1(\mathcal{F})$ the set of all $L_{E^*}^1[E](\mathcal{F})$ -selectors of X. By $cwk(E_s^*)$ we denote the set of all nonempty convex $\sigma(E^*, E)$ -compact subsets of E_s^* . A mapping $X : \Omega \to cwk(E_s^*)$ is scalarly \mathcal{F} -measurable if the function $\omega \to$ $\delta^*(x, X(\omega))$ is \mathcal{F} -measurable for every $x \in E$. Let us recall that any scalarly \mathcal{F} -measurable $cwk(E_s^*)$ -valued mapping is \mathcal{F} -measurable. Indeed, let $(e_k)_{k \in \mathbb{N}}$ be a sequence in E which separates the points of E^* , then we have $x \in X(\omega)$ if and only if, $\langle e_k, x \rangle \leq \delta^*(e_k, X(\omega))$ for all $k \in \mathbb{N}$. Further, we denote by $\mathcal{L}^1_{cwk(E_s^*)}(\Omega, \mathcal{F}, P)$ (shortly $\mathcal{L}^1_{cwk(E_s^*)}(\mathcal{F})$) the space of all integrably bounded multifunctions X such that the function $|X| : \omega \to |X(\omega)|$ is integrable, here $|X(\omega)| := \sup_{y^* \in X(\omega)} ||y^*||_{E_b^*}$, by the above consideration, it is easy to see that |X| is \mathcal{F} -measurable. Let $\mathcal{H}^*_{E_b^*}$ be the Hausdorff distance associated with the dual norm $|| \cdot ||_{E_b^*}$ on bounded closed convex subsets in E^* , and X, Y be two convex weak* compact valued measurable mapping, then $\mathcal{H}^*_{E_b^*}(X,Y)$ is measurable because $\mathcal{H}^*_{E_b^*}(X,Y) = \sup_{j \in \mathbb{N}} [\delta^*(e_j,X) - \delta^*(e_j,Y)]$, where $(e_j)_{j \in \mathbb{N}}$ is a dense sequence in \overline{B}_E . A sequence $(X_n)_{n \in \mathbb{N}}$ in $\mathcal{L}^1_{cwk(E_s^*)}(\mathcal{F})$ and $L^1_{E^*}[E](\mathcal{F})$, we refer the reader to [3, 18]. In the sequel we assume that E_b^* is separable.

Before going further, let us introduce the definition of pramarts in $\mathcal{L}^{1}_{cwk(E^*_s)}(\mathcal{F})$ and $L^{1}_{E^*}[E](\mathcal{F})$.

Definition 5.1. An adapted sequence $(X_n)_{n \in \mathbb{N}}$ in $\mathcal{L}^1_{cwk(E^*_s)}(\mathcal{F})$ is a pramart if for every $\varepsilon > 0$, there exists $\sigma_{\varepsilon} \in \mathbb{T}$ such that

$$\forall \sigma, \tau \in \mathbb{T}, \quad \tau \ge \sigma \ge \sigma_{\varepsilon} \Rightarrow P(\mathcal{H}^*_{E^*_{\iota}}(X_{\sigma}, E^{\mathcal{F}_{\sigma}}X_{\tau}) > \varepsilon) < \varepsilon,$$

where $\mathcal{H}_{E_b^*}^*$ stands for the Hausdorff distance associated with the dual norm $|| \cdot ||_{E_b^*}$ on $cwk(E_s^*)$.

