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w-MODULES OVER COMMUTATIVE RINGS

Huayu Yin, Fanggui Wang, Xiaosheng Zhu, and Youhua Chen

Abstract. Let R be a commutative ring and let M be a GV -torsionfree
R-module. Then M is said to be a w-module if Ext1R(R/J,M) = 0 for

any J ∈ GV (R), and the w-envelope of M is defined by Mw = {x ∈
E(M) | Jx ⊆ M for some J ∈ GV (R)}. In this paper, w-modules over
commutative rings are considered, and the theory of w-operations is de-

veloped for arbitrary commutative rings. As applications, we give some
characterizations of w-Noetherian rings and Krull rings.

0. Introduction

Let R be a domain with quotient field K, and let F (R) be the set of nonzero
fractional ideals of R. For A ∈ F (R), set A−1 = {x ∈ K |xA ⊆ R}. Recall
from [17] that for a domain R and a torsionfree R-module M , the w-envelope
of M is defined by

Mw={x ∈ K
⊗
R

M | Jx ⊆ M for some finitely generated ideal J withJ−1=R}.

M is called a w-module ifMw = M , andM is said to be a w-ideal whenM is an
ideal ofR withMw = M . For A ∈ F (R), the map w : F (R) → F (R), defined by
A → Aw, is a ∗-operation called the w-operation. One can see that the notion
of a w-ideal coincides with the notion of a semi-divisorial ideal introduced by
Glaz and Vasconcelos in 1977 [5] which may have some far reaching effects
on the theory of ∗-operations. As a ∗-operation, the w-operation was briefly
yet effectively touched on by Hedstrom and Houston in 1980 under the name
of F∞-operation [6]. Later, this ∗-operation was intensely studied by Wang
and McCasland in a more general setting. In particular, Wang and McCasland
showed that the w-envelope notion is a very useful tool in studying strong Mori
domains [17, 18]. For the definition of a ∗-operation, the reader may consult
[4].

There is a considerable amount of research devoted to extending multiplica-
tive ideal theory to commutative rings containing zero divisors, see for example
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[7, 8, 10, 11, 12, 15]. Recently, the subject of the w-operation has generated
considerable interest. For more information on the w-operation and strong
Mori domains, the reader may consult Anderson and Cook [1], El Baghdadi
and Gabelli [3], and Park [13, 14], etc. A natural problem is: how to extend
the notion of w-modules to commutative rings with zero divisors. This is a mo-
tivation of our study. Our main purpose is to extend the notion of a w-module
to commutative rings without any further regularity assumption. The meth-
ods employed in obtaining some results come from homological algebra, which
are different from the methods used in the domain case. So we will see that
the w-operation can bring in a lot of more homological algebra than the other
∗-operations on commutative rings. In addition, we prove enough results on
w-modules which can be switched over to the w-envelopes of modules. As one
might expect, some results on the w-operation on commutative rings coincide
with the results obtained in the domain case. However, it is not to say that
the proofs of some results are straightforward generalizations of the proofs for
domains.

In Section 1, as a first step to the main goal, we introduce and study the
concepts of GV -ideals and GV -torsionfree modules both of which constitute
basic tools for subsequent considerations in this paper.

After preliminary studies of GV -ideals and GV -torsionfree modules, in Sec-
tion 2, we devote to the study of w-modules over commutative rings. Let R be
a commutative ring. A GV -torsionfree R-module M is said to be a w-module if
Ext1R(R/J,M) = 0 for any GV -ideal J . We record some observations regarding
w-modules.

In Section 3, we consider the w-envelope of a module. For a GV -torsionfree
R-module M , the w-envelope of M is defined by Mw = {x ∈ E(M) | Jx ⊆
M for some GV -ideal J}, where E(M) is the injective envelope of M . M is a
w-module if and only if Mw = M . It will be seen later that the w-modules in
the sense of [17, 18] are still w-modules. However, the notion of a w-module
given in this article is more general. It is worth noting that different definitions
of ∗-operations on arbitrary commutative rings appeared in the literatures [7],
[8] and [15], but our “w-operation” satisfies all of them.

As applications, in Section 4, we give some new characterizations of Krull
rings and display several w-Noetherian analogues of well-known results for Noe-
therian rings.

