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REPRESENTATION THEOREMS
FOR MULTIVALUED PRAMARTS

FETTAH AKHIAT AND FATIMA EzzZAKI

ABSTRACT. Existence of pramarts selectors for multivalued pramart who-
se values are convex weakly compact subsets of a separable Banach space
E (resp. subsets of a dual space E*) are established. Representation
theorems for multivalued pramarts are also presented.

1. Introduction

Representation theorems of multivalued martingales, submartingales, super-
martingales and uniform-amarts have been extensively studied in recent years
by A. Choukairi [7], C. Hess [11], D. Q. Luu [14], Z. P. Wang and X. H. Xue [19]
and S. Li and Y. Ogura [13]. It is known that every multivalued martingale is a
multivalued submartingale and is a supermartingale and also a uniform-amart.
So, any uniform-amart is a pramart. A naturel questions raised by A. Choukairi
in [8] is the existence of pramarts selectors for multivalued pramart. The main
purpose of this work is not only to solve this problem but also prove that a
multivalued pramart has a Castaing representation by pramarts selectors. The
paper is organized as follows. In Section 2 we recall some notations and defini-
tions and summarize needed results. In Section 3 we give some decomposition
results for convex weakly compact valued pramarts. In Section 4 we discuss
the existence of pramart selectors of convex weakly compact valued pramarts.
In Section 5 we present a decomposition results for multivalued pramart whose
values are convex weakly compact in the dual of a separable Banach space and
we show the existence of pramarts selectors of the above class of pramarts.

2. Preliminaries and background

Throughout this paper (2, F, P) is a complete probability space, (Fp)n>1
an increasing sequence of sub o-algebras of F such that F is the o-algebra
generated by U,>1F,. E is a separable Banach space with the dual E* and
the strong dual E;. Bp (resp. Bp+) the closed unit ball of E (resp. E*).
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2F is the set of all subsets of E. Let cc(E) (resp. cwk(E)) be the set of
nonempty convex closed subsets of E (resp. weakly compact subsets of F).
For A € 2P\(), we denote by clA and ¢ A the closure and the closed convex
hull of A respectively, and define |A| = sup{||z|| : € A}, the distance function
and the support function associated with A are defined respectively by

d(z, A) = inf{||lz —y|, y € A} (z € E).
0" (x*, A) = sup{(z*,y), y € A} (z* € E).
The Hausdorff distance between A and B is denoted by
H(A,B)= sup [6"(z",A) —d"(z", B)|.
2*€B
The equivalent definition of Hausdorff distance is
H(A, B) = max{inf{\: BC A+ A},inf{\: A C B+ A}},

where
A+ d={z:d(z,A) <A}

A multifunction (mappings for short) X is a map from 2 into 2¥. The domain
of X is defined by

dom(X) = {w e Q: X (w) # 0}.
A selector of X is a function f: 2 — E such that f(w) is a member of X (w)
for all w € dom(X).

A multifunction X : Q — 2F is said to be measurable, if for every open set

U C FE, the set

X U={weQ: X(w)NnU # 0}
is a member of F (see [6], [12]). A measurable multifunction is also called a ran-
dom set. For each n € NU {co}, we denote by Eiwk(E) (Fn) (resp. EiC(E) (Fn))
the space of all F,-measurable cwk(E)-valued multifunctions X : Q — cwk(E)
(resp. cc(FE)-valued multifunctions X : Q — cc¢(E)) such that w — | X (w)] is
integrable. A sequence (X, )nen of cc(E)-valued multifunctions is adapted if
each X,, is F,,-measurable. A measurable selector of the random set X is an
(F,B(E))-measurable selector of X. A Castaing representation [6] of X is a
sequence f, : 2 — E of measurable selectors of X such that

X(w)=cl{fr(w):k>1} forall w e dom(X).

