ON KATO'S DECOMPOSITION THEOREM

YONG BIN CHOI, YOUNG MIN HAN AND IN SUNG HWANG

1. Introduction

Suppose X is a complex Banach space and write B(X) for the Banach algebra of bounded linear operators on X, X^* for the dual space of X, and $T^* \in B(X^*)$ for the dual operator of T. For $T \in B(X)$ write

$$\alpha(T) = \dim T^{-1}(0)$$
 and $\beta(T) = \operatorname{codim} T(X)$.

Thus $\alpha(T)$ and $\beta(T)$ will be either a nonnegative integer or ∞ . We recall ([2], [3], [4]) that $T \in B(X)$ is called *upper semi-Fredholm* if

T has a closd range and
$$\alpha(T) < \infty$$

and is called lower semi-Fredholm if

T has a closed range and
$$\beta(T) < \infty$$
.

If $T \in B(X)$ is either upper or lower semi-Fredholm it is called a *semi-Fredholm* operator. Write

$$\begin{split} \Psi_+(X) &= \{T \in B(X) \ : \ T(X) \ \text{is closed} \\ &\quad \text{and} \ \alpha(T-\lambda) \text{ is constant for } \ 0 < |\lambda| < \varepsilon \}, \\ \Psi_-(X) &= \{T \in B(X) \ : \ T(X) \ \text{is closed} \\ &\quad \text{and} \ \beta(T-\lambda) \text{ is constant for } \ 0 < |\lambda| < \varepsilon \}, \\ \Psi_\pm(X) &= \Psi_+(X) \ \cup \ \Psi_-(X). \end{split}$$

Evidently, we have

$$\{T \in B(X) : T \text{ is semi-Fredholm}\} \subseteq \Psi_{\pm}(X).$$

Received September 25, 1993.

West ([7]) defined a jump (essentially, due to Kato ([5])) of a semi-Fredholm operator. We now extend this concept to the case of a larger class. If $T \in \Psi_{\pm}(X)$ we define the *upper jump*, $j_{+}(T)$, and the *lower* jump, $j_{-}(T)$ of T by setting

$$j_{+}(T) = \alpha(T) - \alpha(T - \lambda), \quad 0 < |\lambda| < \varepsilon, \quad T \in \Psi_{+}(X)$$

$$j_{-}(T) = \beta(T) - \beta(T - \lambda)$$
, $0 < |\lambda| < \varepsilon$, $T \in \Psi_{-}(X)$

with the understanding that for any real number r,

$$\infty - r = \infty$$

and that $j_+(T)=0$ $(j_-(T)=0$, resp.) whenever $\alpha(T)$ $(\beta(T)$, resp.) and $\alpha(T-\lambda)$ $(\beta(T-\lambda)$, resp.) are both ∞ . Note that if $T\in B(X)$ is Fredholm then the continuity of the index ensures that $j_+(T)=j_-(T)<\infty$. We also recall ([1], [3], [4]) that $T\in B(X)$ is said to be regular if there is $T'\in B(X)$ for which T=TT'T. It is known that if $T\in B(X)$ is regular then $T^{-1}(0)$ and T(X) are complemented in X. Thus

$$T$$
 is Fredholm \implies T is regular.

Kato's decomposition theorem ([5, Theorem 4]) says that if $T \in B(X)$ is semi-Fredholm then $T = T_1 \oplus T_2$, where T_1 is a nilpotent and $j_+(T_2) = 0$ (or $j_-(T_2) = 0$). In this paper, we shall show that if $T \in \Psi_{\pm}(X)$ is regular with some additional conditions then Kato's decomposition allows for T.

