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IDEALS AND DIRECT PRODUCT OF ZERO SQUARE
RINGS

Satyanarayana Bhavanari, Goldoza Lungisile, and Nagaraju Dasari

Abstract. We consider associative ring R (not necessarily commuta-
tive). In this paper the concepts: zero square ring of type-1/type-2, zero

square ideal of type-1/type-2, zero square dimension of a ring R were in-
troduced and obtained several important results. Finally, some relations
between the zero square dimension of the direct sum of finite number of

rings; and the sum of the zero square dimension of individual rings; were
obtained. Necessary examples were provided.

1. Introduction

This section contains some definitions and results from the literature that are
useful in the later sections. Throughout this paper R stands for an associative
ring (not necessarily commutative). Stanley [3] calls a ring R a zero square
if x2 = 0 for all x ∈ R. Zero square rings were also studied by Vasantha
Kandaswamy [9, 10]. As it was discussed by Stanley (i) every zero square ring
is anti commutative (that is, xy = −yx for all x, y); and (ii) a zero square ring
R is commutative if and only if 2R2 = 0.

The concept finite dimension in modules was introduced by Goldie [1] and
later it was studied by Reddy and Satyanarayana [4], Satyanarayana [5], Satya-
narayana, Syam Prasad, Nagaraju [6]. This dimension concept explains about
the dimension related to one sided ideals, in case of associative (not necessarily
commutative) rings. Satyanarayana, Nagaraju, Murugan, Godloza [8] intro-
duced the concept of dimension related to two sided ideals in associative rings,
and it is also observed that the dimension of a ring with respect to two sided
ideals is different from the dimension of the module R (when the given ring R
is considered as a module over itself).

Let I, J be two ideals of R such that I ⊆ J . (i) We say that I is essential
(or ideal essential) in J if it satisfies the following condition: K is an ideal of
R, K ⊆ J , I∩K = (0) imply K = (0). (ii) If I is essential in J and I ̸= J , then
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we say that J is a proper essential extension of I. If I is essential in J , then
we denote this fact by I ≤e J . A non-zero ideal I of R is said to be uniform if
B is a non-zero ideal of R, and B ⊆ I implies B ≤e I.

We say that R has finite dimension on ideals (FDI, in short) if R do not
contain infinite number of non-zero ideals whose sum is direct.

Theorem 1.1 (Corollary 3.5 [8]). If R is a ring with FDI, then the following
(i)–(ii) are true:

(i) (Existence) There exist uniform (two sided) ideals U1, U2, ..., Un in R
whose sum is direct and essential in R;

(ii) (Uniqueness) If Vi, 1 ≤ i ≤ k, are uniform ideals of R whose sum is
direct and essential in R, then k = n.

The number n of the above Theorem is independent of the choice of the
uniform ideals, and this number n is called the dimension of R (it is denoted
by dimR).

Theorem 1.2 (Lemma 1.7(ii) [8]). If Ri, 1 ≤ i ≤ k are rings and Ii is an
ideal of Ri for 1 ≤ i ≤ k, then the following two conditions are equivalent:

(i) Ii ≤e Ri, 1 ≤ i ≤ k;
(ii) I1 ⊕ I2 ⊕ ... ⊕ Ik ≤e R1 ⊕ R2 ⊕ ... ⊕ Rk.

From Theorems 1.1 and 1.2, we get the following theorem.

Theorem 1.3. If Ri, 1 ≤ i ≤ k are rings with FDI, then dim(R1 ⊕R2 ⊕ ...⊕
Rk) = dim R1 + dimR2 + ... + dimRk.

For other preliminary concepts we refer Lambek [2].

The ideal generated by an element x ∈ R is denoted by < x >. We do not
present the proofs of some results in this paper when they are simple or parallel
to those results in the literature on ring theory.

