
Commun. Korean Math. Soc. 38 (2023), No. 4, pp. 1001–1017

https://doi.org/10.4134/CKMS.c230004

pISSN: 1225-1763 / eISSN: 2234-3024

ON GRADED N-IRREDUCIBLE IDEALS OF COMMUTATIVE

GRADED RINGS

Anass Assarrar and Najib Mahdou

Abstract. Let R be a commutative graded ring with nonzero identity

and n a positive integer. Our principal aim in this paper is to introduce
and study the notions of graded n-irreducible and strongly graded n-

irreducible ideals which are generalizations of n-irreducible and strongly
n-irreducible ideals to the context of graded rings, respectively. A proper

graded ideal I of R is called graded n-irreducible (respectively, strongly

graded n-irreducible) if for each graded ideals I1, . . . , In+1 of R, I =
I1 ∩ · · · ∩ In+1 (respectively, I1 ∩ · · · ∩ In+1 ⊆ I ) implies that there are

n of the Ii ’s whose intersection is I (respectively, whose intersection is

in I). In order to give a graded study to this notions, we give the graded
version of several other results, some of them are well known. Finally, as

a special result, we give an example of a graded n-irreducible ideal which

is not an n-irreducible ideal and an example of a graded ideal which is
graded n-irreducible, but not graded (n− 1)-irreducible.

1. Introduction

In this article, all rings under consideration are assumed to be commutative
with nonzero identity and all modules are assumed to be nonzero unital. R will
always represent such a ring, M will represent such an R-module. Also, G will
represent a commutative additive monoid with identity element 0. By a graded
ring R, we mean a ring graded by G, that is, a direct sum of subgroups Rα of R
such that RαRβ ⊆ Rα+β for every α, β ∈ G. The set h(R) = ∪α∈GRα is the set
of homogeneous elements of R. A nonzero element x ∈ R is called homogeneous
if it belongs to one of the Rα, homogeneous of degree α if x ∈ Rα. An ideal I
of R is said to be a graded ideal (or sometimes called homogeneous ideal) if the
homogeneous components of every element of I belong to I, equivalently, if I
is generated by homogeneous elements. Let I be a graded ideal. I is said to be
a graded prime ideal if x ∈ I or y ∈ I whenever xy ∈ I for some x, y ∈ h(R).
Note that, when G is a torsionless monoid (that is, if G is cancellative and the
group of fractions of G, ⟨G⟩ = {a− b/a, b ∈ G}, is a torsionfree abelian group),
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then I is graded prime if and only if I is a prime ideal. Recently, there have
been various generalizations of graded prime ideals in several papers. Among
the many recent generalizations of the notion of graded prime ideals in the
literature, we find the following, defined first by M. Refai and K. F. Al Zoubi
[9, Definition 2.13]. A proper graded ideal I of a commutative graded ring R
is graded irreducible if I = J ∩K for some graded ideals I and K of R implies
that either I = J or I = K. A proper ideal I of R is said to be strongly graded
irreducible if for each graded ideals J,K of R, J ∩ K ⊆ I implies that J ⊆ I
or K ⊆ I. A graded ideal I is said to be graded maximal if I ̸= R and if it is
maximal among graded ideals, equivalently, if R/I is a graded field, that is, if
every nonzero homogeneous element of R/I is invertible.

Our aim in this paper is to study graded n-irreducible and strongly graded
n-irreducible ideals which are generalizations of n-irreducible and strongly n-
irreducible ideals to the context of graded rings, respectively. Let n be a pos-
itive integer. According to [13], a proper ideal I of a ring R is said to be an
n-irreducible (respectively, strongly n-irreducible) ideal if there are n of the
Ii’s whose intersection is I (respectively, whose intersection is contained in I)
whenever I1 ∩ · · · ∩ In+1 = I (respectively, I1 ∩ · · · ∩ In+1 ⊆ I) for some ideals
I1, . . . , In+1 of R. The notion of graded 2-irreducible ideals has been introduced
in [11, Definition 2.20]. An ideal I is called graded 2-irreducible if whenever
I = J ∩ K ∩ L for some graded ideals J,K and L of R, then J ∩ L ⊂ I or
K ∩ L ⊂ I or J ∩K ⊂ I.

Our work is motivated by several definitions and concepts which we will
recall some of them. In [11], the authors introduced a generalization of graded
prime ideals called graded 2-absorbing ideals, and this idea is generalized also
by the authors in a paper [2] to a concept called graded n-absorbing ideals.
According to [2, Definition 2.1], a proper graded ideal I of R is called a graded
n-absorbing ideal if there are n of the xi’s whose product is in I whenever
x1 · · ·xn+1 ∈ I for x1, . . . , xn+1 ∈ h(R). Thus a graded 1-absorbing ideal is
just a graded prime ideal. We refer the readers to [2] for the module version of
graded n-absorbing ideals. For any graded ideal I of R, the graded radical of
I is defined as follows:

Gr(I) =

a =
∑
g∈G

ag ∈ R : ∀g ∈ G, ∃ng > 0 such that ang
g ∈ I

 .

Note that Gr(I) is a graded ideal of R. We refer the reader to [10, Propo-
sition 2.4] for the basic properties of the graded radical. According to [9, Def-
inition 1.5], a proper graded ideal I is said to be graded primary if a ∈ I or
b ∈ Gr(I) whenever a, b ∈ h(R) with ab ∈ I. The concept of graded 2-absorbing
primary ideals, as a generalization of graded primary ideals, was introduced and
investigated in [11].

Let n be a positive integer. A proper graded ideal I of a graded ring R
is called graded n-irreducible if there are n of the Ii’s whose intersection is I
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whenever I = I1∩· · ·∩In+1 for some graded ideals I1, . . . , In+1 of R. Obviously,
any graded irreducible ideal is a graded n-irreducible ideal. A proper graded
ideal I of a graded ring R is called strongly graded n-irreducible if for each
graded ideals I1, . . . , In+1 of R, I1 ∩ · · · ∩ In+1 ⊆ I implies that there are n
of the Ii’s whose intersection is in I. Clearly, any strongly graded irreducible
ideal is a strongly graded n-irreducible ideal.