We denote by L} (F) the space of (equivalence classes of ) (F, B(E))-measurable
functions f :  — E such that w — || f(w)]| is integrable. Such an f is said
to be Bochner integrable. For every multifunction X : Q@ — 2F and every
sub-o-algebra B of F, we set

Sy(B)={fcLL(B): fw) € X(w) as.}.
It is known that SL (B) characterizes X up to P-null sets (see [12]). A mea-

surable multifunction X such that Sk (B) is nonempty is declared integrable.
Using Hiai and Umegaki [12, Theorem 2.2], it is readily seen that X is integrable
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if and only if d(0, X (-)) € L. Now, consider an integrable F-measurable mul-
tifunction X :  — cc(F). Following Hiai and Umegaki we define the multi-
valued conditional expectation of X relative to B as the B-measurable random
set G = EBX such that SL(B) = cl{EBf : f € SL(F)}, the closure being
taken in L}, (where EB f denotes the usual conditional expectation relative to
B of a Bochner integrable function f). In the special case where B = {E, 0},
EBX is simply denoted by E(X) and is equal to cl{E(f) : f € Sx(F)}. New
existence results of conditional expectation for convex weakly compact valued
multifunctions and its applications to martingales are available in [1, 3].

We denote by T the set of all bounded stopping times. A sequence (Xp)n>1
in LL(F) is of class (B) if

sup/ | X+ ]|dP < 0.
TeTJQ

3. Decomposition theorems for multivalued pramarts
Before going further, let us introduce the definitions of pramart in £, ( E)(]: )

and LL(F).

Definition 3.1. An adapted sequence (X, Fy)nen in Li(F) is a pramart if,
for every € > 0, there is 0. € T such that

Vo,7 €T, 7>0>0.= P([|Xs — E7"X,| >¢]) <e.

Definition 3.2. An adapted sequence (X,,, F, )nen in Eiwk(E)(}“) is a pramart
if, for every € > 0, there is 0. € T such that

Vo,7€T, 7>0>0.= P(H(X,, EF°X,)>¢]) <e.

It is clear that if (X,, Fn)nen IS a pramart in E}:wk(E) (F), then, for each

r* € Bg-, the adapted sequence (6*(z*, X,,), Fn)nen is a real-valued pramart
in L} (F) because

|6%(z*, X,) — BT76% (2", X,)| < H(X,, BT X,).

Definition 3.3. An adapted sequence (X,,, F,)nen in Lk (F) is a subpramart,
if, for every ¢ > 0, there is 0. € T such that

Vo,7r €T, 7>0>0.= P{(X,—E""X;)" >¢}) <e.

Definition 3.4. Let (X, F,)nen be a sequence of real subpramarts. It is
called a uniform sequence of positive subpramarts if for every € > 0, there is
op € T such that if 0,7 € T with 7 > o > 0@, then

P({sup (X' — E7"X]")* > ¢}) <e.
meN

Now we proceed to the decomposition of cwk(F)-valued pramarts.
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Theorem 3.5. Assume that Ey is separable. Let (X, Fn)n>1 be a bounded
pramart in Kiwk(E)(]:) such that there exists a cwk(E)-valued multifunction

K : Q = cwk(E) satisfying X,,(w) C K(w) Vn € N,Vw € Q. Then there
exists a multifunction X € Kiwk(E) (F) such that:

lim H(X,,E7"X,) =0 a.s.
n—oo

Proof. Step 1 Claim: lim,, o, 6*(z*, X,,) = 6*(2*, Xo0) a.s. Va* € Bp-.

Let M7 = (f})jen be a dense sequence in Bp+ with respect to the Mackey
topology 7(E*, E). Since (X, )nen is bounded in Kiwk(E)(]:), that is,

sup/ |Xn|dP:sup/ sup [0*(z*, Xp)|dP < o0
neNJQ neN Q g*€Bgx

for each j € N, the L'-bounded pramart (6*(f;, X,))nen converge a.s. to an
integrable function ¢« € L (F). Let w € ©, define the function s(-) by

S(f7) = I 6°(ff, Xa(w) (G EN),
s is sublinear and continuous for the Mackey topology 7(E*, E). Consequently,
there is Xoo(w) € cwk(E) with X (w) C K(w) such that
s(fi) =0"(f}, Xo(w)) (j €N).