In Section-2, we defined and studied the concepts zero square ring of type-
1/type-2. Zero square ring of type-2 is same as the zero square ring studied
by the earlier authors. We presented some illustrations. Every zero square
ring of type-1 is a zero square ring of type-2, but the converse need not be
true, in general. In Section-3, we defined and studied zero square ideal of type-
1/type-2. We observed that the class of all zero square rings R of type-1 for
which R2 * I for all non-zero ideals I of R, is homomorphically closed. In
Section-4, we proved that the direct product of zero square rings Ri, 1 ≤ i ≤ k
of type-1 is also a zero square ring of type-1, but the converse need not be
true, in general. We obtained some important consequences. In Section-5, we
introduced zero square dimension of type-1/type-2. We considered a class of
rings R and obtained some relations between the concepts dimension of R, zero
square dimension of type-1/type-2. Finally, we applied this result for the direct
sum of rings.
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2. Zero Square Rings

Definition 2.1. (i) A ring R is said to be a zero square ring of type-1 if x2 =
0 for all x ∈ R, and there exists two elements a, b ∈ R such that ab ̸= 0.

(ii) A ring R is said to be a zero square ring of type-2 if x2 = 0 for all x ∈
R.

Zero square rings of type-2 are same as the zero square rings studied by the
earlier authors like Stanley. Every zero square ring of type-1 is a zero square
ring of type-2.

Example 2.2. (i) Every null ring (that is R2 = 0) is a zero square ring of type-2,
but not of type-1.

(ii) Let (G, +) be a group (not necessarily Abelian). Define a multiplicative
operation on G by a.b = 0 for all a, b ∈ G, where 0 is the additive identity.
Then (G, +, .) is a null ring. So (G, +, .) is a zero square ring of type-2, but not
of type-1. We can conclude that every group can be made into a zero square
ring of type-2.

(iii) Suppose that R is a non-zero Boolean ring. Then x2 = x for all x ∈
R. So R is a non-null ring and for any x ̸= 0, we have x2 ̸= 0. Hence every
non-zero Boolean ring can neither a zero square ring of type-1 nor a zero square
ring of type-2.

(iv) Let S be a non null ring (that is, S2 ̸= 0). Write R = S × S ×
S. Define addition on R component wise. Define multiplication on R by
(x1, y1, z1).(x2, y2, z2) = (0, 0, x1y2 − x2y1). Stanley [3] mentioned that R2 ̸= 0
(that is R is not a null ring) and a2 = 0 for all a ∈ R. Hence R is a zero square
ring of type-1.

Theorem 2.3. Suppose R is a zero square ring of type-2, and A is a module.
Then

(i) aR ̸= A for all 0 ̸= a ∈ A.
(ii) If A is irreducible, then AR = 0.

Proof. (i) Let R be a zero square ring, A a module, and 0 ̸= a ∈ A. Suppose
aR = A. Then a ∈ A = aR ⇒ a = ar for some r ∈ R ⇒ a = ar = (ar)r =
ar2 = a0 = 0, a contradiction.
(ii) Suppose AR ̸= 0. Then there exist s ∈ R, a ∈ A such that as ̸= 0 ⇒
0 ̸= as ∈ aR. Since A is irreducible and aR ̸= 0, we have that aR = A, a
contradiction. Hence AR = 0. ¤
Corollary 2.4. A primitive ring cannot be a zero square ring of type-2.

Proof. Since R is primitive, it has a faithful irreducible module A. Let 0 ̸= r ∈
R. Since A is faithful we have Ar ̸= 0. Now 0 ̸= Ar ⊆ AR ⇒ 0 ̸= AR. By
Theorem 2.3(ii), AR = 0, a contradiction. ¤
Corollary 2.5. If R is a zero square ring of type-2, then rR ̸= R for all non
zero r ∈ R.
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Proof. Since every ring is a module over itself, the result follows from Theorem
2.3(i). ¤

Corollary 2.6. Let R be a zero square ring of type-2.
(i) If I is a non-zero right ideal of R, then I can not be a monogenic right

ideal; and
(ii) If I is a non-zero left ideal of R, then I can not be a monogenic left

ideal.