Our paper is organized as follows. In Section 2, we give the basic properties
of graded n-irreducible and strongly graded n-irreducible ideals. Among others
results in this section, we will prove that a strongly graded n-irreducible ideal
is a graded n-irreducible ideal, and that the intersection of n strongly graded
irreducible ideals is a strongly graded n-irreducible ideal. Nevertheless, the
product of (n+1) graded comaximal ideals need not be a graded n-irreducible
ideal. Besides the above results, the stability of strongly graded n-irreducible
(and hence graded n-irreducible) ideals with respect to various graded ring-
theoretic constructions such as the graded localization and factor of graded
rings, we also characterize the strongly graded n-irreducible ideals in the direct
product of a finite number of graded rings. In particular, as a main result of
this section, the relationship between strongly graded n-irreducible ideals and
graded n-absorbing ideals is considered, see Theorem 2.15, Example 2.14.

We devote Section 3 to the study of graded n-irreducible and the strongly
graded n-irreducible ideals in several classes of commutative graded rings.
Among several other results, we prove that a nonzero graded ideal I of a graded
principal ideal domain R (gr-PID for short) is graded n-irreducible if and only
if I is strongly graded n-irreducible if and only if I is graded n-absorbing pri-

mary if and only if I = R
(
pl11 . . . plmm

)
for some distinct homogeneous prime

elements p1, . . . , pm of R and some natural numbers l1, . . . , lm such that m ≤ n.
As a consequence, an example for which a graded ring R has a graded ideal
which is graded n-irreducible, but not graded (n−1)-irreducible is given. Also,
we prove that a proper graded ideal I of a graded von Neumann regular ring
R is graded n-irreducible if and only if I is graded n-absorbing. We close
this section by proving that if a proper ideal I of a graded Noetherian ring is
graded n-irreducible, then either I is graded irreducible or I is the intersection
of exactly n graded irreducible ideals of R.

Finally, in order to give the graded version of the above results, we give
the graded version of several other results, some of which are well known, see
Theorems 2.10, 2.11, 2.12, 2.13, 3.1, and 3.3.

2. Graded n-irreducible and strongly graded n-irreducible ideals

Before we start our study, we first recall some basic properties and termi-
nology related to graded ring theory. Unless otherwise stated, G will denote a
commutative additive monoid with an identity element denoted by 0. Let R be
a graded ring. If I is a graded ideal of a graded ring R, then R/I is a graded
ring, where (R/I)α := (Rα + I)/I. Suppose that A,B are graded rings and
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R = A× B. Then R is a graded ring by Rg = Ag × Bg for all g ∈ G. Also, it
can be easily seen that an ideal I of R is a graded ideal if and only if I = J×K
for some graded ideals J of A and K of B. Let R be a graded ring and I, J
graded ideals of R and xg a homogeneous element of R. Then, it is well known
that I + J , IJ and I ∩ J are graded ideals of R. If g is a cancellable element
in G, (I : xg) = {a ∈ R : axg ∈ I} is a graded ideal of R.

Let G be a group, R be a graded ring, and S be a multiplicatively closed sub-
set of homogeneous elements of R. Then S−1R is a graded ring by

(
S−1R

)
g
={

a
s : a ∈ Rh, s ∈ S ∩Rh−g

}
for all g ∈ G. If I is a graded ideal of R, then it

can be easily seen that S−1I is a graded ideal of S−1R.
Suppose that R is a graded ring and M is an R-module. By a graded

R-module M , we mean an R-module graded by G, that is, a direct sum of
subgroups Mα of M such that RαMβ ⊆ Mα+β for every α, β ∈ G. The set
h(M) = ∪α∈GMα is the set of homogeneous elements of M . A submodule N
of M is called graded if N = ⊕α∈G(N ∩ Mα), equivalently, if N is generated
by homogeneous elements.

Let R and R′ be two graded rings, a ring homomorphism f : R → R′ is called
graded if f(Rα) ⊆ R′

α for all α ∈ G. A graded ring isomorphism is a bijective
graded ring homomorphism. For more information and other terminology on
graded rings and modules, we refer [7] and [8] to the reader.

Definition 2.1. Let n be a positive integer. A proper graded ideal I of a
graded ring R is said to be graded n-irreducible (respectively, strongly graded
n-irreducible) ideal if there are n of the Ii’s whose intersection is I (respectively,
whose intersection is contained in I) whenever I1∩· · ·∩ In+1 = I (respectively,
I1 ∩ · · · ∩ In+1 ⊆ I) for some graded ideals I1, . . . , In+1 of R.

By definition, one can easily see that every n-irreducible graded ideal of R
is also a graded n-irreducible ideal. However, the converse is not always true
as shown by the following example.

Example 2.2. Consider the ideal I = (2) of the Gaussian integer graded ring
Z[i] with G = Z2. Then I = (2) is a graded prime ideal of Z[i] since 2 is a
homogeneous element of R and then by Proposition 2.3 given next, I is graded
irreducible. But, I is not irreducible.

We next give some basic properties of graded n-irreducible ideals and strong-
ly graded n-irreducible ideals.

Proposition 2.3. Let I be a graded ideal of a graded ring R, and let m and n
be positive integers. Then,

(1) If I is strongly graded n-irreducible, then I is graded n-irreducible.
(2) I = {0} is graded n-irreducible if and only if I is strongly graded n-

irreducible.
(3) If I is a graded prime ideal, then I is strongly graded n-irreducible.
(4) There is a minimal strongly graded n-irreducible ideal of R over I.
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(5) If I is graded n-irreducible, then I is graded m-irreducible for all integer
m ≥ n.

(6) I is a graded n-irreducible ideal if and only if there are n of the Ii’s
whose intersection is I whenever I = I1 ∩ · · · ∩ Im for some graded
ideals I1, . . . , Im of R with m > n.

(7) If I is strongly graded n-irreducible and J is a graded ideal of R such
that J ⊆ I, then I/J is a strongly graded n-irreducible ideal of R/J .

Proof. (1) Suppose that I is strongly graded n-irreducible and let I1, . . . , In+1

be (n+1) graded ideals ofR such that I1∩· · ·∩In+1 = I. Then I1∩· · ·∩In+1 ⊆ I,
and therefore there are n of the Ii’s whose intersection is in I. Otherwise, I is
in any intersection of n graded ideals of Ii’s, and it then follows that I is the
intersection of n graded ideals of the Ii’s.

(2) The sufficient condition follows directly from (1). Conversely, suppose
that I is graded n-irreducible. Let I1, . . . , In+1 be (n + 1) graded ideals of R
such that I1 ∩ · · · ∩ In+1 ⊆ I = {0}, then I1 ∩ · · · ∩ In+1 = I. It follows by
hypothesis that there are n of the Ii’s whose intersection is I, and therefore
this intersection is in I.