Further, if $(X_n)_{n \in \mathbb{N}}$ is single-valued, definition 5.1 is reduced to:

Definition 5.2. An adapted sequence $(X_n)_{n \in \mathbb{N}}$ in $L^1_{E^*}[E](\mathcal{F})$ is a pramart if for every $\varepsilon > 0$, there exists $\sigma_{\varepsilon} \in \mathbb{T}$ such that

$$\forall \sigma, \tau \in \mathbb{T}, \quad \tau \ge \sigma \ge \sigma_{\varepsilon} \Rightarrow P(||X_{\sigma} - E^{\mathcal{F}_{\sigma}}X_{\tau}||_{E_{b}^{*}} > \varepsilon) < \varepsilon.$$

Similarly if $(X_n)_{n\in\mathbb{N}}$ is a pramart in $L^1_{E^*}[E](\mathcal{F})$, then for every x in the unit ball \overline{B}_E of E, the sequence $(\langle x, X_n \rangle)_{n\in\mathbb{N}}$ is a pramart in $L^1_{\mathbb{R}}(\mathcal{F})$, since we have

$$||X_{\sigma} - E^{\mathcal{F}_{\sigma}} X_{\tau}||_{E_b^*} = \sup_{x \in \overline{B}_E} [\langle x, X_{\sigma} - E^{\mathcal{F}_{\sigma}} X_{\tau} \rangle].$$

Here we give an elementary lemma that we will be needed later.

Lemma 5.3. Let $(A_n)_{n \in \mathbb{N}}$ be a sequence in $cwk(E_s^*)$ and D denotes a dense sequence in \overline{B}_E such that

(i) For every $x \in D$, $\lim_{n \to \infty} \delta^*(x, A_n)$ exist a.s.

(ii) $\sup_{n\in\mathbb{N}} |A_n| < \infty$.

Then there exists $A_{\infty} \in cwk(E_s^*)$ satisfying

$$\lim_{n \to \infty} \delta^*(x, A_n) = \delta^*(x, A_\infty) \quad (x \in E).$$

Proof. For each $x \in D$, define the function $r(\cdot)$ by

$$r(x) = \lim_{n \to +\infty} \delta^*(x, A_n).$$

r is sublinear and continuous because by condition (ii) we have

$$\sup_{\|x\| \le 1} |r(x)| = \sup_{\|x\| \le 1} |\lim_{n \to \infty} \delta^*(x, A_n)$$
$$\leq \sup_{n \in \mathbb{N}} |A_n| < \infty.$$

Hence by [17, Lemma 1] there exists $A_{\infty} \in cwk(E_s^*)$ such that

$$r(x) = \delta^*(x, A_{\infty}) \quad \forall x \in \overline{B}_E.$$

Now we are ready to state the decomposition of $cwk(E_s^*)$ -valued pramarts.

Theorem 5.4. Let $(X_n)_{n \in \mathbb{N}}$ be a bounded pramart in $\mathcal{L}^1_{cwk(E^*_s)}(\mathcal{F})$. Then there exists $X_{\infty} \in \mathcal{L}^1_{cwk(E^*_s)}(\mathcal{F})$ such that

(i)
$$\lim_{n \to \infty} \delta^*(x, X_n) = \delta^*(x, X_\infty) \quad a.s. \quad \forall x \in \overline{B}_E,$$

(ii)
$$\lim_{n \to \infty} \mathcal{H}^*_{E_b^*}(X_n, E^{\mathcal{F}_n} X_\infty) = 0 \quad a.s.$$

Proof. Step 1 Claim: $\lim_{n\to\infty} \delta^*(x, X_n) = \delta^*(x, X_\infty)$ a.s. $\forall x \in \overline{B}_E$.

Let $D_1 = (e_j)_{j \in \mathbb{N}}$ denotes a dense sequence in \overline{B}_E . As $(X_n)_{n \in \mathbb{N}}$ is a bounded pramart in $\mathcal{L}^1_{cwk(E^*_s)}(\mathcal{F})$, for each $j \in \mathbb{N}$, $(\delta^*(e_j, X_n))_{n \in \mathbb{N}}$ is a bounded real-valued pramart in $L^1_{\mathbb{R}}(\mathcal{F})$. So for each $j \in \mathbb{N}$, $(\delta^*(e_j, X_n))_{n \in \mathbb{N}}$ converges a.s. to an integrable function m_j in $L^1_{\mathbb{R}}(\mathcal{F})$. By hypotheses of theorem, since $(X_n, \mathcal{F}_n)_{n \geq 1}$ is a multivalued pramart, then for every $n \in \mathbb{N}$, $(|X_n|, \mathcal{F}_n)_{n \geq 1}$ is a sequence of real subpramarts which are bounded in $L^1_{\mathbb{R}}(\mathcal{F})$. So by [9, Lemma VIII.2.4.1] we deduce that