Then there exists a negligible set N € F such that for all w € Q\N

i 5°(f], Xu(w) = 6°(f; . Xoo(w)) Wi €N,
Since the functions §*(-, X, (w)) and 6* (-, X (w)) are continuous for the Mackey
topology 7(E*, E). So, we deduce that

li_>m 5 (2%, X,) = 0% (2%, Xoo) a.s. Va* € Bp-.
We check that X, € E}:wk( g)(F)- Indeed, X is measurable and for fixed

r* € Bp- and w € Q, the function n — 6*(z*, X,,(w)) is continuous from
N U {400} into R, therefore the function n — sup{d*(z*, X,,(w)) : @* € Bp+}
is lower semi continuous on NU {400} and so

| X oo|(w) < liminf | X,|(w),

by Fatou Lemma we have
/ | Xoo|dP < / liminf | X,,|dP
Q Q "
< liminf/ | X, |dP < sup/ | X |dP < +o0.
n Q n JQ

Step 2 Claim: lim,, oo H(X,, F7" X)) =0 ass. B
Let D = (€} )jen be a dense sequence in the closed unit ball Bg-. We have

H(Xn, B Xoo) = sup 6% (e}, Xn) — 0% (e}, B " X o).
JEN
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As (0%(e3, Xp) — 6% (e, 7 X o) )nen are real-valued pramarts in L (F) which
converges a.s. to 0, and ((|0* (e}, Xp) — 6" (e}, 7" Xoo))nen)jen is a uniform
sequence of positive subpramarts, applying lemma VIII.1.15 in [9] we have

: Fn _ * [k SR (* Fn
nl;rI;OH(Xn,E Xoo) 7n1£20§1€l§|5 (e, Xn) — 0" (€], B/ Xoo)|
=sup lim |6*(e], Xn) — 6%(e}, BT Xoo)| = 0
jeNn—MXJ

almost surely. O

Now we give a quasi-decomposition theorem for convex weakly compact
valued pramart.

Theorem 3.6. Assume that Ef is separable. Let (X, Fn)n>1 be a bounded
pramart in Kiwk(E) (F) such that, there exists a cwk(E)-valued multifunction

K : Q = cwk(E) satisfying X,,(w) C K(w) ¥n € N,Yw € Q. Then there exist
a multivalued martingale (Mp)n>1 and (Zy)p>1 in ﬁiwk(E) (F) such that

Xn(w) C Mp(w) + Zp(w)  a.s.
|Z,| — 0 a.s. as n— +oo.

Proof. By Theorem 3.5 there exists X € Kiwk(E)(]:) such that

lim H(X,,E7"X,) =0 as.
n— oo

Let M,, = E/» X, then (M,,),en is a multivalued martingale, and
lim H(X,,M,)=0 as.

n—oo

If we set p, = H(X,, M,), define Z,, by
Zn ={v € B\ |z <H(Xn, M) = pn} = Br(0,pn)-
Then by definition of the Hausdorff distance we have
Xn(w) C My(w) + H(Xn(w), Mp(w)) = My (w) + pn(w) a.s.
So X, (w) C My (w) + Zp(w) a.s. Indeed, we must prove that
{z: d(@, My(w)) < pn(w)} = My (w) + Bp(0, pu(w)).

First, if d(z, Mp(w)) < pn(w), then for each k > 0, there exists ar € M, (w)
such that

| =

|z — akll < pn(w) +

That is )
r —ax € Bg(0, p,(w) + E)

So, there exists yp € Bg(0, pp(w) + %) such that x — ay = yx and

— 1
x =ar+yr € Mp(w) + Bg(0, pp(w) + E)’ Vk > 0.
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Since ar € M,(w) and y, € Bg(0,p,(w) + 4) this implies that there exists
a € M,(w) such that

lim (z*, ar) = (x*,a) Vz* € E*,

k—o0
and
lim (z*,2 —ay) = (", —a)
k— oo
= lim (z*, yx)
k—oo
_ 1
< limsup 6* (2", Bg(0, pn(w) + —)).
k—oo k
That is

(z*,2 —a) < §*(2*, Bp(0, pp(w))) Va* € E*.

According to Proposition IT1.35 in [6], we deduce that y = x—a € Bg(0, p,(w)).
Finally z € M,,(w) + Bg(0, pn(w)).

Conversely, if 2 € M, (w) + Bg(0, p,(w)), this implies that 3a € M, (w),
3z € Bg(0, po(w)) such that

rT=a+z.