Proof. (i) In a contrary way, suppose that I is a monogenic right ideal. Then
there exist 0 ̸= a ∈ I such that aR = I, a contradiction (to Theorem 2.3(i))
because every one sided ideal may be considered as a module over R.

The proof for (ii) is similar to (i). ¤

Corollary 2.7. If R is a non-zero zero-square ring of type-2, then
(i) Rr ̸= R for all r ∈ R; and
(ii) rR ̸= R for all r ∈ R.

Proof. The proof follows by taking R instead of I in Corollary 2.6. ¤

3. Zero Square Ideals

Definition 3.1. A proper ideal I of R is said to be a zero square ideal of type-1
(respectively, type-2 ) if the quotient ring R/I is a zero square ring of type-1
(respectively of type-2).

Remark 3.2. (i) If R is a zero square ring of type-2, then every ideal I of R is
a zero square ideal of type-2. The converse of this statement is not true. For
this observe the following Example 3.3.

(ii) If R is a zero square ring of type-2, then every ideal of R is also a zero
square ring of type-2.

Example 3.3. Consider Z2, the ring of integers modulo 2. This Z2 is not a zero
square ring of type-2. Let G be a non-zero additive group and define a.b = 0
for all a, b ∈ G. Now (G, +, .) is a zero square ring of type-2. Write R = Z2

⊕ G, the direct sum of rings Z2 and G. Now I = Z2 is an ideal of R; for any
x + I ∈ R/I, we get that (x + I)2 = 0 + I; and hence I is a zero square ideal
of type-2. Since 1 = 1 + 0 ∈ Z2 + G = R and 12 = 1 ̸= 0, it follows that R is
not a zero square ring of type-2.

Remark 3.4. Let I, J be two ideals of a ring R. If I, J are two zero square
ideals of type-2, then I ∩ J is also a zero square ideal of type-2.

[Verification. Let x ∈ R/(I∩J). Now x+I ∈ R/I ⇒ x2+I = 0+I ⇒ x2 ∈ I.
Similarly x2 ∈ J it follows that x2 ∈ I ∩ J ⇒ x2 + (I ∩ J) = 0 + (I ∩ J) ⇒
(x+(I ∩J))2 = 0 in R/(I ∩J). Hence R/(I ∩J) is a zero square ring of type-2.
Therefore I ∩ J is a zero square ideal of type-2.]
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Note 3.5. A class B of rings is said to be homomorphically closed if every
homomorphic image of R is in B for all R in B .

Theorem 3.6. The class B of all zero square rings of type-2 is homomorphi-
cally closed.

Proof. Let R ∈ B. We know that every homomorphic image of R is isomorphic
to R/I for some ideal I of R. Let I an ideal of R. Take x + I ∈ R/I. Now
(x + I)2 = x2 + I = 0 + I (since R is a zero square ring of type-2). So R/I is
a zero square ring of type-2 and hence R/I ∈ B. ¤
Remark 3.7. Suppose I is an ideal of R, I is a zero square ideal of type-2 and
also a zero square ring of type-2, then x4 = 0 for all x ∈ R.

[Verification: x ∈ R ⇒ x + I ∈ R/I ⇒ (x + I)2 = 0 + I (since I is a zero
square ideal of type-2) ⇒ x2 ∈ I ⇒ (x2)2 = 0 (since I is a zero square ring of
type-2) ⇒ x4 = 0].

Theorem 3.8. Let R be a zero square ring of type-2 and I an ideal of R. Then
the following two conditions are equivalent:

(i) R2 * I; and
(ii) I is a zero square ideal of type-1.

Proof. (i) ⇒ (ii): By Remark 3.2, we get that I is a zero square ideal of type-2.
Since R2 * I there exist x, y ∈ R with xy /∈ I and so (x + I)(y + I) ̸= 0 + I
in R/I. Therefore R/I is a zero square ring of type-1 and so I is a zero square
ideal of type-1.