(3) Suppose that I is graded prime and let I1, . . . , In+1 be graded ideals of
R such that I1∩ · · · ∩ In+1 ⊆ I. Then (I1 ∩ · · · ∩ In) ∩ In+1 ⊆ I. Therefore,
either (I1 ∩ · · · ∩ In) ⊆ I or In+1 ⊆ I. If (I1 ∩ · · · ∩ In) ⊆ I, we are done. If
In+1 ⊆ I, then any intersection of In+1 with (n− 1) graded ideals of the other
Ii’s is in I. This implies that I is strongly graded n-irreducible, as asserted.

(4) Let Z = {J | J is a strongly graded n-irreducible ideal of R containing
I}. Since every graded maximal ideal is strongly graded n-irreducible by (3),
Z ̸= ∅. Let {Ji}i∈L be a chain in Z, then since any intersection of graded
ideals is a graded ideal, J =

⋂
i∈L Ji is a strongly graded n-irreducible ideal

containing I. By Zorn’s lemma Z has a minimal element.
The proofs of (5) and (6) are clear.
(7) Let I1, . . . , In+1 be graded ideals of R containing J such that (I1/J) ∩

· · · ∩ (In+1/J) ⊆ I/J . Hence, I1 ∩ · · · ∩ In+1 ⊆ I. Therefore, there are n
of the Ii’s whose intersection is in I. Without loss of generality, assume that
I1 ∩ I2 ∩ · · · ∩ In ⊆ I, then (I1/J) ∩ · · · ∩ (In/J) ⊆ I/J . Consequently, I/J is
strongly graded n-irreducible. □

Remark 2.4. Let I be a proper graded ideal of a graded ring R. By Lemma
2.2(5), we have that a graded n-irreducible ideal is also a graded m-irreducible
ideal for all integers m ≥ n. If I is a graded n-irreducible ideal of R for
some positive integer n, then just like the ungraded case we can define gr-
ωR(I) = min{n | I is a graded n-irreducible ideal of R}; else, set gr-ωR(I) = ∞.
It is appropriate to define gr-ωR(R) = 0. Thus for any graded ideal I of R,
gr-ωR(I) ∈ N ∪ {∞} with gr-ωR(I) = 1 if and only if I is a graded irreducible
ideal of R and gr-ωR(I) = 0 if and only if I = R.
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Proposition 2.5. If Ij is a graded nj-irreducible ideal of a graded ring R for
each 1 ≤ j ≤ m, then I1 ∩ · · · ∩ Im is a graded n-irreducible ideal of R for
n = n1 + · · ·+ nm. In particular, if I1, . . . , In are n strongly graded irreducible
ideals of a graded ring R, then

⋂n
i=1 Ii is a strongly graded n-irreducible ideal

of R.

Proof. It is obvious. □

Proposition 2.6. Let R be a graded ring, and let P1, . . . , Pn+1 be pairwise
comaximal graded prime ideals of R. Then P1 . . . Pn+1 is not a graded n-
irreducible ideal of R.

Proof. Note that, since the Pi’s are pairwise comaximal, P1 . . . Pn+1 = P1 ∩
· · · ∩ Pn+1. The assertion follows by way of contradiction. □

Corollary 2.7. If R is a graded ring such that every proper graded ideal of R
is graded n-irreducible, then R has at most n graded maximal ideals.

Proof. Suppose that I and J are distinct graded maximal ideals in R. Then
I + J is also a graded ideal, and I ⊂ I + J ⊆ R. Since I is graded maximal,
the first inclusion is strict and I + J = R. Therefore I and J are comaximal
and it remains to use Proposition 2.6. □

In order to prove Theorem 2.15, we next give the graded version of several
theorems some of which are well known. But we begin first by introducing the
following definitions.

Definition 2.8. Let n be a positive integer. A proper graded ideal I of a graded
ring R is said to be graded n-absorbing primary if either x1x2 · · ·xn+1 ∈ I or
the product of xn+1 with (n− 1) of the xi’s is in Gr(I) whenever x1x2 · · ·xn+1

for x1, x2, . . . , xn+1 ∈ h(R).

Definition 2.9. A graded ideal I of R is said to be graded maximal with
respect to the exclusion of S if there is no graded ideal of R which contains I
such that I ∩ S = ∅.

The next result presents the graded version of [5, Theorem 1].

Theorem 2.10. Let S be a multiplicatively closed set of homogeneous elements
of R and let I be a graded ideal of R, which is graded maximal with respect to
the exclusion of S. Then I is graded prime.

Proof. Let ab ∈ I for some two homogeneous elements a, b ∈ R. We must claim
that a or b lies in I. Suppose the contrary. Then the ideal (I, a) generated
by I and a is a strictly larger graded ideal than I and therefore intersects
S. Since S is a multiplicative set of homogeneous elements of R, there exists
a homogeneous element s1 ∈ S of the form s1 = i1 + xa, where i1 and xa
are homogeneous elements of the same degree. Likewise, s2 ∈ S is of the form
s2 = i2+yb, where i2 and yb are homogeneous elements of the same degree. But
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then s1s2 = (i1 + xa)(i2 + yb) ∈ I, which contradicts the fact that I is graded
maximal with respect to the exclusion of S. Hence, I is graded prime. □

The next result presents the graded version of [4, Theorem 2.1].

Theorem 2.11. Let I ⊆ P be two graded ideals of a graded ring R, where P
is a graded prime ideal. Then the following statements are equivalents:

(1) P is a minimal graded prime ideal of I.
(2) h(R) \ P is a multiplicative closed set of homogeneous elements that is

maximal with respect to missing I.
(3) For each homogeneous element x ∈ P , there is a homogeneous element

y /∈ P and a nonnegative integer i such that yxi ∈ I.

Proof. (1) ⇒ (2) Develop h(R) \ P to a multiplicatively closed set of homoge-
neous elements S that is maximal with respect to missing I. If Q is a graded
ideal containing I that is graded maximal with respect to the exclusion of S,
then by Theorem 2.10, Q is graded prime. Note that Q∩ (h(R)\P ) = ∅. Now,
since, by hypothesis, P is a minimal graded prime ideal of I, we have that
Q = P . Hence, h(R) \ P = S.

(2) ⇒ (3) Take a nonzero homogeneous element x ∈ P and let S = {yxi : y ∈
h(R) \ P, i = 0, 1, 2, . . .}. So S is a multiplicatively closed set of homogeneous
elements that properly contains h(R) \ P . So there is some y ∈ h(R) \ P and
a nonnegative i such that yxi ∈ I.