Indeed, since z € M, (w) + Bg(0, p,(w)), then there exists (zx)r>1 such that
r = limy zy and xy = ag + 2 with ax € M,, and z; € Bg(0, p,(w)), hence
there exist k; subsequence of k and a € M,, such that

<:C*5akj> = <:C*ﬂa’>'

lim
j—oo
On the other hand zy; = ay; + zx; thus

lim (2, 2x, —ag;) = (", 2 —a) = lim (z%, 2z;) = (2", 2).
j—o0 J—0

So, z € Bg(0, p,(w)) and z = a + 2. Consequently
[l —all = [z[| < pn(w)

and
d(z, My (w)) < pn(w).
Finally, X, (w) C M,(w) + Z,(w) a.s. and

|Zn| S H(Xnan) *}n%«foo 0 a.s. |:|
The following result is a consequence of Theorem 3.5.

Corollary 3.7. Assume that E; is separable. Let (Xp, Fn)n>1 be a bounded
pramart in L1, (F) such that there exists a multifunction K € ‘C(l;wk(E) (F) sat-

isfying X, (w) € K(w) Vn € N,Vw € Q. Then there are a unique regular
martingale (Y,,) in Ly(F) and a pramart (Z,) in Ly(F) such that

X, =Y, +Z,, VYneN,

|Zny| — 0 a.s. as n— +oo.
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Proof. By Theorem 3.5 there exists X, in LL(F) such that
lim || X, — E7"Xoo|| =0 as.

Then, by setting V,, = E/»X_ for all n € N, we have X,, = Y,, + X,, —
Y, =Y, + Z,, where Z,, = X,, — Y, is obviously a pramart and lim,, ||Z,| =
lim, || Xy, — Y, || = 0 a.s. The uniqueness is more or less classical. Suppose

X, =Y.+ 7
with the required properties in the corollary. Then

lim Z, = lim Z, =0 as.

For each m fixed in N we have

Y,, =Y/ = lim (E7"Y,, — E7"Y)

m
n—oo

= lim (Y, —Y)) = lim (Z, — Z.) =0 as.
n—oo

n—oo

for every m € N. O

4. Representation theorems for multivalued pramarts

In this present section we give our first results of existence of pramart selec-
tors for cwk(E)-valued pramart.

Definition 4.1. A sequence (fn,Fn)n>1 is called a pramart selector of
(Xn;]:n)nzl 1f

(i) fn € Sk, (Fn) for all n € N.

(i) (fn, Fn)n>1 is a pramart in LL(F). In this case we write (fn, Fn)n>1 €
PS(X,) and let PS(X,,) denote the set of all pramart selectors of (X,,, Fp)n>1-

To get further representation theorem, we need the following lemmas.

Lemma 4.2. Let (X,,)n>1 be a sequence in L (F). If (Xy)n>1 is of class (B)
and (X,) converge in probability. Then (X,)n>1 is a pramart in Ly (F).

Proof. See [20, Lemma 6]. O
Lemma 4.3. If By C By are two sub-o-fields of F, X € E}:C(E)(Bl) , Y €

ﬁic(E)(BO) and 0 : Q@ — RT\{0} is a By-measurable function, then for each
f € S%(B1) we can find g € Sy (Bo) such that

1 (w) = EBrg(w)]] < H(X (w), EPY (w)) + (w) a.s.

Consequently, if Y is Bi-measurable, then there exist some g € Sy (B1) such
that

| f(w) — g(w)|| < H(X(w),Y (w)) +0(w) a.s.
Proof. See [16, Lemma 3.3]. O
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Example 4.4. Let (fn, Fn)n>1 be a vector valued pramart and (1, Fpn)n>1

be a real valued pramart. Take By the closed unit ball of F, let A € F. Define
Xn=fula+ TnlAcEE.

Then (X,,)n>1 is a multivalued pramart. Indeed, for 7,0 € T (1 > o)

P(H(X,,ET"X,) > ¢)

= P(H(fsln + 1514 B, EZ(fr1a +17714:Bg)) > €)

< P(||fola — E7o fo14|| 4 [Be|.rolac — EXor 14¢] > ¢)

< P(||fola — BT f1a|| + [rolac — EFor e > €)

< P(||fola — EZo f14] > g) ¥ P(jrolac — EFor 1ae] > g)
<sti=e

=272

It is easy to see that every sequence (g, ),>1 define by
gn = fnla +rplaecx  for each x € Bg
is a pramart selector of (X, )n>1.

Definition 4.5. Given (X,,),>1 in Eiwk(E) (F). We say that assumption (A)
holds, if every sequence of selectors of (X,),>1 is of class (B).