(ii) ⇒ (i): Since R/I is a zero square ring of type-1, there exist two non-zero
elements c+ I and d+ I in R/I whose product is non-zero in R/I. This means
that cd /∈ I and so R2 * I. ¤
Corollary 3.9. (i) Let I and J be ideals of a zero square ring R of type-2 with
I ⊆ J . If J is a zero square ideal of type-1, then I is also a zero square ideal
of type-1.

(ii) Intersection of any collection of zero square ideals of type-1 is also a zero
square ideal of type-1.

Corollary 3.10. Let ℵ be the class of all zero square rings R of type-1 for which
R2 * I for all non-zero ideals I of R. Then the class ℵ is homomorphically
closed.

Proof. Let R ∈ ℵ and h : R → R1 be an epimorphism. Then R/I ∼= R1, where
I = kerh, an ideal of R.

Case (i): Suppose h is an isomorphism. Then I = 0. Since R is a zero
square ring of type-1, there exists x, y ∈ R such that xy ̸= 0. So R2 ̸= 0 and
R2 * I.

Case (ii): Suppose h is not an isomorphism. Then I ̸= 0. By the assumed
condition R2 * I. Now by Theorem 3.8, I is a zero square ideal of type-1 and
hence R1 ∼= R/I ∈ ℵ. ¤
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Corollary 3.11. In a zero square ring R of type-2, (i) every semi-prime ideal
S of R is a zero square ideal of type-1; and (ii) every prime ideal P of R is a
zero square ideal of type-1.

Proof. (i) Suppose S is not a zero square ideal of type-1. Then by Theorem
3.8 we get that R2 ⊆ S. Since S is semi-prime ideal, we have that S = R, a
contradiction.

(ii) follows because every prime ideal is a semi-prime ideal. ¤

Definition 3.12. A ring R is said to be a strong zero square ring of type-1 if
every ideal of R is a zero square ideal of type-1.

Remark 3.13. (i) If R is a strong zero square ring of type-1, then R is a zero
square ring of type-1.

(ii) The converse of (i) is not true, in general. Observe the Example 3.14.

Example 3.14. Let S be a zero square ring of type-1. Let (G, +) be a group.
Define multiplication on G by a.b = 0 for all a, b ∈ G. Then (G, +, .) is a ring.
Write R = S ⊕ G, the direct sum of rings S and G. It is clear that S is an
ideal of R. Now we wish to show that R is a zero square ring of type-1, but
the ideal S of R is not a zero square ideal of type-1. Since S (as a ring) is a
zero square ring of type-1, there exist x, y ∈ S such that xy ̸= 0. Now x, y are
also elements of R with xy ̸= 0. It is clear that a2 = 0 for all a ∈ R. This
shows that R is a zero square ring of type-1. Let u, v ∈ R with u = s1 + g1, v
= s2 + g2, s1, s2 ∈ S, g1, g2 ∈ G. It is clear that uv = (s1 + g1)(s2 + g2) =
s1s2 + g1g2 = s1s2 + 0 = s1s2 ∈ S. Thus R2 ⊆ S. By Theorem 3.8, it follows
that S is not a zero square ideal of type-1. Hence R is a zero square ring of
type-1, but it is not a strong zero square ring of type-1.

We can restate the Corollary 3.10 as follows:

Corollary 3.15. The class of all strong zero square rings of type-1, is homo-
morphically closed.

Notation 3.16. Let R be a ring. Write ZS1(R) = the intersection of all non-
zero zero square ideals (of R) of type-1; and ZS2(R) = the intersection of
all non-zero zero square ideals (of R) of type-2. If there are no non-zero zero
square ideals of type-1 (respectively, type-2) in R, then we define ZS1(R) = R
(respectively, ZS2(R) = R).

