• Title/Summary/Keyword: commutative ideal

Search Result 209, Processing Time 0.019 seconds

IDEALS AND DIRECT PRODUCT OF ZERO SQUARE RINGS

  • Bhavanari, Satyanarayana;Lungisile, Goldoza;Dasari, Nagaraju
    • East Asian mathematical journal
    • /
    • v.24 no.4
    • /
    • pp.377-387
    • /
    • 2008
  • We consider associative ring R (not necessarily commutative). In this paper the concepts: zero square ring of type-1/type-2, zero square ideal of type-1/type-2, zero square dimension of a ring R were introduced and obtained several important results. Finally, some relations between the zero square dimension of the direct sum of finite number of rings; and the sum of the zero square dimension of individual rings; were obtained. Necessary examples were provided.

  • PDF

Ideal Theory in Commutative A-semirings

  • Allen, Paul J.;Neggers, Joseph;Kim, Hee Sik
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.261-271
    • /
    • 2006
  • In this paper, we investigate and characterize the class of A-semirings. A characterization of the Thierrin radical of a proper ideal of an A-semiring is given. Moreover, when P is a Q-ideal in the semiring R, it is shown that P is primary if and only if R/P is nilpotent.

  • PDF

LOCALLY COMPLETE INTERSECTION IDEALS IN COHEN-MACAULAY LOCAL RINGS

  • Kim, Mee-Kyoung
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.261-264
    • /
    • 1994
  • Throughout this paper, all rings are assumed to be commutative with identity. By a local ring (R, m), we mean a Noetherian ring R which has the unique maximal ideal m. By dim(R) we always mean the Krull dimension of R. Let I be an ideal in a ring R and t an indeterminate over R. Then the Rees algebra R[It] is defined to be(omitted)

  • PDF

THE ANNIHILATING-IDEAL GRAPH OF A RING

  • ALINIAEIFARD, FARID;BEHBOODI, MAHMOOD;LI, YUANLIN
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1323-1336
    • /
    • 2015
  • Let S be a semigroup with 0 and R be a ring with 1. We extend the definition of the zero-divisor graphs of commutative semigroups to not necessarily commutative semigroups. We define an annihilating-ideal graph of a ring as a special type of zero-divisor graph of a semigroup. We introduce two ways to define the zero-divisor graphs of semigroups. The first definition gives a directed graph ${\Gamma}$(S), and the other definition yields an undirected graph ${\overline{\Gamma}}$(S). It is shown that ${\Gamma}$(S) is not necessarily connected, but ${\overline{\Gamma}}$(S) is always connected and diam$({\overline{\Gamma}}(S)){\leq}3$. For a ring R define a directed graph ${\mathbb{APOG}}(R)$ to be equal to ${\Gamma}({\mathbb{IPO}}(R))$, where ${\mathbb{IPO}}(R)$ is a semigroup consisting of all products of two one-sided ideals of R, and define an undirected graph ${\overline{\mathbb{APOG}}}(R)$ to be equal to ${\overline{\Gamma}}({\mathbb{IPO}}(R))$. We show that R is an Artinian (resp., Noetherian) ring if and only if ${\mathbb{APOG}}(R)$ has DCC (resp., ACC) on some special subset of its vertices. Also, it is shown that ${\overline{\mathbb{APOG}}}(R)$ is a complete graph if and only if either $(D(R))^2=0,R$ is a direct product of two division rings, or R is a local ring with maximal ideal m such that ${\mathbb{IPO}}(R)=\{0,m,m^2,R\}$. Finally, we investigate the diameter and the girth of square matrix rings over commutative rings $M_{n{\times}n}(R)$ where $n{\geq} 2$.

THE TOTAL GRAPH OF NON-ZERO ANNIHILATING IDEALS OF A COMMUTATIVE RING

  • Alibemani, Abolfazl;Hashemi, Ebrahim
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.379-395
    • /
    • 2018
  • Assume that R is a commutative ring with non-zero identity which is not an integral domain. An ideal I of R is called an annihilating ideal if there exists a non-zero element $a{\in}R$ such that Ia = 0. S. Visweswaran and H. D. Patel associated a graph with the set of all non-zero annihilating ideals of R, denoted by ${\Omega}(R)$, as the graph with the vertex-set $A(R)^*$, the set of all non-zero annihilating ideals of R, and two distinct vertices I and J are adjacent if I + J is an annihilating ideal. In this paper, we study the relations between the diameters of ${\Omega}(R)$ and ${\Omega}(R[x])$. Also, we study the relations between the diameters of ${\Omega}(R)$ and ${\Omega}(R[[x]])$, whenever R is a Noetherian ring. In addition, we investigate the relations between the diameters of this graph and the zero-divisor graph. Moreover, we study some combinatorial properties of ${\Omega}(R)$ such as domination number and independence number. Furthermore, we study the complement of this graph.