Theorem 4.6. Assume that E; is separable. Let (Xy, Fn)n>1 be a bounded
pramart in Kiwk(E)(]:) such that there exists a cwk(E)-valued multifunction

K : Q = cwk(E) satisfying X,,(w) C K(w) Vn € N,Yw € Q and if assumption
(A) holds. Then

Sx, (Fr) = m(PS(Xy)).
Where for every (fn) € PS(Xy), m((fn)) = fr (7 is the usual projection to
the kth element of the sequence (fy)n>1)-

Proof. By Theorem 3.5 there is X, € Kiwk(E) (F) such that

lim H(X,, E7" X)) =0 as.

n—oo

Let M, = E7» X, for each n € N we set p,(w) = H(X,(w), M, (w)), and let
rn(w) = pp(w) + 55, Vn > 1.

Now, let k > 1 and let fj, € SX, (Fx). From [14] see also [11], we know that
there exists a sequence (h?,, Fp)i>1 in MS(M,,) (here M.S(M,,) is the set of all
martingales selectors of M,,) such that for every n > 1,

M, (w) = cl{h (w); i>1}, YweQ.

Define 7 : ! — N and A} : Q@ — E by

r(w) = inf{i > 1, |fulw) ~ B < d(fi(w), My(w)) + )
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and
S ' (@)
hi(w) = Z Lir—ip (@)hj(w) = hy (w).
i=1
Obviously 7 € Fi, and hy(w) € My (w). Also we have

| Fi(w) = hae(w)| = D" 1 rmiy ()| fi(w) = hj(w))]
(4.6.1) i21
< d(fr(w), Mp(w)) + — < rp(w) as.

Next define
2121 1{T:i}(w)h;(w), if n>k
E(hi(w)/Fn), if n<k

Then (hy, Fn)n>1 is in MS(M,). For each hy,(w) € M, (w) by using Lemma
4.3 we can find a sequence f, € S}(n (Fy) such that

ho(w) =

(4.6.2) [ frn(w) — hp(w)| < rp(w) as.

Next we shall prove that (fy, Fn)n>1 € PS(X,). Indeed, firstly we can write
fn = hn+ (fn — hy) = hy + 2, where 2z, = f,, — hy,, on the other hand from
(4.6.2) z, converge to zero a.s. as n — +00, and

/||zf|\dps/ HfTHdPJr/ X |dP
Q Q Q

sup/ HZTHdpgsup/ HfTHdPJr/ | Xoo|dP < 0.
T€ET JQ T€ET JQ Q

then

Hence by Lemma 4.2, z, is a pramart. This with (h,,),>1 being a martingale,
implies that (f,,)n>1 is a pramart and it’s martingale component in the decom-
position of Corollary 3.7 is given by (hy)n>1. By (4.6.1) and (4.6.2) we can take
fe = fr and so fi € mp((fn)) € T(PS(X,)). Hence Sk (Fi) C mi(PS(Xn)).
It is obvious that Sk, (i) D mx(PS(X,)). So we have the result. O

Now we are ready to state the following representation theorem of cwk(E)-
valued pramarts.

Theorem 4.7. Assume that Ef is separable. Let (Xy)n>1 be a pramart in
ﬁiwk(E) (F) such that, there exists a cwk(E)-valued multifunction K : Q =
cwk(E) satisfying X, (w) C K(w) Vn € N\Vw € Q and if assumption (A)
holds. Then there exists a sequence (f¥)g>1 in PS(X,,) such that for every
n>1,

X, (w) = cd{fF(w), k > 1}, VYweQ.
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Proof. By Castaing representation theorem, we have that, for any k € N, there
exists a sequence {g"* : i € N} C 5%, (Fi) such that Xz(w) = cl{g"*(w) : i €
N} for all w € Q. By virtue of Theorem 4.6, there exists a sequence of pramart
selectors {h¥#7 : j € N} in PS(X,,) such that

1=0 forall k,ieN.

lim |7y, (™) — ™|
j—o0
Then
(4.7.1) lim ||hy"7 — g%, =0 forall k,ieN.
j—o00

But as from every L!-convergent sequence we can extract an almost surely
convergent subsequence, so by (4.7.1) without any loss of generality we have

Xp(w) = cl{h" (w) : i,j €N} forall keN.