Remark 3.17. If R is a zero square ring of type-2, then we have the following:
(i) By Theorem 3.8, we get that if R is a zero square ring of type-2, then

ZS1(R) =
∩

{I / I is a non-zero ideal of R with R2 * I};
(ii) If ZS2(R) = 0 (respectively, ZS1(R) = 0), then it follows that R is a

sub-direct product of the zero square rings R/I, where I runs over all non-
zero zero square ideals of type-2 (respectively, type-1) in R. If ZS2(R) ̸= 0
(respectively, ZS1(R) ̸= 0), then ZS2(R) (respectively, ZS1(R)) is the smallest
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non-zero zero square ideal of type-2 (respectively, type-1), among all non-zero
zero square ideals of type-2 (respectively, type-1).

(iii) In Example 3.3, R = Z2⊕ G is not a zero square ring of type-2. In this
case ZS2(R) = Z2. Note that (0) ̸= ZS2(R) ̸= R.

(iv) If R is a zero square ring of type-2 and R contains a zero square ideal
I of type-1, then by Corollary 3.9, we get that ZS1(R) ⊆ I.

(v) If R2 = 0, then R contains no zero square ideals of type-1 and so ZS1(R)
= R.

Theorem 3.18. If there exists a chain R = I0 ) I1 ) I2 )? ) Ik = (0) of
ideals of R such that Is+1 is a zero square ideal of type-2 in the ring Is for 0
≤ s < k, then R is a nil ideal of R. In particular, x(2k) = 0 for all x ∈ R.

Proof. Let x ∈ R = I0. Since I1 is zero square ideal of type-2 in the ring I0

and x ∈ I0 we have that (x + I1)2 = 0 in I0/I1. So x2 ∈ I1. Since x2 ∈ I1

and I2 is zero square ideal of type-2 in the ring I1, it follows that (x2 + I2)2 =
0 in I1/I2 and so x4 ∈ I2. If we continue this process, eventually, we get that
x(2k) ∈ (0). Thus x(2k) = 0 and this is true for all x ∈ R. Therefore R is a nil
ideal of R. ¤

Corollary 3.19. Let I1, · · · , Ik be as in the above Theorem 3.18. For any ideal
I of R, I and R/I are also nil.

4. Zero Square Rings and Direct Products

If R1, R2, · · · , Rk are rings, then the ring R1 × R2 × · · · × Rk, the direct
product of Ri, 1 ≤ i ≤ k is denoted by

∏k
i=1 Ri . For any ring R, let us write

Rk =
∏

k R for the direct product of k copies of R.
A straight forward verification provides the following Theorem.

Theorem 4.1. (i) If Ri, 1 ≤ i ≤ k are zero square rings of type-1, then
∏k

i=1 Ri

is also a zero square ring of type-1;
(ii) Each Ri, 1 ≤ i ≤ k are zero square ring of type-2 if and only if

∏k
i=1 Ri

is a zero square ring of type-2.

Remark 4.2. The converse of the above Theorem 4.1(i) is not true, in general.
For this let us observe the following example.

Example 4.3. Write (R, +) = (Z2, +), the additive group of integers modulo
2. Consider the zero product on R (that is xy = 0 for all x, y ∈ R). Then R
is ring which is not a zero square ring of type-1. Let M be a zero square ring
of type-1. Consider the ring R × M which is the direct product of R and M .
Now R × M is a zero square ring of type-1, where as R is not a zero square
ring of type-1.

Theorem 4.4. Let Ri, 1 ≤ i ≤ k be rings. The direct product
∏k

i=1 Ri is
a zero square rings of type-1 if and only if there exists a non-empty subset I
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⊆ {1, 2, · · · , k} such that Ri is a zero square rings of type-1 for all i ∈ I and
Rj is a zero square ring of type-2 but not of type-1 for all j ∈ {1, 2, · · · , k} \ I.