Throughout this paper, R will denote a commutative ring with identity 1 ̸= 0
and with total quotient ring T (R). An element of R is regular if it is not a zero
divisor. An ideal of R which contains a regular element is said to be a regular
ideal.

1. GV -ideals and GV -torsionfree modules

Recall that if A,B,B1 and C are R-modules, and α : B → B1 is an R-
homomorphism, then there exist induced R-homomorphisms α∗ : HomR(A,B)
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→ HomR(A,B1) and α∗ : HomR(B1, C) → HomR(B,C), which are defined
by α∗(f) = αf for all f ∈ HomR(A,B) and by α∗(g) = gα for all g ∈
HomR(B1, C), respectively.

For an R-module M , the dual module HomR(M,R) of M is denoted by M∗.
There is a natural R-homomorphism φ from R into I∗ given by φ(r)(a) = ra

for all r ∈ R and a ∈ I, where I is an ideal of R. It is obvious that R
φ∼= I∗ if

and only if HomR(R/I,R) = 0 and Ext1R(R/I,R) = 0.

Definition 1.1. An ideal J of a commutative ringR is called a Glaz-Vasconcelos
ideal or a GV -ideal, denoted by J ∈ GV (R), if J is finitely generated and the
natural homomorphism φ : R → J∗ is an isomorphism.

Proposition 1.2. Let R be a commutative ring.
(1) R ∈ GV (R).
(2) Let J1 and J2 be finitely generated ideals of R, and J1 ⊆ J2. If J1 ∈

GV (R), then J2 ∈ GV (R).
(3) Let J1 and J2 be GV -ideals of R. Then J1J2 ∈ GV (R).
(4) If J ∈ GV (R), then J [X] ∈ GV (R[X]).
(5) Let J1, J2 be ideals of commutative rings R1, R2, respectively. Assume

that R = R1 ×R2. Then J = J1 × J2 ∈ GV (R) if and only if Ji ∈ GV (Ri) for
i = 1, 2.

Proof. (1) is clear.
(2) It is easy to verify that the following diagram

J1
∗ R

φ1oo

φ2~~}}
}}
}}
}}

J2
∗

λ∗

aaCCCCCCCC

is commutative, where φ1 and φ2 are defined as in the beginning of this section,
and λ∗ is induced by the inclusive map λ : J1 → J2. To show that J2 ∈ GV (R),
it suffices to prove λ∗ is an isomorphism.

Here we consider an exact sequence 0 → HomR(J2/J1,R) → HomR(J2, R)
λ∗

→
HomR(J1, R). To conclude the proof, we only need to show that HomR(J2/J1,
R) = 0. Let f ∈ HomR(J2/J1, R) and b ∈ J2. Then we have af(b̄) = f(ab̄) = 0
for any a ∈ J1, where b̄ = b+J1. Hence J1 ⊆ ann(f(b̄)) (the annihilator of f(b̄)
in R). Define g : R/J1 → R as follows: g(r̄) = rf(b̄), where r̄ = r+J1. Clearly,
g is a well-defined R-homomorphism. Since HomR(R/J1, R) = 0, f(b̄) = 0, and
so f = 0.

(3) By [16, Theorem 2.11], we have

HomR(J1
⊗
R

J2, R) ∼= HomR(J1,HomR(J2, R)) ∼= HomR(J1, R) ∼= R.
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The epimorphism σ: J1
⊗

R J2 → J1J2 induces a monomorphism

σ∗ : HomR(J1J2, R) → HomR(J1
⊗
R

J2, R),

where σ is defined by σ(a ⊗ b) = ab for all a ∈ J1 and b ∈ J2. Since the

composite R
φ→ HomR(J1J2, R)

σ∗

→ HomR(J1
⊗

R J2, R) is an isomorphism
with φ defined as in the beginning of this section, σ∗ is onto. It follows that φ
is an isomorphism.

(4) For an R-module A, set A[X] = A
⊗

R R[X]. We have a canonical
R-homomorphism

θA : R[X]
⊗
R

HomR(A,R) → HomR[X](A[X], R[X]),

which is defined by

θA(f ⊗ g)(
n∑

i=1

ai ⊗ fi) =
n∑

i=1

g(ai)ffi,

where f, fi ∈ R[X], ai ∈ A, and g ∈ HomR(A,R). It is easy to see that θA is
monic, and θA is an isomorphism when A is a finitely generated free R-module.