Finally, if {f. : | € N} denotes the sequence {h¥%"J : k i j € N}, then the
result is automatically satisfied. Il

5. Multivalued pramarts in dual space

Let (2, F, P) be a complete probability space, (Fp)nen an increasing se-
quence of sub-c-algebras of F such that F is the o-algebra generated by
Un>1Fn. Let E be a separable Banach space, E* the topological dual of E,
Bp (resp. Bp-) the closed unit ball of E (resp. E*), D = (7,)pen a dense
sequence in Bx. We denote by Ey the strong dual endowed with the topology
associated with the dual norm || - ||g;, by E the topological dual £ endowed
with the topology o(E*, E) of pointwise convergence, alias w* topology. Not-
ing that £ is the countable union of closed balls, we deduce that the space E
is Suslin. A 27:-valued multifunction (alias mapping for short) X : Q = E*
is F-measurable if its graph belongs to F ® B(E¥). Given a F-measurable
mapping X : Q = E¥ and a Borel set G € B(E?), the set

X G={weQ: X(w)nNG+#0}

is F-measurable, that is X~ G € F. In view of the completeness hypothesis on
the probability space, this is a consequence of the Projection Theorem (see e.g.
Theorem II1.23 of [6]) and of the equality

X~G = projo, {Gr(X) N (2 x G)}.
In particular, if X : Q = E is F-measurable, the domain of X, defined by
dom X = {we Q: X(w) # 0}

is F-measurable, because dom X = X~ E*. Here L}.[E|(F) is the space of
all F-measurable mappings u :  — E? such that the function |u] : w —
||u(w)||E; is integrable. For any 2P valued mapping X : Q = E¥, we de-

note by Sk (F) the set of all LL.[E](F)-selectors of X. By cwk(E?) we
denote the set of all nonempty convex o(E*, E)-compact subsets of E¥. A
mapping X : Q — cwk(E?*) is scalarly F-measurable if the function w —
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d*(x, X (w)) is F-measurable for every x € E. Let us recall that any scalarly
F-measurable cwk(E?)-valued mapping is F-measurable. Indeed, let (ex)ken
be a sequence in F which separates the points of E*, then we have z € X (w)
if and only if, (eg,z) < 6*(ex, X(w)) for all k& € N. Further, we denote by
Eiwk(E:)(Q,}', P) (shortly Eiwk(E:)(}“)) the space of all integrably bounded
multifunctions X such that the function |X|: w — | X (w)| is integrable, here
| X (w)] := sup,«e x(w) [1¥"||E; , by the above consideration, it is easy to see that
| X| is F-measurable. Let Hip: be the Hausdorft distance associated with the
dual norm || - ||g; on bounded closed convex subsets in £*, and X,Y be two
convex weak* compact valued measurable mapping, then ’HE; (X,Y) is mea-
surable because 1. (X,Y) = sup;en[6*(ej, X) — 6%(e;, V)], where (e;)jen is
a dense sequence in Bg. A sequence (X,)nen in Eiwk(E;)(}“) is bounded if
(|Xn|)nen is bounded in Li(Q, F, P) (shortly Li(F)). For the existence and
uniqueness of the conditional expectation in Eiwk( E;)(}' ) and LL.[E](F), we
refer the reader to [3, 18]. In the sequel we assume that E; is separable.

Before going further, let us introduce the definition of pramarts in
L1 (F) and L. [E](F).

Definition 5.1. An adapted sequence (X, )nen in E}:wk(E*)(}") is a pramart
if for every € > 0, there exists 0. € T such that

Vo,7r€T, 7>0>0.= P(H*Eg (X,, BT X,) > ¢) <,
where Hp. stands for the Hausdorff distance associated with the dual norm
-1

Further, if (X, )nen is single-valued, definition 5.1 is reduced to:

E; on cwk(Ey).

Definition 5.2. An adapted sequence (X,)nen in Ly, [E](F) is a pramart if
for every € > 0, there exists 0. € T such that

Vo,7 €T, 7>02>0.= P(|X, —E}—"XTHE;; >e) <e.
Similarly if (X, )nen is a pramart in L}, [E](F), then for every z in the unit
ball Bg of E, the sequence ({(z, X,,))nen is a pramart in L{ (F), since we have

IXo — EFo X, ||g; = sup [(z, X, — EF7 X)),
mEEE

Here we give an elementary lemma that we will be needed later.