(3) ⇒ (1) Suppose that I ⊂ Q ⊆ P , where Q is a graded prime ideal. If
there exists some x =

∑
g∈G xg ∈ P \ Q, since P is a graded ideal, for all

g ∈ G, xg ∈ P \ Q. Then there is a y /∈ h(P ) and a positive integer i such
that yxi

g ∈ I ⊂ Q. Since Q is graded prime, y ∈ Q or xi
g ∈ Q, a contradiction.

Therefore Q = P . □

The next result presents the graded version of [1, Theorem 2.5].

Theorem 2.12. Let I be a graded n-absorbing ideal of a graded ring R. Then
there are at most n graded prime ideals of R minimal over I.

Proof. We may suppose that n ≥ 2 since a graded 1-absorbing ideal is a graded
prime ideal. Suppose that P1, . . . , Pn+1 are distinct graded prime ideals of R
minimal over I. Thus, for each 1 ≤ i ≤ n there is an xi ∈ Pi \ (∪k ̸=iPk)∪Pn+1.
Since all the Pi’s are graded, we may suppose that the xi’s are homogeneous.
By Theorem 2.11, for each 1 ≤ i ≤ n, there is a homogeneous element yi ∈ R\Pi

such that yix
ni
i ∈ I for some integer ni ≥ 1. We may assume that all the yi’s

have the same degree such that yix
ni
i ∈ I for each 1 ≤ i ≤ n. Since I ⊆ Pn+1 is

a graded n-absorbing ideal of R and xi /∈ Pn+1 for each 1 ≤ i ≤ n, we have that
yix

n−1
i ∈ I for each 1 ≤ i ≤ n, and hence (y1 + · · ·+ yn)x

n−1
1 · · ·xn−1

n ∈ I.

Since xi ∈ Pi \ (∪k ̸=iPk) and yix
n−1
i ∈ I ⊆ P1 ∩ · · · ∩Pn for each 1 ≤ i ≤ n, we

have yi ∈ (∩k ̸=iPk) \ Pi for each 1 ≤ i ≤ n, and thus (y1 + · · ·+ yn) /∈ Pi for

each 1 ≤ i ≤ n. Hence (y1 + · · ·+ yn)
∏

k ̸=i x
n−1
k /∈ Pi for each 1 ≤ i ≤ n; so
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(y1 + · · ·+ yn)
∏

k ̸=i x
n−1
k /∈ I for each 1 ≤ i ≤ n, and thus xn−1

1 · · ·xn−1
n ∈ I ⊆

Pn+1. Now, since I is a graded n-absorbing ideal of R, we have that xi ∈ Pn+1

for some 1 ≤ i ≤ n, which is a contradiction. Therefore there are at most n
graded prime ideals of R minimal over I, as desired. □

The next result presents the graded version of [6, Corollary 2.7].

Theorem 2.13. Let I be a graded n-absorbing primary ideal of R. Then
Gr(I) = P1 ∩ P1 ∩ · · · ∩ Pi, where 1 ≤ i ≤ n and Pi’s are the only distinct
graded prime ideals of R that are minimal over I.

Proof. It follows directly from Theorem 2.12, since if I is a graded n-absorbing
primary ideal of R, it is clear that Gr(I) is a graded n-absorbing ideal of R. □

Note that the concepts of graded n-irreducible ideals and of graded n-
absorbing ideals defined first by M. Hamoda and A. Eid Ashour (see [2, Defi-
nition 2.1]) are different in general as shown by the following example.

Example 2.14. Let R = Z[i] be the Gaussian integers ring with G = Z2

and consider the ideal I = (12) of Z[i]. I is a graded ideal since 12 is a
homogeneous element of R. Now, since 2.2.3 ∈ I, but 2.2 /∈ I and 2.3 /∈ I,
then I is not a graded 2-absorbing ideal of R. On the other hand, Theorem
3.5 given hereinafter in Section 3 ensures that I is a graded 2-irreducible ideal
of R. However, in the following theorem, we show that these concepts are
comparable in some cases.

Theorem 2.15. Let I be a graded radical ideal of a ring R, i.e., Gr(I) = I.
The following assertions are equivalent:

(1) I is strongly graded n-irreducible;
(2) I is graded n-absorbing;
(3) I is graded n-absorbing primary;
(4) I is an intersection of exactly n graded prime ideals of R.

Proof. (1) ⇒ (2) Assume that I is strongly graded n-irreducible. Let I1, . . .,

In+1 be graded ideals of R such that I1 · · · In+1 ⊆ I. Hence,
⋂n+1

i=1 Ii ⊆
Gr(

⋂n+1
i=1 Ii) ⊆ Gr(I) = I. Since I is strongly graded n-irreducible, then there

are n of the Ii’s whose intersection is in I. So, there are n of the Ii’s whose
product is in I. Consequently I is graded n-absorbing.

(2) ⇒ (3) It is trivial.
(3) ⇒ (4) It follows from Theorem 2.13.
(4) ⇒ (1) As a particular case of Proposition 2.3(3), we have that any

graded prime ideal is strongly graded irreducible. Then the result follows from
Proposition 2.5. □

Example 2.16. Consider the ideal I = (p1p2 · · · pn) of the Gaussian integer
graded ring Z[i] with G = Z2, where the pi’s are some distinct homogeneous
prime elements of Z[i] and n is a positive integer. Then I = (p1)∩(p2)∩· · ·∩(pn)
is exactly the intersection of n graded prime ideals of Z[i]. Moreover, Gr(I) = I.
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Then in light of Theorem 2.15, I is graded n-irreducible (strongly graded n-
irreducible).

Recall from the start of this section that the intersection of any two graded
ideals is a graded ideal. We next clarify the situation for the stability of graded
n-irreducible and strongly graded n-irreducible ideals in various graded ring-
theoretic constructions.

Theorem 2.17. Let f : R → S be a surjective graded ring homomorphism,
and let I be a proper graded ideal of R containing ker(f). Then,

(1) If I is a strongly graded n-irreducible ideal of R, then f(I) is a strongly
graded n-irreducible ideal of S.

(2) I is a graded n-irreducible ideal of R if and only if f(I) is a graded
n-irreducible ideal of S. In particular, this holds if f is a graded ring
isomorphism.

Proof. Since f is a surjective graded ring homomorphism, f(J ∩ R) = J for
each graded ideal J of S and f(K ∩L) = f(K)∩ f(L), and f(K)∩R = K for
every graded ideals K,L of R which contain ker(f).