Let 0 → N → F → J → 0 be a short exact sequence, where F is a finitely
generated free R-module. Then we have the following commutative diagram
with exact rows:

0 // R[X]
⊗

R HomR(J,R) //

θJ

��

R[X]
⊗

R HomR(F,R) //

θF

��

R[X]
⊗

R HomR(N,R)

θN

��
0 / / HomR[X](J [X], R[X]) // HomR[X](F [X], R[X]) // HomR[X](N [X], R[X]).

Note that θF is an isomorphism, and θN , θJ are monomorphisms. By diagram
chasing, we have θJ is epic and so is an isomorphism. Thus, J [X] ∈ GV (R[X]).

(5) Note that

R

��

R1 ×R2

��
HomR(J,R) HomR1(J1, R1)×HomR2(J2, R2)

is a commutative diagram, and so (5) holds. □
Definition 1.3. AnR-moduleM is called aGV -torsionfree module if whenever
Jx = 0 for some J ∈ GV (R) and x ∈ M , then x = 0.

The following theorem shows that a GV -torsionfree module has some homo-
logical properties, and provides a justification for the terminology.

Theorem 1.4. For an R-module M , the following are equivalent:
(1) M is GV -torsionfree.
(2) HomR(N,M) = 0 for any J ∈ GV (R) and R/J-module N .
(3) HomR(R/J,M) = 0 for any J ∈ GV (R).
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Proof. (1) ⇒ (2). Let f ∈ HomR(N,M). For any x ∈ N , Jf(x) = f(Jx) =
f(0) = 0. It follows that f(x) = 0.

(2) ⇒ (3). Trivial.
(3) ⇒ (1). Let Jx = 0 for some J ∈ GV (R) and x ∈ M , and suppose x ̸= 0.

Define g : R/J → M by g(r̄) = rx for all r ∈ R, where r̄ = r + J . It is easy to
verify that g is well-defined, and g ̸= 0, a contradiction. □

Corollary 1.5. R is a GV -torsionfree R-module.

Corollary 1.6. Let M be a GV -torsionfree R-module and F a flat R-module.
Then F

⊗
R M is GV -torsionfree. In particular, a flat R-module is GV -torsion-

free, and so T (R) is a GV -torsionfree R-module.

Proof. For any J ∈ GV (R), HomR(R/J, F
⊗

R M) ∼= F
⊗

R HomR(R/J,M)
by [16, Lemma 3.83]. □

We use E(M) to denote the injective envelope of an R-module M .

Proposition 1.7. (1) Let M be a GV -torsionfree R-module with a submodule
N . Then N is also GV -torsionfree.

(2) Let {Mi | i ∈ Γ} be a family of GV -torsionfree R-modules. Then both∏
i∈Γ Mi and

⊕
i∈Γ Mi are GV -torsionfree.

(3) Let M be an R-module and N a GV -torsionfree R-module. Then HomR

(M,N) is a GV -torsionfree R-module. In particular, M∗ and M∗∗ are GV -
torsionfree R-modules. Therefore, reflexive modules are GV -torsionfree.

(4) If M is a GV -torsionfree R-module, then so is E(M).

Proof. (1) and (2) are clear.
(3) Let Jf = 0 for some J ∈ GV (R) and f ∈ HomR(M,N). For each

x ∈ M , we have Jf(x) = 0. Since N is GV -torsionfree, f(x) = 0. The “In
particular” statement comes from Corollary 1.5.

(4) Let Jx = 0 for some J ∈ GV (R) and x ∈ E(M), and suppose x ̸= 0.
Then there exists r ∈ R such that rx ̸= 0 and rx ∈ M . But we have Jrx = 0,
and so rx = 0. This contradiction shows that x = 0. □

2. w-modules over commutative rings

We now introduce the notion of a w-module which comes from homological
algebra.

Definition 2.1. A GV -torsionfree R-module M is said to be a w-module if,
for any J ∈ GV (R), Ext1R(R/J,M) = 0.

It is clear that R is a w-module, and that, for a GV -torsionfree R-module
M , E(M) is a w-module.

Theorem 2.2. Let M be a GV -torsionfree R-module. Then the following are
equivalent:

(1) M is a w-module.
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(2) Every R-homomorphism f : J → M , where J ∈ GV (R), can be extended
to R.