Proof. Suppose that
∏k

i=1 Ri is a zero square ring of type-1. Let s ∈ {1, 2,
· · · , k} and xs ∈ Rs. Consider the element (0, · · · , 0, xs, 0, · · · , 0) ∈

∏k
i=1 Ri,

the sth co-ordinate is xs and zero else where. Now 0 = (0, · · · , 0, xs, 0, · · · , 0)2

= (0, · · · , 0, x2
s, 0, · · · , 0) and x2

s = 0. Thus a2 = 0 for all a ∈ Rs, and this is
true for all 1 ≤ s ≤ k. So each Rs is a zero square ring of type-2. Write I =
{s/1 ≤ s ≤ k and there exist elements x, y in Rs such that xy ̸= 0}. Now it
is clear that Ri, is a zero square ring of type-1 for all i ∈ I. Since

∏k
i=1 Ri is

a zero square ring of type-1, there exist at least two elements (x1, x2, · · · , xk),
(y1, y2, · · · , yk) in

∏k
i=1 Ri with (x1y1, x2y2, · · · , xkyk) ̸= 0. Thus there exist t

(1 ≤ t ≤ k) such that xtyt ̸= 0. Now t ∈ I and so I ̸= φ. It is clear that for all
j ∈ J = {1, 2, · · · , k} − I, we have that xy = 0 for all x, y ∈ Rj . Hence Rj is
not a zero square ring of type-1, for all j ∈ J .

Converse: Since I is non-empty, there exists i ∈ I such that Ri is a
zero square ring of type-1. So there exist xi, yi ∈ Ri with xiyi ̸= 0. Now
(0, · · · , xi, · · · , 0), (0, · · · , yi, · · · , 0) ∈

∏k
i=1 Ri and the product of these ele-

ments is non-zero. By Theorem 4.1,
∏k

i=1 Ri is a zero square ring of type-1.
Hence

∏k
i=1 Ri is a zero square ring of type-1. ¤

Corollary 4.5. For any positive integer k, we have that R is a zero square
ring of type-2 (respectively, type-1) if and only if Rk is a zero square ring of
type-2 (respectively, type-1).

5. Zero Square Dimension

Definition 5.1. Let R has FDI. We define the zero square dimension of R
(denoted by ZSd(R)) as follows:

ZSd(R) = {s | there exist uniform ideals Ui, 1 ≤ i ≤ s in R such that the

sum U1 + U2 + · · · + Us is direct and each Ui is a zero square ring of type-2}.

Lemma 5.2. (i) If R has FDI, and R is a zero square ring of type-2, then
ZSd(R) = dimR.

(ii) If Ri, 1 ≤ i ≤ n are rings with FDI and each Ri is a zero square ring
of type-2, then ZSd(

∏n
i=1 Ri) =

∑n
i=1ZSd(Ri) .

Proof. (i) Suppose k = dim R. Since k = dimR, there exist uniform ideals
U1, U2, · · · , Uk in R such that U1⊕U2⊕· · ·⊕Uk ≤e R. Since R is a zero square
ring of type-2, by Remark 3.2(ii), each Ui is also zero square ring of type-2. By
Definition 5.1, ZSd(R) = k. Hence ZSd(R) = dim R.

(ii) By Theorem 4.1(ii),
∏n

i=1 Ri is also a zero square ring of type-2. Now
ZSd(

∏n
i=1 Ri) = dim(

∏n
i=1 Ri) (by (i)) =

∑n
i=1 dim(Ri) (by Theorem 1.3) =∑n

i=1 ZSd(Ri) (by (i)). ¤
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Lemma 5.3. Suppose R has FDI and satisfies the condition 〈xy〉 = 〈x〉〈y〉
for all x, y ∈ R with xy ̸= 0. If R is zero square ring of type-1, then there
exists a uniform ideal U in R such that U itself a zero square ring of type-1.