(1) Assume that I is a strongly graded n-irreducible ideal of R. If f(I) = S,
then I = f(I) ∩ R = R, which is a contradiction. Let J1, . . . , Jn+1 be graded
ideals of S such that J1∩· · ·∩Jn+1 ⊆ f(I). Hence, (J1 ∩R)∩· · ·∩(Jn+1 ∩R) ⊆
f(I) ∩ R = I, and so there are n of the (Ji ∩R)’s whose intersection is in I.
Without loss of generality, suppose that (J1 ∩R)∩· · ·∩(Jn ∩R) ⊆ I, therefore
J1 ∩ · · · ∩ Jn ⊆ f(I). Then f(I) is strongly graded n-irreducible.

(2) The direct implication is similar to the part (1). Conversely, assume that
f(I) is a graded n-irreducible ideal of S. Let I1, . . . , In+1 be graded ideals of
R such that I = I1 ∩ · · · ∩ In+1. Then f(I) = f (I1)∩ · · · ∩ f (In+1). Therefore,
because the image of every graded ideal is a graded ideal, there are n of the
f (Ii)’s whose intersection is f(I) since f(I) is a graded n-irreducible ideal of
S. Without loss of generality, assume that f(I) = f (I1) ∩ · · · ∩ f (In). Then
I = f(I) ∩R = I1 ∩ · · · ∩ In. So I is graded n-irreducible, as asserted. □

Define a graded ring extension to be a graded ring homomorphism R → S,
which makes S a graded R-module. The next result presents a direct corollary
of the previous theorem.

Corollary 2.18. (1) Let R ⊆ S be a graded ring extension and J a graded
n-irreducible ideal of S. Then J ∩R is a graded n-irreducible ideal of R.

(2) Let I ⊆ J be graded ideals of R. Then J is a graded n-irreducible ideal
if and only if J/I is a graded n-irreducible ideal of R/I.

Let R be a ring and let {x1, x2, . . .} be (commuting) algebraically inde-
pendent indeterminates over R. For m = (m1, . . . ,mn) ∈ Nn, let xm =
xm1
1 · · ·xmn

n . Then the polynomial ring P = R [x1, . . . , xn] is graded by N via
Ps =

{∑
m∈Nn rmxm | rm ∈ R and

∑n
i=1 mi = s

}
. Note that respecting this

graduation every ideal of R is a graded ideal of the polynomial ring P since
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P0 = R. The following result examines the extensions of n-irreducible ideals of
R in the polynomial ring R[X].

Corollary 2.19. Let I be an ideal of a ring R. Then,

(1) (I,X) is a graded n-irreducible ideal of R[X] if and only if I is an
n-irreducible ideal of R.

(2) I[X] is a graded n-irreducible ideal of R[X] if and only if I is an n-
irreducible ideal of R.

Proof. (1) It follows directly from Corollary 2.18(2) since (I,X)/(X) ∼= I
(graded ring isomorphism since X is a homogeneous element) in R[X]/(X) ∼= R
(graded ring isomorphism).

(2) By Corollary 2.18(1), if I[X] is a graded n-irreducible ideal of R[X], then
I is a graded n-irreducible ideal of R.

Conversely, suppose that I is a n-irreducible ideal of R and let I1, . . . , In+1

be graded ideals of R[X] such that I[X] = I1 ∩ · · · ∩ In+1. For all 1 ≤ i ≤ n+
1, (Ii ∩R) [X] ⊆ Ii. So, by taking I ′i = Ii∩R, we have that I[X] = I ′1[X]∩· · ·∩
I ′n+1[X] =

(
I ′1 ∩ · · · ∩ I ′n+1

)
[X], therefore I = I[X] ∩ R =

(
I ′1 ∩ · · · ∩ I ′n+1

)
=(

I ′1 ∩ · · · ∩ I ′n+1

)
[X] ∩ R. Since I is n-irreducible, then there are n of the I ′i’s

whose intersection is I. Without loss of generality, assume that I = I ′1∩· · ·∩I ′n.
Hence, I[X] = I ′1[X] ∩ · · · ∩ I ′n[X] and therefore I[X] = I1 ∩ · · · ∩ In. As a
result, I[X] is a graded n-irreducible ideal of R[X]. □

Let G be a group and S be a multiplicatively closed subset of homogeneous
elements of a graded ring R. In the next result, consider the natural graded
ring homomorphism f : R → S−1R defined by f(x) = x/1. For each graded
ideal I of the graded ring S−1R, we consider Ic = {x ∈ R | x/1 ∈ I} = I ∩ R,
which is a graded ideal of R and Cgr = {Ic | I is a graded ideal of S−1R

}
.

Theorem 2.20. Let G be a group, R be a graded ring and S be a multiplica-
tively closed set of homogeneous elements of R. Then there is a one-to-one
correspondence between the strongly graded n-irreducible ideals of S−1R and
strongly graded n-irreducible ideals of R contained in Cgr which do not meet
S.

Proof. Let I be a strongly graded n-irreducible ideal of S−1R. It is easy to
see that Ic ̸= R, Ic ∈ Cgr and Ic ∩ S = ∅. Let I1, . . . , In+1 be (n + 1) graded
ideals of R such that I1 ∩ · · · ∩ In+1 ⊆ Ic. Then

(
S−1I1

)
∩ · · · ∩

(
S−1In+1

)
=

S−1 (I1 ∩ · · · ∩ In+1) ⊆ S−1 (Ic) = I. Therefore there are n of the S−1Ii’s
whose intersection is in I since I is strongly graded n-irreducible. Hence, there
are n of the Ii’s whose intersection is in Ic. As a result, Ic is a strongly graded
n-irreducible ideal of R.

Conversely, let I be a strongly graded n-irreducible ideal of R such that
I ∩ S = ∅ and I ∈ Cgr. Since I ∩ S = ∅, S−1I ̸= S−1R. Let I1 ∩ I2 ∩
· · · ∩ In+1 ⊆ S−1I, where I1, I2, . . . , In+1 are graded ideals of S−1R. Therefore
(Ic1) ∩ (Ic2) ∩ · · · ∩

(
Icn+1

)
= (I1 ∩ I2 ∩ · · · ∩ In+1)

c ⊆
(
S−1I

)c
. Now, since



ON GRADED N-IRREDUCIBLE IDEALS 1011

I ∈ Cgr,
(
S−1I

)c
= I and so (Ic1)∩(Ic2)∩· · ·∩

(
Icn+1

)
⊆ I. As a result, there are

n of the Ici ’s whose intersection is in I. Without loss of generality, suppose that
(Ic1)∩(Ic2)∩· · ·∩(Icn) ⊆ I. Therefore, S−1 (Ic1)∩S−1 (Ic2)∩· · ·∩S−1 (Icn) ⊆ S−1I.
Hence, S−1I is a strongly graded n-irreducible ideal of S−1R. □

Corollary 2.21. Let G be a group, R be a graded ring and S be a multiplica-
tively closed set of homogeneous elements of R. If I is a graded primary and
strongly graded n-irreducible ideal of R which does not meet S, then S−1I is a
strongly graded n-irreducible ideal of S−1R.