(3) If Jx ⊆ M , where J ∈ GV (R) and x ∈ E(M), then x ∈ M .

Proof. (1) ⇔ (2). For each J ∈ GV (R), we have an exact sequence

0 → HomR(R/J,M) → HomR(R,M) → HomR(J,M) → Ext1R(R/J,M) → 0.

The equivalence now follows from this consideration.
(2) ⇒ (3). Suppose Jx ⊆ M for some J ∈ GV (R) and x ∈ E(M). Define

f : J → M by f(r) = rx for all r ∈ J . It is easily seen that f is well-defined.
Note that f can be extended to g : R → M . Then Jx = f(J) = g(J) = Jg(1).
Since M is GV -torsionfree, so is E(M) and hence x = g(1) ∈ M .

(3) ⇒ (2). For each f : J → M , where J ∈ GV (R), there exists g : R →
E(M) such that the diagram

M // E(M)

0 // J

f

OO

// R

g

OO�
�
�

is commutative. Then Jg(1) = g(J) = f(J) ⊆ M . Thus g(1) ∈ M , as
desired. □

Proposition 2.3. Let {Mi | i ∈ Γ} be a family of GV -torsionfree R-modules.
Then the following are equivalent:

(1) Mi is a w-module for each i ∈ Γ.
(2)

∏
i∈Γ Mi is a w-module.

(3)
⊕

i∈Γ Mi is a w-module.

Proof. (1) ⇔ (2). Ext1R(R/J,
∏

i∈Γ Mi) ∼=
∏

i∈Γ Ext
1
R(R/J,Mi) for any J ∈

GV (R).
(1) ⇔ (3). By [2, Exercise 16.3], we have the following commutative diagram:⊕

i∈Γ

HomR(R,Mi)

∼=

��

// ⊕
i∈Γ

HomR(J,Mi) //

∼=

��

⊕
i∈Γ

Ext1R(R/J,Mi) //

θ

��

0

HomR(R,
⊕
i∈Γ

Mi) // HomR(J,
⊕
i∈Γ

Mi) // Ext1R(R/J,
⊕
i∈Γ

Mi) // 0.

By the Five Lemma, θ is an isomorphism. □

As an immediate consequence of the above proposition, we have

Corollary 2.4. Every projective module is a w-module.

Proposition 2.5. As an R-module, T (R) is a w-module.
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Proof. By Theorem 2.2, we only need to show that if Jx ⊆ T (R) for some J ∈
GV (R) and x ∈ E(T (R)), then x ∈ T (R). Since J is finitely generated, there
exists a regular element s of R such that Jsx ⊆ R. Let E(T (R)) = E(R)

⊕
N

for some R-module N . Set x = y + z, where y ∈ E(R) and z ∈ N . Then we
have Jsz = Js(x − y) ⊆ N

∩
E(R) = 0. Since N is GV -torsionfree, sz = 0,

and so sx = sy ∈ E(R). Again by Theorem 2.2, sx ∈ R. Thus x ∈ T (R). □

Proposition 2.6. Let M be a GV -torsionfree R-module, and let {Mi | i ∈ Γ} be
a directed family of w-submodules of M . Then

∪
i∈Γ Mi is also a w-submodule

of M .

Proof. Since
∪

i∈Γ Mi is a submodule of M , it is GV -torsionfree. Let Jx ⊆∪
i∈Γ Mi for some J ∈ GV (R) and x ∈ E(

∪
i∈Γ Mi) ⊆ E(M). Since J is finitely

generated, there exists i ∈ Γ such that Jx ⊆ Mi. Let E(M) = E(Mi)
⊕

N for
some R-module N . Set x = y+ z, where y ∈ E(Mi) and z ∈ N . Then we have
Jz = J(x − y) ⊆ N

∩
E(Mi) = 0, and so z = 0. Thus x = y ∈ E(Mi). By

Theorem 2.2, x ∈ Mi. Therefore,
∪

i∈Γ Mi is a w-submodule of M . □

Theorem 2.7. Let M be a GV -torsionfree R-module. Then the following are
equivalent:

(1) M is a w-module.
(2) If 0 → M → F → N → 0 is an R-exact sequence, where F is a w-

module, then N is a GV -torsionfree R-module.
(3) There exists an R-exact sequence 0 → M → F → N → 0 such that F is

a w-module and N is a GV -torsionfree R-module.