$$\sup_{n \in \mathbb{N}} |X_n| < \infty \quad \text{a.s}$$

Hence Lemma 5.3 gives $X_{\infty} \in cwk(E_s^*)$ such that

$$\lim_{n \to \infty} \delta^*(x, X_n) = \delta^*(x, X_\infty) \quad \text{a.s.} \quad \forall x \in \overline{B}_E.$$

Finally by Fatou Lemma, We check that $X_{\infty} \in \mathcal{L}^1_{cwk(E^*_s)}(\mathcal{F})$.

Step 2 Claim: $\lim_{n\to\infty} \mathcal{H}^*_{E_b^*}(X_n, E^{\mathcal{F}_n}X_\infty) = 0$ a.s.

Let $D_1 = (e_j)_{j \in \mathbb{N}}$ denote a dense sequence in \overline{B}_E . We have

$$\mathcal{H}^*_{E_b^*}(X_n, E^{\mathcal{F}_n}X_\infty) = \sup_{j \in \mathbb{N}} |\delta^*(e_j, X_n) - \delta^*(e_j, E^{\mathcal{F}_n}X_\infty)|.$$

As $(\delta^*(e_j, X_n) - \delta^*(e_j, E^{\mathcal{F}_n} X_\infty))_{n \in \mathbb{N}}$ are real-valued pramarts in $L^1_{\mathbb{R}}(\mathcal{F})$ which converges a.s. to 0, and $((|\delta^*(e_j, X_n) - \delta^*(e_j, E^{\mathcal{F}_n} X_\infty)|)_{n \in \mathbb{N}})_{j \in \mathbb{N}}$ is a uniform sequence of positive subramarts, applying Lemma VIII.1.15 in [9] we have

$$\lim_{n \to \infty} \mathcal{H}^*_{E_b^*}(X_n, E^{\mathcal{F}_n} X_\infty) = \lim_{n \to \infty} \sup_{j \in \mathbb{N}} |\delta^*(e_j, X_n) - \delta^*(e_j, E^{\mathcal{F}_n} X_\infty)|$$

$$= \sup_{j \in \mathbb{N}} \lim_{n \to \infty} |\delta^*(e_j, X_n) - \delta^*(e_j, E^{\mathcal{F}_n} X_\infty)| = 0$$

almost surely.

Comments: In [4] when the Banach space is weakly compactly generated (WCG), the authors give the weak star Kuratowski (w^*K for short) converges of pramarts in $\mathcal{L}^1_{cwk(E^*_s)}(\mathcal{F})$. Recall that the Banach space E is weakly compactly generated (WCG) if there exists a weakly compact subset of E whose linear span is dense in E.

Corollary 5.5. Let $(X_n)_{n \in \mathbb{N}}$ be a bounded pramart in $L^1_{E^*}[E](\mathcal{F})$. Then there exist a martingale $(Y_n)_{n \in \mathbb{N}}$ in $L^1_{E^*}[E](\mathcal{F})$ and a pramart $(Z_n)_{n \in \mathbb{N}}$ in $L^1_{E^*}[E](\mathcal{F})$ such that $X_n = Y_n + Z_n$, $\forall n \in \mathbb{N}$ and such that $(Z_n)_{n \in \mathbb{N}}$ norm converges to 0 a.s.

Proof. As $(\langle x, X_n \rangle)_{n \in \mathbb{N}}$ is a real-valued bounded pramart in $L^1_{\mathbb{R}}$ for each $x \in \overline{B}_E$, $(\langle x, X_n \rangle)_{n \in \mathbb{N}}$ converges a.s to an integrable function m_x . Then Theorem 5.4(ii) provides a $X_{\infty} \in L^1_{E^*}[E](\mathcal{F})$ such that

$$\lim_{n \to \infty} \|X_n - E^{\mathcal{F}_n} X_\infty\|_{E_b^*} = 0 \quad \text{a.s.}$$

the result follows by putting $Y_n = E^{\mathcal{F}_n} X_\infty$ and $Z_n = X_n - E^{\mathcal{F}_n} X_\infty$.