Proof. Since I is a graded primary ideal of R, and I ∩S = ∅, by [9, Proposition

1.15(iii)], we have that (I : s) = I for each s ∈ S, so then
(
S−1I

)c
= I and

hence I ∈ Cgr. Now, it remains to use Theorem 2.20 to get that S−1I is a
strongly graded n-irreducible ideal of S−1R. □

We close this section by a result concerning the strongly graded n-irreducible
ideals in the product of a finite number of graded rings. Recall that a graded
ideal of R1 ×R2 has the form I1 × I2 for some graded ideals Ii of Ri.

Proposition 2.22. Let I1 be a strongly graded n-irreducible ideal of a graded
ring R1 and I2 be a strongly graded m-irreducible ideal of a graded ring R2.
Then J = I1 × I2 is a strongly graded (n + m)-irreducible ideal of the graded
ring R = R1 ×R2.

Proof. If J = I1 × R2 for some strongly graded n-irreducible ideal I1 of R1

or R1 × I2 for some strongly graded m-irreducible ideal I2 of R2, it is easy to
see that J is a strongly graded n-irreducible or strongly graded m-irreducible
ideal of R1 ×R2. Therefore, assume that J = I1 × I2 for some strongly graded
n-irreducible ideal I1 of R1 and some strongly graded m-irreducible ideal I2
of R2. Then I ′1 = I1 × R2 is a strongly graded n-irreducible ideal of R1 × R2

and I ′2 = R1 × I2 is a strongly graded m-irreducible ideal of R1 × R2. Hence,
I ′1 ∩ I ′2 = I1 × I2 = J is a strongly graded (n+m)-irreducible ideal of R1 ×R2

by Proposition 2.5. □

Corollary 2.23. Let Ik be a strongly graded nk-irreducible ideal of a graded
ring Rk for each integer 1 ≤ k ≤ m. Let R = R1×· · ·×Rm. Then I1×· · ·×Im
is a strongly graded n-irreducible ideal of R with n = n1 + · · ·+ nm.

3. Extension to specific graded rings

We devote this section to the study of the transfer of graded n-irreducible
and strongly graded n-irreducible ideals in several special classes of graded
commutative rings. We begin by introducing the notion of graded arithmetical
ring. A graded ring R is said to be a graded arithmetical ring if for each graded
ideals I, J and K of R, (I+J)∩K = (I ∩K)+(J ∩K). Just like the ungraded
case, this condition is equivalent to the condition that for each graded ideals
I, J and K of R, (I ∩ J) +K = (I +K) ∩ (J +K).
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Let G be a group. Recall from [12] that a graded integral domain is said to be
a graded principal ideal domain (gr-PID, for short) if every graded ideal of R is
principal and a graded integral domain is said to be a graded Dedekind domain
if every graded ideal is projective. Note that every graded principal ideal
domain (gr-PID) is a graded Dedekind domain, see [12, Corollaries 1.2(1.2.1)].
Also, every graded Dedekind domain is a graded arithmetical domain.

In order to prove the main result of this section “Theorem 3.5”, we first give
the following result which presents the graded version of [6, Theorem 2.8] (for
ϕ = ∅).

Theorem 3.1. Let G be a group and R be a graded ring. Suppose that for every
1 ≤ i ≤ k, Ii is a graded ni-absorbing primary ideal of R such that Gr(Ii) = Pi

is a graded ni-absorbing ideal of R, respectively. Set n := n1 + n2 + · · · + nk.
The following conditions hold:

(1) I1 ∩ I2 ∩ · · · ∩ Ik is a graded n-absorbing primary ideal of R.
(2) I1I2 · · · Ik is a graded n-absorbing primary ideal of R.

Proof. (1) Let L = I1 ∩ I2 ∩ · · · ∩ Ik. Then using [10, Proposition 2.4(4)], we
have Gr(L) = P1 ∩ P2 ∩ · · · ∩ Pk. Assume that a1a2 · · · an+1 ∈ L for some
a1, a2, . . . , an+1 ∈ h(R) and a1 · · · âi · · · an+1 /∈ Gr(L) for every 1 ≤ i ≤ n.
Since G is a group, using [2, Theorem 2.7], Gr(L) = P1 ∩ P2 ∩ · · · ∩ Pk is
graded n-absorbing, then a1a2 · · · an ∈ P1 ∩ P2 ∩ · · · ∩ Pk. We have to show
that a1a2 · · · an ∈ L. For every 1 ≤ i ≤ k, Pi is graded ni-absorbing and
a1a2 · · · an ∈ Pi, then there exist elements 1 ≤ αi

1, α
i
2, . . . , α

i
ni

≤ n such that

aαi
1
aαi

2
· · · aαi

ni
∈ Pi. If α

c
e = αd

f for two couples (c, e) and (d, f), then

aα1
1
aα1

2
· · · aα1

n1
· · · aαc

1
aαc

2
· · · aαc

e
· · · aαc

nc
· · ·

aαd
1
aαd

2
· · · âαd

f
· · · aαd

nd
· · · aαk

1
aαk

2
· · · aαk

nk
∈ Gr(L).

Hence, a1 · · · âαd
f
· · · anan+1 ∈ Gr(L), a contradiction. So the αi

j ’s are distinct.

Therefore{
aα1

1
, aα1

2
, . . . , aα1

n1
, aα2

1
, aα2

2
, . . . , aα2

n2
, . . . , aαk

1
, aαk

2
, . . . , aαk

nk

}
= {a1, a2, . . . , an}.