2. Main results

If $T \in B(X)$ then its hyperrange and hyperkernel are defined by subspaces([3], [6], [7], [8])

$$T^{\infty}(X) = \bigcap_{n=1}^{\infty} T^n(X)$$

and

$$T^{-\infty}(0) = \bigcup_{n=1}^{\infty} (T^n)^{-1}(0).$$

If $T \in B(X)$ is semi-Fredholm, then $T^{\infty}(X)$ is closed in X. If we define

$$comm(T) = \{ S \in B(X) \ : \ ST = TS \}$$

for the commutant of T, write

$$U^{\wedge} : T^{\infty}(X) \longrightarrow T^{\infty}(X)$$

for the operator induced by $U \in \text{comm}(T)$. It is well known ([7, Propositions 2.1 and 1.7]) that (2.1)

T is upper semi-Fredholm $\implies T^{\wedge}$ is Fredholm and $\beta(T^{\wedge}) = 0$.

The following theorem is an improvement of both [4,(7.8.3.4)] and [7, Proposition 1.2]:

LEMMA 1. If $S \in B(X)$ is invertible and commutes with $T \in B(X)$ then

$$(2.2) (T-S)^{-\infty}(0) \subseteq T^{\infty}(X)$$

and

$$(2.3) T^{-\infty}(0) \subseteq (T-S)^{\infty}(X).$$

Proof. Towards (2.2) suppose $x \in (T-S)^{-\infty}(0)$. Then $(T-S)^m x = 0$ for some $m \in \mathbb{N}$. Thus

$$\sum_{k=0}^{m} {}_{m}C_{k} T^{k} (-S)^{m-k} (x) = 0$$

$$\implies (TU)(x) = (-1)^{m+1} S^m(x)$$
 with $U = \sum_{k=1}^m {}_m C_k T^{k-1} (-S)^{m-k}$

$$\implies x = (-1)^{m+1} S^{-m}(TU)(x).$$

Observe that U commutes with T and S. Thus, for each $n \in N$,

$$x = (-1)^{m+1} S^{-m}(TU)(x) = (-1)^{n(m+1)} S^{-mn} T^n U^n(x)$$
$$= T^n (-1)^{n(m+1)} S^{-mn} U^n(x)$$
$$\in T^n(X),$$

which implies that $x \in T^{\infty}(X)$. This gives (2.2)

Towards (2.3) suppose that $x \in T^{-\infty}(0)$. Then $T^{n+1}(x) = 0$ for some $n \in \mathbb{N}$.

Thus, for each $m \in N$,

$$T^{n+1}(x) = 0 \implies x = (S - T)S^{-1}(I + S^{-1}T + \dots + S^{-n}T^n)(x)$$

$$\implies x = (S - T)^m S^{-m}(I + S^{-1}T + \dots + S^{-n}T^n)^m(x)$$

$$\in (T - S)^m(X),$$

which implies that $x \in (T-S)^{\infty}(X)$. This gives (2.3).

THEOREM 2. If $T \in \Psi_+(X)$ has a finite dimensional intersection $T^{-1}(0) \cap T^k(X)$ for some $k \in N$ then

(2.4)
$$j_{+}(T) = 0 \text{ if and only if } T^{-\infty}(0) \subseteq T^{\infty}(X).$$

Proof. Suppose that $T \in \Psi_+(X)$. If $j_+(T) = 0$ we claim that (2.5)

$$\alpha(T^{\wedge}) \leq \alpha(T) = \alpha(T - \lambda) = \alpha(T^{\wedge} - \lambda) \leq \alpha(T^{\wedge}), \text{ for } 0 < |\lambda| < \varepsilon.$$

Indeed, the first inequality is evident, the second equality comes from the assumption, the third equality comes from (2.2), and the last inequality comes from an argument of Kato([5, Theorem 1]). Thus (2.5) gives

$$\alpha(T) = \alpha(T^{\wedge}).$$

Thus, since, by assumption, dim $T^{-1}(0) = \dim T^{-1}(0) \cap T^{\infty}(X) < \infty$, it follows that $T^{-1}(0) \subseteq T^{\infty}(X)$, and hence $T^{-\infty}(0) \subseteq T^{\infty}(X)$.

Conversely, suppose that $T^{-\infty}(0) \subseteq T^{\infty}(X)$. Then

$$T^{-1}(0) = T^{-1}(0) \cap T^{\infty}(X) \subseteq T^{-1}(0) \cap T^{k}(X)$$

is finite dimensional; thus T is upper semi-Fredholm. By (2.1), T^{\wedge} is Fredholm and $\beta(T^{\wedge}) = 0$. Thus we have

$$\alpha(T) = \alpha(T^{\wedge}) = \alpha(T^{\wedge} - \lambda) = \alpha(T - \lambda)$$
 for $0 < |\lambda| < \varepsilon$,

which says that $j_{+}(T) = 0$.