Now we state the existence of martingales selectors for $cwk(E_s^*)$ -valued supermartingales $(X_n)_{n\geq 1}$ in $\mathcal{L}^1_{cwk(E_s^*)}(\mathcal{F})$ via a projective limit technique. See ([11, Proposition 3.7]) for details. For this purpose we shall recall the definition of the projective limit of a sequence of sets. Let $(\Gamma_n)_{n\geq 1}$ be a sequence of sets and for any $m, n \geq 1$ such that $m \leq n$, a map $u_{mn} : \Gamma_n \longrightarrow \Gamma_m$. Also assume the two following hypotheses:

(i) $\forall m \geq 1, u_{mm} = id_{\Gamma_m}$ = the identity map of Γ_m .

(ii) $\forall m, n, p \ge 1$ such that $m \le n \le p, u_{mp} = u_{mn} \circ u_{np}$.

The sequence $(\Gamma_n)_{n\geq 1}$, together with the maps u_{mn} is called a projective system. If the Γ_n are topological spaces and if the u_{mn} are continuous we speak of a projective system of topological spaces. Let Γ be the cartesian product of the Γ_n for $n \geq 1$ and pr_n the projection from Γ onto Γ_n . The subset S of Γ defined by

$$S := \{ x = (x_n)_{n \ge 1} / pr_m(x) = u_{mn} \circ pr_n(x) \quad \forall m, n \ge 1, m \le n \}$$

is called the projective limit of the projective system defined above.

Lemma 5.6. Let $(X_n, \mathcal{F}_n)_{n\geq 1}$ be a supermartingales in $\mathcal{L}^1_{cwk(E^*_s)}(\mathcal{F})$. Then $(X_n, \mathcal{F}_n)_{n\geq 1}$ admits a martingale selector $(f_n, \mathcal{F}_n)_{n\geq 1}$ in $L^1_{E^*}[E](\mathcal{F})$.

Proof. By [6, Theorem VIII.34], for m < n and for $f \in L^1_{E^*}[E](\mathcal{F}_n)$, the conditional expectation $E^{\mathcal{F}_m}f$ exists and belongs to the space $L^1_{E^*}[E](\mathcal{F}_m)$. Now thinks to Proposition VIII.33 in [6]

$$E^{\mathcal{F}_m}: L^1_{E^*}[E](\mathcal{F}_n) \longrightarrow L^1_{E^*}[E](\mathcal{F}_m)$$

13

is continuous for the topologies

$$\sigma(L^1_{E^*}[E](\mathcal{F}_n), L^\infty_E(\mathcal{F}_n))$$

and

$$\sigma(L^1_{E^*}[E](\mathcal{F}_m), L^\infty_E(\mathcal{F}_m))$$

respectively. Further by [6, Theorem VIII.34] the $L^1_{E^*}[E](\mathcal{F}_n)$ -selectors set $S^1_{X_n}(\mathcal{F}_n)$ is convex $\sigma(L^1_{E^*}[E](\mathcal{F}_n), L^{\infty}_E(\mathcal{F}_n))$ compact. Now let us set

$$u_{mn}(f) := E^{\mathcal{F}_m} f, \quad \forall f \in S^1_{X_n}(\mathcal{F}_n).$$