Proof. (1) ⇒ (2). For each J ∈ GV (R), we have exactness of HomR(R/J, F ) →
HomR(R/J,N) → Ext1R(R/J,M). By Theorem 1.4 and Definition 2.1, we have
HomR(R/J, F ) = Ext1R(R/J,M) = 0, and so HomR(R/J,N) = 0, as desired.

(2) ⇒ (3). Choose an R-exact sequence 0 → M → E(M) → E(M)/M → 0.
(3) ⇒ (1). For each J ∈ GV (R), there exists an exact sequence HomR(R/J,

N) → Ext1R(R/J,M) → Ext1R(R/J, F ). Again by Theorem 1.4 and Definition
2.1, we have HomR(R/J,N) = Ext1R(R/J, F ) = 0, and so Ext1R(R/J,M) = 0.
Then (1) holds. □

Theorem 2.8. Let A be an R-module and M a w-module. Then HomR(A,M)
is a w-module. In particular, A∗ and A∗∗ are w-modules. Therefore, reflexive
modules are w-modules.

Proof. Let F =
⊕

R be a free R-module. Since HomR(F,M) ∼=
∏

HomR(R,M)
∼=

∏
M , HomR(F,M) is a w-module by Proposition 2.3. Let 0 → B → F →

A → 0 be an exact sequence with F free. Then there exists an exact sequence
0 → HomR(A,M) → HomR(F,M) → X → 0, where X is a submodule of
HomR(B,M). By Proposition 1.7 and Theorem 2.7, X is GV -torsionfree and
so HomR(A,M) is a w-module. □
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3. The w-operation on commutative rings

We start with a study of the w-envelope of a GV -torsionfree module over a
commutative ring R.

Definition 3.1. Let M be a GV -torsionfree R-module. Then the w-envelope
of M is the set given by

Mw = {x ∈ E(M) | Jx ⊆ M for some J ∈ GV (R)}.
By Theorem 2.2, we have M is a w-module if and only if Mw = M . So M

is a w-ideal when M is an ideal of R with Mw = M . It is easy to see that Mw

is a w-module and 0w = 0.

Proposition 3.2. Let M be a GV -torsionfree R-module with submodules A
and B. Then the following hold:

(1) cAw ⊆ (cA)w for all c ∈ R.
(2) A ⊆ Aw, and A ⊆ B ⇒ Aw ⊆ Bw.
(3) (Aw)w = Aw.

Proof. (1) Let x ∈ Aw. Then Jx ⊆ A for some J ∈ GV (R), and so Jcx ⊆ cA.
Let E(A) = E(cA)

⊕
N for some R-module N . Set x = y+z, where y ∈ E(cA)

and z ∈ N . Then we have Jcz = Jc(x − y) ⊆ N
∩
E(cA) = 0, and so cz = 0.

Thus cx = cy ∈ E(cA). Therefore, cx ∈ (cA)w.
(2) and (3) are straightforward. □
Recall that an element a ∈ R is called a zero divisor for an R-module M if

there exists x ∈ M\{0} such that ax = 0. a is regular if it is not a zero divisor.

Corollary 3.3. (1) Let A be a GV -torsionfree R-module and c ∈ R. If c is
a regular element for A, then cAw = (cA)w. In particular, if c is a regular
element of R, then (c)w = (c).

(2) If c ∈ T (R) and A is an R-submodule of T (R), then cAw ⊆ (cA)w.

Proof. (1) Clearly, c is also a regular element for Aw. Thus we have cAw
∼= Aw,

and so cAw is a w-module. Since cA ⊆ cAw, (cA)w ⊆ (cAw)w = cAw.
(2) Set c = r

s , where r, s ∈ R, and s is a regular element of R. By Proposition

3.2, we have rAw ⊆ (rA)w. By (1), s(rsA)w = (rA)w. Hence cAw = r
sAw ⊆

1
s (rA)w = (rsA)w = (cA)w. □
Remark 3.4. For a domain R with quotient field K, it is routine to verify that
a torsionfree R-module is GV -torsionfree, and that K

⊗
R M = E(M) for a

torsionfree R-module M . Therefore, the w-modules in the sense of [17, 18] are
also w-modules in the sense of Definition 2.1 but the converse does not hold in
general. In fact, let R be a domain, and a ∈ R\{0}. It is clear that R/(a) is not
a torsionfree R-module, but it is a GV -torsionfree R-module by Theorem 2.7
and Corollary 3.3. Therefore, we have E(R/(a)) is a w-module in this article.