Proof. Since R has FDI, by Theorem 1.1, dim R = k, and there exist uniform
ideals I1, I2, · · · , Ik such that I1⊕I2⊕· · ·⊕Ik ≤e R. Write E = I1⊕I2⊕· · ·⊕Ik.
Since R is a zero square ring of type-1, there exist x, y ∈ R with xy ̸= 0. Since
0 ̸= xy ∈ 〈xy〉, and E is essential ideal in R, it follows that 〈xy〉 ∩E ̸= 0. Now
〈x〉〈y〉 ∩ E ̸= 0 ⇒ there exists x1 ∈ 〈x〉, y1 ∈ 〈y〉 such that 0 ̸= x1y1 ∈ E. So
E = I1 ⊕ I2 ⊕ · · · ⊕ Ik is a zero square ring of type-1. By Theorem 4.4, there
exists t ∈ {1, 2, · · · , k} such that It is a zero square ring of type-1. ¤

Definition 5.4. Let R has FDI and dimR = k. If R contains no uniform
ideal which is a zero square ring of type-1, then we define the zero square-
1 dimension of R (ZS1d(R), in short) is equal to zero. We write ZS1d(R)
= 0. If R contains a uniform ideal which is a zero square ring of type-
1, then we define the zero square-1 dimension of R as follows: ZS1d(R) =
max{t/U1, U2, · · · , Ut, Ut+1, · · · , Uk are uniform ideals of R, whose sum is di-
rect and essential in R (that is, U1 ⊕ U2 ⊕ · · · ⊕ Uk ≤e R), U1, U2, · · · , Ut are
zero square rings of type-1, Ut+1, · · · , Uk are not zero square rings of type-1}.

Note 5.5. (i) If R has FDI, R is a zero square ring of type-1 and satisfies the
condition 〈xy〉 = 〈x〉〈y〉 for all x, y ∈ R with xy ̸= 0. By Lemma 5.3, there
exist uniform ideals U1, U2, · · · , Uk in R whose sum is direct and essential in
R. Also at least one of the Ui’s is a zero square ring of type-1. Thus, in this
case, ZS1d(R) ≥ 1.

(ii) If R is a zero square ring of type-2 but not of type-1, then there exist
no uniform ideal in R which is a zero square ring of type-1. So in this case
ZS1d(R) = 0.

Theorem 5.6. If R1, R2 are rings with FDI and R = R1 ⊕ R2, the direct
sum of rings, then ZS1d(R1 ⊕ R2) ≥ ZS1d(R1) + ZS1d(R2).

Proof. Suppose ZS1d(R1) = n and ZS1d(R2) = m. Then there exists uniform
ideals I1, I2, · · · , Ik of R1 such that I1 ⊕ I2 ⊕ · · · ⊕ Ik ≤e R1, Ii, 1 ≤ i ≤ n are
zero square rings of type-1. Similarly there exists uniform ideals J1, J2, · · · , Js

of R2 such that J1 ⊕ J2 ⊕ · · · ⊕ Js ≤e R2, Ji, 1 ≤ i ≤ m are zero square rings
of type-1. Since R = R1 ⊕ R2, we have that the ideals of R1 and the ideals of
R2 are also ideals of R. Now I1 ⊕ I2 ⊕ · · · ⊕ In ⊕ J1 ⊕ J2 ⊕ · · · ⊕ Jm ⊕ In+1 ⊕
In+2 ⊕ · · · ⊕ Ik ⊕ Jm+1 ⊕ · · · ⊕ Js ≤e R (by Theorem 1.2); I1 ⊕ I2 ⊕ · · · ⊕ In ⊕
J1 ⊕ J2 ⊕ · · · ⊕ Jm is a sum of (n + m) uniform ideals which are zero square
rings of type-1. So by Definition 5.4, it follows that ZS1d(R1 ⊕ R2) ≥ n + m
= ZS1d(R1) + ZS1d(R2). ¤

Corollary 5.7. If Ri, 1 ≤ i ≤ k are rings with FDI, then ZS1d(R1 × R2 ×
· · · × Rk) ≥

∑k
i=1 ZS1d(Ri).
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Definition 5.8. Let R be a ring with FDI. We define ZS2d(R), the zero
square-2 dimension of R as follows:

ZS2d(R) = min{t/U1, U2, · · · , Uk are uniform ideals of R such that
U1 ⊕ U2 ⊕ · · · ⊕ Uk ≤e R, U1, U2, · · ·, Ut are zero square rings of type-2

but not of type-1}.