Lemma 5.3. Let (A, )nen be a sequence in cwk(E*) and D denotes a dense
sequence in Bg such that

(i) For every x € D, lim, 00 0*(x, Ay) exist a.s.

(i) up,ers [A] < o0.
Then there exists As € cwk(E?) satisfying

lim 8"(, An) = 8"(, Aoc) (@ € ).
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Proof. For each x € D, define the function r(-) by
r(x) = ngr}rlooé (x, Ayp).

r is sublinear and continuous because by condition (ii) we have

sup |r(x)| = sup | hm 0" (x, An)|
[lell<1 llzll<

< sup |An| < 0.
neN

Hence by [17, Lemma 1] there exists A € cwk(E?) such that
r(r) = 0*(z,As) Vz € Bpg. O
Now we are ready to state the decomposition of cwk(E?*)-valued pramarts.

Theorem 5.4. Let (X,,)nen be a bounded pramart in ‘chk(E*)(]:)' Then there
exists Xoo € ‘chk(E*)(‘F) such that

(1) 1Lm §*(x, X)) = 0% (v, Xoo) a.s. V€ Bp,
(i) h_}m HE*(Xn,E "Xoo) =0 a.s.

Proof. Step 1 Claim: lim,, o, 6*(z, X,,) = 6*(z, X ) a.s. Vo € Bg.

Let Di = (ej)jen denotes a dense sequence in Bp. As (X,)nen is a
bounded pramart in Eiwk(E;)(]:), for each j € N, (6*(e;, X»))nen is a bounded
real-valued pramart in L} (F). So for each j € N, (6*(ej, X,,))nen converges
a.s. to an integrable function m; in L} (F). By hypotheses of theorem, since
(Xns Fn)n>1 is a multivalued pramart, then for every n € N, (| X,,|, Fp)n>1 is
a sequence of real subpramarts which are bounded in L{(F). So by [9, Lemma
VIIL.2.4.1] we deduce that

sup | Xn| < oo as.
neN

Hence Lemma 5.3 gives X, € cwk(E¥) such that
lim 6*(7, X,,) = 6" (2, Xo) as. Vz € Bg.

n—oo

Finally by Fatou Lemma, We check that X, € Eiwk(E*)(]:).
Step 2 Claim: lim,, s /H*E; (Xp, E77 X)) =0 as.
Let D; = (ej);jen denote a dense sequence in Bp. We have

/H*E;(Xn,Ef"’X )—sup|6 (ej, Xn) — 0% (e, BT X o).

As (6*(ej, Xpn) — 0% (e, BT Xoo))nen are real-valued pramarts in Lk (F) which
converges a.s. to 0, and ((|6*(e;, X,,) — 6*(ej, EZ" Xoo)|)nen)jen is a uniform
sequence of positive subramarts, applying Lemma VIII.1.15 in [9] we have

lim fHE*(Xn,E "Xoo) = lim sup|5*(ej, n) — 6% (e, BT X )|
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=sup lim |6*(ej, X») — 6% (e, BT Xo0)| = 0

jGN n—oo

almost surely. (I

Comments: In [4] when the Banach space is weakly compactly generated
(WCG), the authors give the weak star Kuratowski (w* K for short) converges
of pramarts in E}:wk( E:)(]: ). Recall that the Banach space E is weakly com-
pactly generated (WCG) if there exists a weakly compact subset of F whose
linear span is dense in E.

Corollary 5.5. Let (X,,)nen be a bounded pramart in L. [E](F). Then there
exist a martingale (Y, )nen in L. [E](F) and a pramart (Zp)nen in L. [E](F)
such that X, =Y, + Z,, Vn € N and such that (Z,)nen norm converges to 0
a.s.

Proof. As ({(z, X,,))nen is a real-valued bounded pramart in L} for each z €

Bg, ({z, X,,))nen converges a.s to an integrable function m,. Then Theorem
5.4(ii) provides a Xo, € L}.[E](F) such that

lim || X, — BF" X

n—oo

the result follows by putting Y;,, = F/» X and Z, = X,, — E7" X . O

E; =0 a.s.