If aαi
1
aαi

2
· · · aαi

ni
∈ Ii for every 1 ≤ i ≤ k, then

a1a2 · · · an = aα1
1
aα1

2
· · · aα1

n1
aα2

1
aα2

2
· · · aα2

n2
· · · aαk

1
aαk

2
· · · aαk

nk
∈ L,

as desired. Hence, we may assume that aα1
1
aα1

2
· · · aα1

n1
/∈ I1. Since I1 is graded

n1-absorbing primary and

aα1
1
aα1

2
· · · aα1

n1
aα2

1
aα2

2
· · · aα2

n2
· · · aαk

1
aαk

2
· · · aαk

nk
an+1 = a1 · · · an+1 ∈ I1

we have aα1
1
· · · âα1

t
· · · aα1

n1
aα2

1
aα2

2
· · · aα2

n2
· · · aαk

1
aαk

2
· · · aαk

nk
an+1∈P1 for some

1 ≤ t ≤ n1. On the other hand, since aαi
1
aαi

2
· · · aαi

ni
∈ Ii ⊆ Gr(Ii) = Pi for

every 2 ≤ i ≤ k,

aα1
1
· · · âα1

t
· · · aα1

n1
aα2

1
aα2

2
· · · aα2

n2
· · · aαk

1
aαk

2
· · · aαk

nk
an+1 ∈ P2 ∩ · · · ∩ Pk.
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As a result, aα1
1
· · · âα1

t
· · · aα1

n1
aα2

1
aα2

2
· · · aα2

n2
· · · aαk

1
aαk

2
· · · aαk

nk
an+1 ∈ Gr(L),

which is a contradiction. Likewise, we deduce that aαi
1
aαi

2
· · · aαi

ni
∈ Ii for

every 2 ≤ i ≤ k. Then a1a2 · · · an ∈ L.
The proof of (2) is omitted since it is similar to that of the part (1). □

The following result is a direct corollary of the previous theorem. We refer
the reader to [9] for more information about the notion of graded primary
ideals.

Corollary 3.2. Let G be a group and R be a graded ring with 1 ̸= 0 and let
P1, P2, . . . , Pn be graded prime ideals of R. Suppose that for every 1 ≤ i ≤ n,
P ti
i is a graded Pi-primary ideal of R, where ti is a positive integer. Then

P t1
1 ∩P t2

2 ∩ · · · ∩P tn
n and P t1

1 P t2
2 · · ·P tn

n are graded n-absorbing primary ideals
of R. In particular, P1 ∩ P2 ∩ · · · ∩ Pn and P1P2 · · ·Pn are graded n-absorbing
primary ideals of R.

Recall from [7] that a graded ring R is said to be graded Noetherian if it
satisfies the ascending chain condition on graded ideals of R. The following
result presents the graded version of [6, Theorem 2.15].

Theorem 3.3. Let G be a group and R be a graded Noetherian integral domain
that is not a graded field. The following conditions are equivalent:

(1) R is a graded Dedekind domain;
(2) A nonzero proper graded ideal I of R is a graded n-absorbing primary

ideal of R if and only if I = M t1
1 M t2

2 · · ·M ti
i for some 1 ≤ i ≤ n and

some distinct graded maximal ideals M1,M2, . . . ,Mi of R and some
positive integers t1, t2, . . . , ti;

(3) If I is a nonzero graded n-absorbing primary ideal of R, then I =
M t1

1 M t2
2 · · ·M ti

i for some 1 ≤ i ≤ n and some distinct graded maximal
ideals M1,M2, . . . ,Mi of R and some positive integers t1, t2, . . . , ti;

(4) A nonzero proper graded ideal I of R is a graded n-absorbing primary
ideal of R if and only if I = P t1

1 P t2
2 · · ·P ti

i for some 1 ≤ i ≤ n and
some distinct graded prime ideals P1, P2, . . . , Pi of R and some positive
integers t1, t2, . . . , ti;

(5) If I is a nonzero graded n-absorbing primary ideal of R, then I =
P t1
1 P t2

2 · · ·P ti
i for some 1 ≤ i ≤ n and some distinct graded prime

ideals P1, P2, . . . , Pi of R and some positive integers t1, t2, . . . , ti.

Proof. The proof is organized as follows, the proof of (1) ⇒ (4) is similar to
that of (1) ⇒ (2) and it is omitted. (2) ⇒ (3), (3) ⇒ (5) and (4) ⇒ (5) are
straightforward. It remains to claim (1) ⇒ (2) and (5) ⇒ (1).

(1) ⇒ (2) Suppose that R is a graded Dedekind domain that is not a graded
field. Then, by [12, Lemma 1.1(3)], every nonzero graded prime ideal of R
is graded maximal. Let I be a nonzero graded n-absorbing primary ideal of
R. Since R is a graded Dedekind domain, by [12, Lemma 1.1(4)], there are
distinct graded maximal ideals M1,M2, . . . ,Mi of R (i ≥ 1) such that I =
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M t1
1 M t2

2 · · ·M ti
i in which tj ’s are positive integers. Hence, Gr(I) = M1 ∩M2 ∩

· · · ∩Mi. Since I is graded n-absorbing primary and every graded prime ideal
of R is graded maximal, by Theorem 2.13, Gr(I) is the intersection of at most
n graded maximal ideals of R. Therefore, i ≤ n. For the reverse implication,
assume that I = M t1

1 M t2
2 · · ·M ti

i for some 1 ≤ i ≤ n and some distinct maximal
ideals M1,M2, . . . ,Mi of R and some positive integers t1, t2, . . . , ti. Then I is
n-absorbing primary by Corollary 3.2.

(5) ⇒ (1) Let M be an arbitrary graded maximal ideal of R and I be a
graded ideal of R such that M2 ⊂ I ⊂ M . Hence Gr(I) = M and so I is graded
M -primary. Then I is graded n-absorbing primary, and thus by assertion (5)
we have that I = P t1

1 P t2
2 · · ·P ti

i for some 1 ≤ i ≤ n and some distinct graded
prime ideals P1, P2, . . . , Pi of R and some positive integers t1, t2, . . . , ti. Then
Gr(I) = P1 ∩ P2 ∩ · · · ∩ Pi = M which proves that I is a power of M , a
contradiction. Hence, there are no graded ideals properly between M2 and M .
Consequently R is a graded Dedekind domain by [12, Lemma 1.1(6)]. □

The following result is a direct corollary of the previous theorem.

Corollary 3.4. Let G be a group and R be a gr-PID and I be a nonzero proper
graded ideal of R. Then I is a graded n-absorbing primary ideal of R if and
only if I = R(pt11 pt22 · · · ptii ), where pj’s are prime homogeneous elements of R,
1 ≤ i ≤ n and tj’s are some integers.

Now, we are able to give the main result of this Section 3.