ON GRADED N-IRREDUCIBLE IDEALS OF COMMUTATIVE GRADED RINGS

  • Anass Assarrar;Najib Mahdou
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1001-1017
    • /
    • 2023
  • Let R be a commutative graded ring with nonzero identity and n a positive integer. Our principal aim in this paper is to introduce and study the notions of graded n-irreducible and strongly graded n-irreducible ideals which are generalizations of n-irreducible and strongly n-irreducible ideals to the context of graded rings, respectively. A proper graded ideal I of R is called graded n-irreducible (respectively, strongly graded n-irreducible) if for each graded ideals I1, . . . , In+1 of R, I = I1 ∩ · · · ∩ In+1 (respectively, I1 ∩ · · · ∩ In+1 ⊆ I ) implies that there are n of the Ii 's whose intersection is I (respectively, whose intersection is in I). In order to give a graded study to this notions, we give the graded version of several other results, some of them are well known. Finally, as a special result, we give an example of a graded n-irreducible ideal which is not an n-irreducible ideal and an example of a graded ideal which is graded n-irreducible, but not graded (n - 1)-irreducible.

ω-MODULES OVER COMMUTATIVE RINGS

  • Yin, Huayu;Wang, Fanggui;Zhu, Xiaosheng;Chen, Youhua
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.207-222
    • /
    • 2011
  • Let R be a commutative ring and let M be a GV -torsionfree R-module. Then M is said to be a $\omega$-module if $Ext_R^1$(R/J, M) = 0 for any J $\in$ GV (R), and the w-envelope of M is defined by $M_{\omega}$ = {x $\in$ E(M) | Jx $\subseteq$ M for some J $\in$ GV (R)}. In this paper, $\omega$-modules over commutative rings are considered, and the theory of $\omega$-operations is developed for arbitrary commutative rings. As applications, we give some characterizations of $\omega$-Noetherian rings and Krull rings.

ON n-ABSORBING IDEALS AND THE n-KRULL DIMENSION OF A COMMUTATIVE RING

  • Moghimi, Hosein Fazaeli;Naghani, Sadegh Rahimi
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1225-1236
    • /
    • 2016
  • Let R be a commutative ring with $1{\neq}0$ and n a positive integer. In this article, we introduce the n-Krull dimension of R, denoted $dim_n\;R$, which is the supremum of the lengths of chains of n-absorbing ideals of R. We study the n-Krull dimension in several classes of commutative rings. For example, the n-Krull dimension of an Artinian ring is finite for every positive integer n. In particular, if R is an Artinian ring with k maximal ideals and l(R) is the length of a composition series for R, then $dim_n\;R=l(R)-k$ for some positive integer n. It is proved that a Noetherian domain R is a Dedekind domain if and only if $dim_n\;R=n$ for every positive integer n if and only if $dim_2\;R=2$. It is shown that Krull's (Generalized) Principal Ideal Theorem does not hold in general when prime ideals are replaced by n-absorbing ideals for some n > 1.

An Ideal-based Extended Zero-divisor Graph on Rings

  • Ashraf, Mohammad;Kumar, Mohit
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.595-613
    • /
    • 2022
  • Let R be a commutative ring with identity and let I be a proper ideal of R. In this paper, we study the ideal based extended zero-divisor graph 𝚪'I (R) and prove that 𝚪'I (R) is connected with diameter at most two and if 𝚪'I (R) contains a cycle, then girth is at most four girth at most four. Furthermore, we study affinity the connection between the ideal based extended zero-divisor graph 𝚪'I (R) and the ideal-based zero-divisor graph 𝚪I (R) associated with the ideal I of R. Among the other things, for a radical ideal of a ring R, we show that the ideal-based extended zero-divisor graph 𝚪'I (R) is identical to the ideal-based zero-divisor graph 𝚪I (R) if and only if R has exactly two minimal prime-ideals which contain I.