Now we state the existence of martingales selectors for cwk(E*)-valued su-
permartingales (X,,),>1 in Kiwk( E;)(}' ) via a projective limit technique. See
([11, Proposition 3.7]) for details. For this purpose we shall recall the definition
of the projective limit of a sequence of sets. Let (I';,),>1 be a sequence of sets
and for any m,n > 1 such that m < n, a map Umy, : I'y — 'y, Also assume
the two following hypotheses:

(i) Vm > 1, Umm = idr,, = the identity map of T',,.

(ii) Ym,n,p > 1 such that m < n < p, Ump = Umn, © Unp.

The sequence (I'y,),>1, together with the maps w,, is called a projective
system. If the I';, are topological spaces and if the w,, are continuous we speak
of a projective system of topological spaces. Let I' be the cartesian product of
the I';, for n > 1 and pr, the projection from I' onto I',,. The subset S of T"
defined by

S :={x = (Tn)n>1/ Prm(x) = Umpn o pro(xz) VYm,n>1, m <n}
is called the projective limit of the projective system defined above.

Lemma 5.6. Let (X, Fpn)n>1 be a supermartingales in ‘C’iwk(E*)(‘F)' Then
(X, Fn)n>1 admits a martingale selector (fn, Fpn)n>1 in Ly [E](F).

Proof. By [6, Theorem VIIL34], for m < n and for f € LL.[E](F,), the
conditional expectation E7™ f exists and belongs to the space L. [E]|(F.).
Now thinks to Proposition VIIL.33 in [6]

ETm o LY [E|(Fn) — Li-[E](Fm)
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is continuous for the topologies
and
U(LIE* [E] (}—m)a LOEO(]:m))

respectively. Further by [6, Theorem VIIL.34] the L1,.[E](F,)-selectors set
Sk, (Fn) is convex o (L. [E](Fy), LE (Fn)) compact. Now let us set

U (f) 1= E7mf, Vfe S}(n (Fn)-
Then by the supermartingale property we have
umn(S%(n (Fn)) C (S}(m (Fm))-

Therefore the sequence (S}(TL (Fn))n>1 together with the sequence of continuous
mappings (Umn)m<n 1S a projective system of compact spaces in LL.[E](F).
Therefore, by [2, Proposition 8, p.1.64] this system admits a nonempty projec-
tive limit which is the set M S(X,,) of LL. [E](F)-martingales selectors of (X,,).
(i.e., any member (fx)r>1 of the projective limit satisfies, for any m,n € N such
that m < n,
Prm((fr)) = tmn © pro((fx))

or, equivalently, f,, = EXm f,,. So we have (f;) € MS(X,,)). O

Now we proceed to the existence of pramart selector of pramart in
1
Ecwk(E;")(]:)

Theorem 5.7. Let (X,,)nen be a bounded pramart in Kiwk(E;)(}'), if assump-

tion (A) holds. Then (X, )nen admits a pramart selector (fn)n>1 in L. [E](F),
that is (fn)nen is an integrable pramart and fn(w) € X, (w) for alln > 1 and
for allw € Q.

Proof. Applying Theorem 5.4 to (X, )n>1 which provides a multifunction X, €
Eiwk(E*)(}') such that

3 * Fn _
nlLIr;OHE; (Xn, B"" X)) =0 as.
let us set M, = E7" X and 1y = i (Xn, B Xoo) + 5. Since (My)n>1 is
a cwk(E?)-valued martingale, by Lemma 5.6 there exists (g, )n>1 a martingale
selector of M,,. By same argument in the proof of Theorem 4.6, for each g,, we
pick a JF,,-measurable selector of X,, such that

(5.7.1) [ fn = gnl

Writing f, = gn + (fn - gn) = gn + 2n Where z,, = f, — gn, by (571) (zn)nzl
converge a.s to zero when n goes to co, and for all 7 € T we have

/HzTHdPs/ |\ff||dP+/ X ocldP < os,
Q Q Q

By < Tn.
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sup/ ||zr||dP3sup/ ||fT||dP+/ X ocldP < o,
T7€eT JQ T7€eT JQ Q

then

sup/ [z ]|dP < oc.
7T JQ

Hence by Lemma 4.2, z, is a pramart. By Corollary 5.5 (f,)n>1 is a pramart
selector, because (gn)n>1 is a LL.[E](F) martingale and (zy,),>1 is a pramart
norm converges to 0 a.s. O
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