We also have the dual result:

THEOREM 3. If $T \in \Psi_{-}(X)$ has a finite dimensional intersection $(T^{k})^{-1}(0)^{\perp} \cap T(X)^{\perp}$ for some $k \in N$ then

$$j_{-}(T) = 0$$
 if and only if $T^{-\infty}(0) \subseteq T^{\infty}(X)$.

Proof. Suppose that $T \in \Psi_{-}(X)$. Remembering that

T has a closed range \iff T* has a closed range

and $\beta(T) = \alpha(T^*)$ we have

$$T^* \in \Psi_+(X^*)$$
 and $j_-(T) = 0 \iff j_+(T^*) = 0$.

Furthermore, a direct calculation shows that

$$\dim [(T^*)^{-1}(0) \cap (T^k)^*(X^*)] = \dim [(T(X)^{\perp} \cap (T^k)^{-1}(0)^{\perp}] < \infty$$

and

$$(T^*)^{-\infty}(0) \subseteq T^*(X^*) \iff T^{-\infty}(0) \subseteq T^{\infty}(X).$$

Now applying Theorem 2 gives the required result.

Our main theorem is an extension of Kato's decomposition theorem:

THEOREM 4. If $T \in \Psi_+(X)$ satisfies that

$$T^{-1}(0)$$
 and $T^{-1}(0) + T(X)$ are complemented, $T^{-1}(0) \cap T(X)$ is finite dimensional

then we have a decomposition

$$T=T_1\oplus T_2$$
,

where T_1 is nilpotent and T_2 is upper semi-Fredholm with $j_+(T_2) = 0$.

Proof. If $j_{+}(T) = 0$, then by (2.4), $T^{-1}(0) \subseteq T^{\infty}(X)$; thus our assumption says that T is upper semi-Fredholm. Thus there is nothing to prove.

If $j_{+}(T) \neq 0$, then there is a smallest integer v such that

$$T^{-1}(0) \subseteq T^{v}(X)$$
, but $T^{-1}(0) \not\subseteq T^{v+1}(X)$.

If $v \geq 1$ then, by assumption,

$$T^{-1}(0) = T^{-1}(0) \cap T^{v}(X) \subseteq T^{-1}(0) \cap T(X)$$

is finite dimensional and hence T is upper semi-Fredholm; in this case, an argument of West ([8, Theorem 7]) gives the required result. Now suppose

$$T^{-1}(0) \not\subseteq T(X)$$
.

By assumption, we can find closed subspaces Y, Z and W for which

$$T^{-1}(0) = Y \oplus T^{-1}(0) \cap T(X)$$
$$T(X) = T^{-1}(0) \cap T(X) \oplus Z$$

and

$$X = T^{-1}(0) \oplus Z \oplus W.$$

Thus there are continuous projections $P \in B(X)$ and $Q \in B(T^{-1}(0))$ for which

$$P(X) = T^{-1}(0)$$
 and $P^{-1}(0) = Z \oplus W$

and

$$Q(T^{-1}(0)) = Y$$
 and $Q^{-1}(0) = T^{-1}(0) \cap T(X)$.

Then we have

$$QP = (QP)^2$$

so that QP is a continuous projection on X with range Y. Further,

$$\begin{split} T(QP(X)) &= T(Y) = \{0\}, \\ QP(TX) &= QP(Z \oplus T^{-1}(0) \cap T(X)) \\ &= Q(T^{-1}(0) \cap T(X)) = \{0\}. \end{split}$$