Proposition 3.5. Let J be a finitely generated ideal of R. Then J ∈ GV (R)
if and only if Jw = R.
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Proof. “Only if” part. By Proposition 3.2, we have Jw ⊆ Rw = R. On the
other hand, it is clear that J1 ⊆ J . Let E(R) = E(J)

⊕
N for some R-

module N . Set 1 = x + y, where x ∈ E(J) and y ∈ N . Then we have
Jy = J(1− x) ⊆ N

∩
E(J) = 0, and so y = 0. Thus 1 = x ∈ E(J). It follows

that 1 ∈ Jw.
“If” part. There exists J1 ∈ GV (R) such that J1 ⊆ J . By Proposition 1.2,

we have J ∈ GV (R). □
The next theorem gives necessary and sufficient conditions for a GV -torsion-

free module to be a w-module.

Theorem 3.6. Let M be a GV -torsionfree R-module. Then the following are
equivalent:

(1) M is a w-module.
(2) Ext1R(N,M) = 0 for any J ∈ GV (R) and R/J-module N .
(3) Ext1R(Aw/A,M) = 0 for any GV -torsionfree R-module A.
(4) Every R-homomorphism f : A → M , where A is GV -torsionfree, can be

extended to Aw.

Proof. (1) ⇒ (2). Let F =
⊕

R/J be a free R/J-module for J ∈ GV (R).
Then we have Ext1R(F,M) ∼=

∏
Ext1R(R/J,M) = 0.

Let 0 → A → F → N → 0 be an R/J-exact sequence, where F is a free R/J-
module. Then there exists an exact sequence HomR(A,M) → Ext1R(N,M) →
Ext1R(F,M) = 0. By Theorem 1.4, HomR(A,M) = 0. Thus Ext1R(N,M) = 0.

(2) ⇒ (1). Trivial.
(1) ⇒ (3). Let Aw/A be generated by the set {x̄i | i ∈ Γ}, where {xi | i ∈

Γ} ⊆ Aw. Then there exists Ji ∈ GV (R) such that Jixi ⊆ A for each i ∈ Γ, and
thus we have an epimorphism

⊕
i∈Γ R/Ji → Aw/A. Let N be the kernel of this

homomorphism. Then HomR(N,M) = 0. In fact, suppose f ∈ HomR(N,M).
For any x ∈ N , there is J ∈ GV (R) such that Jx = 0. Hence Jf(x) = f(Jx) =
0. Since M is GV -torsionfree, we have f(x) = 0. Thus there exists an exact
sequence

0 = HomR(N,M) → Ext1R(Aw/A,M) → Ext1R(
⊕
i∈Γ

R/Ji,M).

Since Ext1R(
⊕

i∈Γ R/Ji,M) ∼=
∏

i∈Γ Ext
1
R(R/Ji,M) = 0, Ext1R(Aw/A,M) = 0.

(3) ⇒ (4). It follows from the fact that

HomR(Aw,M) → HomR(A,M) → Ext1R(Aw/A,M)

is an exact sequence.
(4) ⇒ (1). By Theorem 2.2 and Proposition 3.5. □

Proposition 3.7. Let M be a GV -torsionfree R-module. Then

Mw=
∪
{Nw|N runs over all finitely generated R-submodules contained in M}.

Proof. Clearly,
∪
Nw ⊆ Mw. Conversely, suppose x ∈ Mw. Then Jx ⊆ M for

some J ∈ GV (R). Set N = Jx. Then we have Jx ⊆ N , and so x ∈ Nw. □
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As the maximal submodules being prime, we have maximal w-submodules
are prime. In this paper, we denote by w-max(R) the set of maximal w-ideals
of R. Let M be an R-module with submodules A and B. Set (A : B) = {r ∈
R | rB ⊆ A}.