Then by the supermartingale property we have

$$u_{mn}(S^1_{X_n}(\mathcal{F}_n)) \subset (S^1_{X_m}(\mathcal{F}_m)).$$

Therefore the sequence $(S_{X_n}^1(\mathcal{F}_n))_{n\geq 1}$ together with the sequence of continuous mappings $(u_{mn})_{m< n}$ is a projective system of compact spaces in $L_{E^*}^1[E](\mathcal{F})$. Therefore, by [2, Proposition 8, p.I.64] this system admits a nonempty projective limit which is the set $MS(X_n)$ of $L_{E^*}^1[E](\mathcal{F})$ -martingales selectors of (X_n) . (i.e., any member $(f_k)_{k\geq 1}$ of the projective limit satisfies, for any $m, n \in \mathbb{N}$ such that m < n,

$$pr_m((f_k)) = u_{mn} \circ pr_n((f_k))$$

or, equivalently, $f_m = E^{\mathcal{F}_m} f_n$. So we have $(f_k) \in MS(X_n)$).

Now we proceed to the existence of pramart selector of pramart in $\mathcal{L}^1_{cwk(E^*_*)}(\mathcal{F}).$

Theorem 5.7. Let $(X_n)_{n\in\mathbb{N}}$ be a bounded pramart in $\mathcal{L}^1_{cwk(E^*_s)}(\mathcal{F})$, if assumption (A) holds. Then $(X_n)_{n\in\mathbb{N}}$ admits a pramart selector $(f_n)_{n\geq 1}$ in $L^1_{E^*}[E](\mathcal{F})$, that is $(f_n)_{n\in\mathbb{N}}$ is an integrable pramart and $f_n(\omega) \in X_n(\omega)$ for all $n \geq 1$ and for all $\omega \in \Omega$.

Proof. Applying Theorem 5.4 to $(X_n)_{n\geq 1}$ which provides a multifunction $X_{\infty} \in \mathcal{L}^1_{cwk(E^*_{\alpha})}(\mathcal{F})$ such that

$$\lim_{n \to \infty} \mathcal{H}^*_{E^*_b}(X_n, E^{\mathcal{F}_n} X_\infty) = 0 \quad \text{a.s.}$$

let us set $M_n = E^{\mathcal{F}_n} X_{\infty}$ and $r_n = \mathcal{H}^*_{E_b^*}(X_n, E^{\mathcal{F}_n} X_{\infty}) + \frac{1}{2^n}$. Since $(M_n)_{n\geq 1}$ is a $cwk(E_s^*)$ -valued martingale, by Lemma 5.6 there exists $(g_n)_{n\geq 1}$ a martingale selector of M_n . By same argument in the proof of Theorem 4.6, for each g_n we pick a \mathcal{F}_n -measurable selector of X_n such that

(5.7.1)
$$||f_n - g_n||_{E_h^*} \le r_n.$$

Writing $f_n = g_n + (f_n - g_n) = g_n + z_n$ where $z_n = f_n - g_n$, by (5.7.1) $(z_n)_{n \ge 1}$ converge a.s to zero when n goes to ∞ , and for all $\tau \in \mathbb{T}$ we have

$$\int_{\Omega} \|z_{\tau}\| dP \le \int_{\Omega} \|f_{\tau}\| dP + \int_{\Omega} |X_{\infty}| dP < \infty,$$

$$\sup_{\tau \in \mathbb{T}} \int_{\Omega} \|z_{\tau}\| dP \le \sup_{\tau \in \mathbb{T}} \int_{\Omega} \|f_{\tau}\| dP + \int_{\Omega} |X_{\infty}| dP < \infty,$$
$$\sup_{\tau \in \mathbb{T}} \int_{\Omega} \|z_{\tau}\| dP < \infty.$$

then

$$\sup_{\tau\in\mathbb{T}}\int_{\Omega}\|z_{\tau}\|dP<\infty.$$

Hence by Lemma 4.2, z_n is a pramart. By Corollary 5.5 $(f_n)_{n\geq 1}$ is a pramart selector, because $(g_n)_{n\geq 1}$ is a $L^1_{E^*}[E](\mathcal{F})$ martingale and $(z_n)_{n\geq 1}$ is a pramart norm converges to 0 a.s.

Acknowledgments. We thank Professor C. Castaing for his useful discussions and valuable comments.