Theorem 3.5. Let G be a group and R be a gr-PID and I be a nonzero proper
graded ideal of R. The following conditions are equivalent:

(1) I is graded n-irreducible;
(2) I is graded n-absorbing primary;

(3) I = R
(
pl11 . . . plmm

)
for some distinct homogeneous prime elements

p1, . . . , pm of R and some natural numbers l1, . . . , lm such that m ≤ n.

Proof. (1) ⇒ (3) Suppose that I = Ra, where a is a nonzero homogeneous

element of R and let a = pl11 . . . plmm be a homogeneous prime decomposition
for a. We have to claim that m ≤ n. By contradiction, assume that m > n.
Since R is a gr-PID and p1, . . . , pm are homogeneous prime elements of R,
I = Rpl11 ∩ · · · ∩ Rplmm . Now, since I is graded n-irreducible, there are n of

the Rplii ’s whose intersection is I. Without loss of generality, suppose that

I = Rpl11 ∩ · · · ∩ Rplnn . It follows that Rpl11 ∩ · · · ∩ Rplnn ⊆ Rp
ln+1

n+1 , which is a
contradiction.

(3) ⇒ (1) Suppose that I = R
(
pl11 . . . plnn

)
for some distinct homogeneous

prime elements p1, . . . , pn of R and some natural numbers l1, . . . , ln. Let I =
Ra1 ∩ · · · ∩ Ran+1 for some homogeneous elements a1, . . . , an+1 of R. Hence,

a1, a2, . . . , an+1 divides pl11 · · · plnn . So ai = p
li,1
1 · · · pli,nn , where li,1, . . . , li,n are

some nonnegative integers for each 1 ≤ i ≤ n+1. Let αi = max {l1,i, . . . ln+1,i}
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for each 1 ≤ i ≤ n. Hence, I = Ra1 ∩ · · · ∩ Ran+1 = R [a1, . . . , an+1] =
R (pα1

1 · · · pαn
n ). Without loss of generality, suppose that α1 = l1,1, . . . , αn =

ln,n. Hence, I = R
(
p
l1,1
1 · · · pln,n

n

)
= Ra1 ∩ · · · ∩Ran. As a result, I is graded

n-irreducible.
(2) ⇔ (3) It follows directly from Corollary 3.4. □

Proposition 3.6. Let I be a proper graded ideal of a graded arithmetical ring
R. The following conditions are equivalent:

(1) I is a graded n-irreducible ideal of R;
(2) I is a strongly graded n-irreducible ideal of R.

Proof. (1) ⇒ (2) Assume that I1, . . . , In+1 are graded ideals such that
⋂n+1

i=1 Ii

⊆ I. Therefore, I = I +
(⋂n+1

i=1 Ii

)
= (I + I1) ∩ (I + I2) ∩ · · · ∩ (I + In+1)

since R is a graded arithmetical ring. By hypothesis, I is graded n-irreducible,
then there are n of the (I + Ii)’s whose intersection is I. Therefore, there are
n of the (I + Ii)’s whose intersection is in I which implies that I is a strongly
graded n-irreducible ideal of R.

(2) ⇒ (1) By Proposition 2.3(1). □

The following corollary is an immediate consequence of Theorem 3.5 and
Proposition 3.6.

Corollary 3.7. Let G be a group and R be a gr-PID and I be a nonzero proper
graded ideal of R. The following conditions are equivalent:

(1) I is strongly graded n-irreducible;
(2) I is graded n-irreducible;
(3) I is graded n-absorbing primary;

(4) I = R
(
pl11 . . . plmm

)
for some distinct homogeneous prime elements

p1, . . . , pm of R and some natural numbers l1, . . . , lm such that m ≤ n.

Example 3.8. Let n ≥ 1 be a positive integer. Then there is a graded n-
irreducible, but not a graded (n− 1)-irreducible ideal of a graded ring R. Let
R = Z[i] be the Gaussian integers ring with G = Z2 and pick I = ⟨30⟩ =
⟨(2.3.5)⟩. By Corollary 3.7, I is a strongly graded 3-irreducible (graded 3-
irreducible) ideal of R. On the other hand, since Gr(I) = ⟨2⟩ ∩ ⟨3⟩ ∩ ⟨5⟩ =
I, I is a graded radical ideal and so, by Theorem 2.15, I is not a graded
strongly 2-irreducible (not a graded 2-irreducible) ideal of R. More generally,
let p1, . . . , pn ∈ Z[i] be distinct positive homogeneous primes elements of Z[i].
Then I = (p1 . . . pn)Z[i] is a graded n-irreducible but not graded (n − 1)-
irreducible ideal of Z[i].

Let G be a group. Recall that a graded ring R is said to be a graded von
Neumann regular ring (gr-von Neumann regular for short) if for each a ∈ h(R),
there exists b ∈ h(R) such that a = a2b. In this case, the graded principal
ideal (a) of R is generated by a homogeneous idempotent element e ∈ R. It is
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known by [3, Proposition 2] that a ring R is a gr-von Neumann regular ring if
and only if its each graded ideal I of R is idempotent, that is, I = I2 if and
only if each graded ideal I of R is graded radical, that is, I = Gr(I) if and only
if any finitely generated graded ideal of R is a projective module.

Proposition 3.9. Let G be a group, R be a gr-von Neumann regular ring and
I be a nonzero graded ideal of R. Then I is graded n-irreducible if and only if
I is graded n-absorbing.

Proof. It is clear that a commutative graded ring R is a graded von Neumann
regular ring if and only if I1 · · · In+1 = I1 ∩ · · · ∩ In+1 for any graded ideals
I1, . . . , In+1 of R. Hence the notions of graded n-irreducible and graded n-
absorbing ideals coincide. □

Theorem 3.10. Let R be a graded Noetherian ring. If I is a graded n-
irreducible ideal of R, then either I is graded irreducible or I is the intersection
of exactly n graded irreducible ideals.

Proof. Assume that I is graded n-irreducible. Since R is graded Noetherian,
then I can be expressed as an intersection of finitely many graded irreducible
ideals of R by [9, Proposition 2.14], say I = I1 ∩ I2 ∩ · · · ∩ Ik. It remains to
prove that k ≤ n. Assume that k ≥ n+1. Then since I is graded n-irreducible,
there are n of the Ii ’s whose intersection is I. Without loss of generality,
suppose that I1 ∩ I2 ∩ · · · ∩ In = I, hence I1 ∩ I2 ∩ · · · ∩ In ⊆ In+1, which is a
contradiction. □
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