Thus T is reduced by the decomposition $X = (QP)(X) \oplus (QP)^{-1}(0)$. We write

$$T=S_1\oplus S_2,$$

where $S_1=T|_{(QP)(X)}$ and $S_2=T|_{(QP)^{-1}(0)}$. Note that $S_1=0$. Since S_2 has a closed range and

$$S_2^{-1}(0) = (QP)^{-1}(0) \cap T^{-1}(0) = T^{-1}(0) \cap T(X)$$

is finite dimensional, it follows that S_2 is upper semi-Fredholm. Again, an argument of West ([8, Theorem 7]) gives

$$S_2=R_1\oplus R_2$$

where R_1 is nilpotent and R_2 is upper semi-Fredholm with $j_+(R_2) = 0$. Thus we have

$$T = T_1 \oplus T_2$$
 with $T_1 = O \oplus R_1$ and $T_2 = R_2$;

thus T_1 is also nilpotent. This completes the proof.

We conclude with the dual result:

THEOREM 5. If $T \in \Psi_{-}(X)$ satisfies that

T(X) is complemented,

 $T(X) + T^{-1}(0)$ is finite codimensional

then

$$T=T_1\oplus T_2$$

where T_1 is nilpotent and T_2 is lower semi-Fredholm with $j_-(T_2) = 0$.

Proof. By assumption, we can find closed subspaces Y and W for which

$$X = (T^{-1}(0) + T(X)) \oplus W$$

and

$$T^{-1}(0) + T(X) = T(X) \oplus Y$$
 with $Y \subseteq T^{-1}(0)$,

and hence

$$X = T(X) \oplus Y \oplus W,$$

Thus there are continuous projections $P \in B(X)$ and $Q \in B(T^{-1}(0) + T(X))$ for which

$$P(X) = T^{-1}(0) + T(X)$$
 and $P^{-1}(0) = W$

and

$$Q(T^{-1}(0) + T(X)) = Y$$
 and $Q^{-1}(0) = T(X)$.

Then we have

$$QP = (QP)^2,$$

so that QP is a continuous projection on X with range Y. Further,

$$T(QP(X)) = T(Y) = \{0\},$$

 $QP(TX) = Q(T(X)) = \{0\}.$

Thus T is reduced by the decomposition $X = (QP)(X) \oplus (QP)^{-1}(0)$. We write

$$T=S_1\oplus S_2,$$

where $S_1 = T|_{(QP)(X)}$ and $S_2 = T|_{(QP)^{-1}(0)}$. Note that $S_1 = 0$. Since $(QP)^{-1}(0) = T(X) \oplus W$, S_2 has a finite codimensional range. It thus follows that S_2 is lower semi-Fredholm. Again, an argument of West ([8, Theorem 7]) gives

$$S_2=R_1\oplus R_2,$$

where R_1 is nilpotent and R_2 is lower semi-Fredholm with $j_{-}(R_2) = 0$. Thus we have

$$T = T_1 \oplus T_2$$
 with $T_1 = O \oplus R_1$ and $T_2 = R_2$;

thus T_1 is also nilpotent. This completes the proof.

References

- 1. S. R. Caradus, Operator Theory of the Pseudo-inverse, Queen's Papers in Pure and Applied Mathematics, vol. 38, Queen's University, Kingston Ontario, 1974.
- 2. S. Goldberg, Unbounded linear operators, McGraw-Hill, New York, 1966.
- 3. R. E. Harte, Fredholm, Weyl and Browder theory, Proc. Roy. Irish Acad. Sect. A 85 (1986), 151-176.

- 4. _____, Invertibility and singularity, Dekker, New York, 1988.
- 5. T. Kato, Perturbation theory for nullity, deficiency, and other quantities of linear operators, J. Analyse Math. 6 (1958), 261-322.
- M. Ósearcóid and T.T.West, Continuity of the generalized kernel and range of semi-Fredholm operators, Math. Proc. Cambridge Philos. Soc. 105 (1989), 513– 522.
- 7. T. T. West, A Riesz-Schauder theorem for semi-Fredholm operators, Proc. Roy. Irish Acad. Sect. A 87 (1987), 137-146.
- 8. _____, Removing the jump-Kato's decomposition, Rocky Mountain J. Math. 20 (1990), 603-612.

Department of Mathematics Sung Kyun Kwan University Suwon 440-746, Korea