References

- [1] F. Akhiat, C. Castaing and F. Ezzaki, Some various convergence results for multivalued martingales, Adv. Math. Econ. 13 (2010), 1-33.
- N. Bourbaki, Elèments de mathematiques, Topologie Génerale, Chaps. 1-4, Hermann, Paris. 1971.
- [3] C. Castaing, F. Ezzaki, M. Lavie, and M. Saadoune, Weak star convergence of martingales in a dual space, Function spaces IX, 45–73, Banach Center Publ., 92, Polish Acad. Sci. Inst. Math., Warsaw, 2011.
- [4] C. Castaing, F. Ezzaki, and K. Tahri, Convergence of multivalued pramarts, J. Nonlinear Convex Anal. 11 (2010), no. 2, 243-266.
- [5] C. Castaing and M. Saadoune, Convergences in a dual space with applications to Fatou lemma, Adv. Math. Econ. 12 (2009), 23-69.
- [6] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lectures Notes, 580, Springer-Verlag, Berlin 1977.
- [7] A. Choukairi-Dini, M-convergence, et régularité des martingales multivoques: epimartingales, J. Multivariate Anal. 33 (1990), no. 1, 49-71.
- [8] _____, On almost sure convergence of vector valued pramarts and multivalued pramarts, J. Convex Anal. 3 (1996), no. 2, 245–254.
- [9] L. Egghe, Stopping time techniques for analysts and probabilists, Cambridge Univ. Press, London and New York, 1984.
- [10]_, Strong convergence of pramarts in Banach spaces, Canad. J. Math. 33 (1981), no. 2, 357-361.
- [11] C. Hess, On multivalued martingales whose values may be unbounded: martingale selectors and Mosco convergence, J. Multivariate Anal. 39 (1991), no. 1, 175-201.
- [12] F. Hiai and H. Umegaki, Integrals, conditional expectations and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), no. 1, 149-182.
- [13]S. Li and Y. Ogura, Convergnece of set valued sub-and supermartingales in the Kuratowski-Mosco sense, Ann. Prob. 26 (1998), no. 3, 1384-1402.
- [14] D. Q. Lu'u, Representations and regularity of multivalued martingales, Acta Math. Vietnam. 6 (1981), no. 2, 29-40.
- ____, On convergence of multivalued asymptotic martingales, Séminaire d'analyse [15] _ convexe, Vol. 14 (Montpellier, 1984), Exp. No. 5, 23 pp., Univ. Sci. Tech. Languedoc, Montpellier, 1984.
- [16]____, Representations of multivalued (regular) uniform amarts, Séminaire d'analyse convexe, Vol. 14 (Montpellier, 1984), Exp. No. 9, 33 pp., Univ. Sci. Tech. Languedoc, Montpellier, 1984.
- [17] J. Neveu, Convergence presque sûr de martingales multivoques, Ann. Inst. H. Poincaré Sect. B (N.S.) 8 (1972), no. 1, 1–7.

- [18] M. Valadier, On conditional expectation of random sets, Ann. Mat. Pura Appl. (4) 126 (1980), 81–91.
- [19] Z. P. Wang and X. H. Xue, On convergence and closedness of multivalued martingales, Trans. Amer. Math. Soc. 341 (1994), no. 2, 807–827.
- [20] _____, Some remarks on pramarts and mils, Glasg. Math. J. **35** (1993), no. 2, 239–251.

FETTAH AKHIAT LABORATOIRE MODÉLISATION ET CALCUL SCIENTIFIQUE DÉPARTEMENT DE MATHÉMATIQUES, FACULTÉ DES SCIENCES ET TECHNIQUES BP 2202, FÈS MAROC *E-mail address:* akhiatfettah@yahoo.fr

FATIMA EZZAKI LABORATOIRE MODÉLISATION ET CALCUL SCIENTIFIQUE DÉPARTEMENT DE MATHÉMATIQUES, FACULTÉ DES SCIENCES ET TECHNIQUES BP 2202, Fès Maroc *E-mail address*: fatimaezzaki@yahoo.fr