Note 5.9. Suppose R has FDI, dim R = k and R is a zero square ring of
type-2 but not of type-1. Then by Note 5.5 (ii), ZS1d(R) = 0. Since every
representation E = U1 ⊕U2 ⊕ · · · ⊕Uk that is equal to a direct sum of uniform
ideals with E ≤e R, contains exactly k uniform ideals, we have that ZS2d(R)
= k. So in this case, ZS1d(R) = 0 and ZS2d(R) = dim R.

Theorem 5.10. (i) If R has FDI and R is a zero square ring of type-1, then
dim(R) = ZSd(R) = ZS1d(R) + ZS2d(R).

(ii) If Ri, 1 ≤ i ≤ k are rings with FDI, and also zero square rings of type-1,
then dim(R1 ×R2 ×· · ·×Rk) = ZSd(R1 ×R2 ×· · ·×Rk) ≥

∑k
i=1 ZS1d(Ri)+∑k

i=1 ZS2d(Ri).

Proof. (i) By Lemma 5.2(i), dim(R) = ZSd(R). Suppose dim(R) = k and
ZS1d(R) = n. Then there exist uniform ideals I1, I2, · · · , Ik in R such that
I1 ⊕ I2 ⊕ · · · ⊕ Ik ≤e R and Ii, 1 ≤ i ≤ n are zero square rings of type-
1, n is maximum among such n. Also In+1, · · ·, Ik are uniform ideals of R
(k − n in number) which are zero square-rings of type-2 (but not of type-1).
So ZS2d(R) ≤ k−n. Suppose m = ZS2d(R). Then there exist uniform ideals
U1, U2, · · · , Uk in R such that U1 ⊕U2 ⊕ · · · ⊕Uk ≤e R, Ui, 1 ≤ i ≤ m are zero
square-rings of type-2 (but not type-1) and m is the minimum among these
numbers. This means that the remaining k − m uniform ideals Um+1, · · · , Uk

are zero square rings of type-1 (we get this because of the hypothesis that R is a
zero square ring of type-2). By the Definition 5.4, we conclude that k−m ≤ n,
which imply that m ≥ k−n. Hence ZS2d(R) = m = k−n = dim R - ZS1d(R).
Finally we got that dimR = ZSd(R) = ZS1d(R) + ZS2d(R).

Proof for (ii) follows by using (i), Theorem 5.6 and mathematical induction.
¤

Corollary 5.11. (i) If R1, R2 are zero square rings of type-2 with FDI, then
ZS2d(R1 ⊕ R2) ≤ ZS2d(R1) + ZS2d(R2)

(ii) If Ri, 1 ≤ i ≤ k are zero square rings with FDI, then ZS2d(R1 × R2 ×
· · · × Rk) ≤

∑k
i=1 ZS2d(Ri).

Proof. (i) ZS1d(R1 ⊕ R2) + ZS2d(R1 ⊕ R2) = ZSd(R1 ⊕ R2) (by Theorem
5.10) = ZSd(R1) + ZSd(R2) (by Lemma 5.2(ii)) = ZS1d(R1) + ZS2d(R1) +
ZS1d(R2) + ZS2d(R2) (by Theorem 5.10) ≤ ZS1d(R1 ⊕ R2) + ZS2d(R1) +
ZS2d(R2) (by Theorem 5.6). Therefore ZS2d(R1⊕R2) ≤ ZS2d(R1)+ZS2d(R2).

Proof for (ii) follows by using (i) and mathematical induction. ¤
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