Proposition 3.8. Let M be a w-module, and let A be a submodule of M which
is maximal in the collection of proper w-submodules of M . Then A is prime.
Therefore, a maximal w-ideal is prime.

Proof. Let rx ∈ A for some r ∈ R and x ∈ M , and suppose x ̸∈ A. Then
(A+Rx)w = M . By Proposition 3.2(1), rM = r(A+Rx)w ⊆ (rA+Rrx)w ⊆
Aw = A. Thus r ∈ (A : M). □

We say that a GV -torsionfree module M is w-finite (or of finite type, when
no confusion is likely) if Mw = Nw for some finitely generated submodule N of
M . By Proposition 2.6, it is easy to show that if M is a w-module of finite type,
then any proper w-submodule of M is contained in a maximal w-submodule.

Theorem 3.9. Let M be a GV -torsionfree R-module. Then (Mw)p = Mp for
each prime w-ideal p of R. Therefore, if M is w-finite, then Mp is a finitely
generated Rp-module for each prime w-ideal p of R.

Proof. Obviously, Mp ⊆ (Mw)p. Conversely, let x ∈ (Mw)p. Then there exists
s ∈ R\p with sx ∈ Mw. Thus Jsx ⊆ M for some J ∈ GV (R). By Proposition
3.5, we have J ̸⊆ p. It follows that Jp = Rp, and so sx ∈ Jpsx ⊆ Mp. Hence
x ∈ Mp, and then (Mw)p ⊆ Mp. □
Corollary 3.10. Let M be a GV -torsionfree R-module with submodules A and
B. Then Aw = Bw if and only if Am = Bm for any m ∈ w-max(R).

Proof. Let w-max(R) = ∅, and suppose that c is a regular element of R. Then
(c) = (c)w = R, and so c is a unit. Therefore R = T (R). Here we consider the
case w-max(R) ̸= ∅.

“Only if” part is clear by Theorem 3.9.
“If” part. Suppose x ∈ Aw. Set I = (Bw : Rx). Then I is a w-ideal of R.

By Theorem 3.9, we have (Bw)m = Bm = Am = (Aw)m. It follows that

Im = { a ∈ Rm | ax
1
∈ (Bw)m} = {a ∈ Rm | ax

1
∈ (Aw)m } = Rm.

Thus I ̸⊆ m for any maximal w-ideal m, and so I = R. Therefore, x ∈ Bw. It
follows that Aw ⊆ Bw. The inverse can be proved similarly. □

Before moving to another topic, we should note that different definitions of
∗-operation on arbitrary commutative rings appeared in the literatures [7], [8]
and [15], but our “w-operation” satisfies all of them.

Let F(R) be the set of R-submodules of T (R). For A ∈ F(R), set A−1 =
{x ∈ T (R) |xA ⊆ R}, Av = (A−1)−1 and At =

∪
Bv, where B runs over all

finitely generated R-submodules of A. It is easy to see that for an ideal I of
R, I−1 ∼= I∗ if I contains a regular element. Thus a finitely generated regular
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ideal J of R is a GV -ideal if and only if J−1 = R. A star operation ∗ on R is
a mapping A → A∗ from F(R) to F(R) which satisfies the following conditions
for all c ∈ T (R) and A,B ∈ F(R):

(1) cA∗ ⊆ (cA)∗.
(2) A ⊆ A∗, and A ⊆ B implies A∗ ⊆ B∗.
(3) (A∗)∗ = A∗.
(4) R∗ = R.

It is routine to see that the v-operation and the t-operation on R are ∗-
operations. An A ∈ F(R) is called a ∗-module if A∗ = A, and is called a
∗-ideal when A is an ideal of R with A∗ = A. A star operation ∗ is said to have
finite character if for any A ∈ F(R),

A∗ =
∪
{B∗ |B runs over all finitely generated R-submodules contained in A}.

We define the w-operation by A → Aw for all A ∈ F(R). Then, by Proposition
3.7, the w-operation on R has finite character.

Proposition 3.11. Let A and B be R-submodules of T (R), and let {Bi} be a
family of R-submodules of T (R). Then the following hold:

(1) (
∑

i Bi)∗ = (
∑

i(Bi)∗)∗.
(2)

∩
i(Bi)∗ = (

∩
i(Bi)∗)∗.

(3) (AB)∗ = (A∗B)∗ = (A∗B∗)∗.
(4) (A−1)∗ = A−1.
(5) (A∗)

−1 = A−1. Therefore, if A∗ = B∗, then A−1 = B−1.
(6) A∗ ⊆ Av. Therefore, A∗ ⊆ At provided that ∗ has finite character.

Proof. The proofs of all parts are straightforward. □
For A ∈ F(R), we say that A is ∗-invertible if (AA−1)∗ = R. If A is

w-invertible, then A is w-finite, and Am is a free Rm-module for any m ∈
w-max(R). In the domain case, Anderson and Cook [1] and Park [13] have
independently shown that a nonzero ideal of R is t-invertible if and only if it
is w-invertible, and that an ideal of R is a maximal t-ideal if and only if it is a
maximal w-ideal. As in the domain case, there are also nice relations between
the t-operation and the w-operation on arbitrary commutative rings, which will
be useful in our further study.

Theorem 3.12. Let A be a regular ideal of R. Then At = R if and only if
Aw = R.

Proof. If Aw = R, then At = R because of Aw ⊆ At. Conversely, suppose
At = R. Then there exists a finitely generated subideal B of A such that
Bv = R. Without loss of generality, we can assume that B is regular. In this
case, B ∈ GV (R). Consequently, R = Bw ⊆ Aw ⊆ R implies Aw = R. □
Corollary 3.13. Let A be a regular ideal of R. Then A is t-invertible if and
only if A is w-invertible.

Proof. By Theorem 3.12, (AA−1)t = R if and only if (AA−1)w = R. □
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Corollary 3.14. Let m be a regular ideal of R. Then m is a maximal t-ideal
if and only if m is a maximal w-ideal.

Proof. “Only if” part. Suppose that I is a w-ideal of R properly containing m.
Then It = R, and so Iw = R. Thus m is a maximal w-ideal.

“If” part. Clearly, mt ̸= R. Since mt is a w-ideal, mt = m. Thus m is a
maximal t-ideal. □
Proposition 3.15. Let p be a prime ideal of R. Then either pw = p or pw = R.

Proof. Suppose pw ̸= R. For x ∈ pw, there exists J ∈ GV (R) such that Jx ⊆ p.
Since J ̸⊆ p, x ∈ p. Therefore, pw = p. □
Proposition 3.16. Let p be a w-invertible regular prime w-ideal of R. Then
p is a maximal w-ideal.

Proof. Suppose that I is an ideal of R properly containing p. Choose c ∈ I\p,
and let p = Bw, where B is a finitely generated subideal of p. Without loss of
generality, we may assume that B is regular. Set J = (B, c). For x ∈ J−1, we
have xcB ⊆ B ⊆ p. Since c ̸∈ p, xB ⊆ p. Then xp = xBw ⊆ (xB)w ⊆ p. So
xpp−1 ⊆ pp−1. Since (pp−1)w = R, x ∈ R. Thus J−1 = R, and so J ∈ GV (R).
Since J ⊆ I, Iw = R, as required. □

4. Characterizations of w-Noetherian rings and Krull rings

In this section, we will give some new characterizations of Krull rings through
the w-operation and display several w-Noetherian analogues of well-known re-
sults for Noetherian rings. But first we have to look at the w-Noetherian ring
which is an extension of the notion of a strong Mori domain introduced by
Wang and McCasland (see [17, 18]).

Definition 4.1. A w-module M is called a w-Noetherian module if M satisfies
the ACC on its w-submodules. R is said to be a w-Noetherian ring if R is a
w-Noetherian module.

By the above definition, it is clear that every w-submodule of a w-Noetherian
module is a w-Noetherian module. The proofs of the next two results are
routine, therefore they will be omitted.

Proposition 4.2. For a w-module M , the following are equivalent:
(1) M is a w-Noetherian module.
(2) Every w-submodule of M is of finite type.
(3) Every non-empty set of w-submodules of M has a maximal element.
(4) Every submodule of M is of finite type.

When M = R, we have

Proposition 4.3. For a commutative ring R, the following are equivalent:
(1) R is a w-Noetherian ring.
(2) Every w-ideal of R is of finite type.
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(3) Every non-empty set of w-ideals of R has a maximal element.
(4) Every ideal of R is of finite type.

Corollary 4.4. If R is a w-Noetherian ring, then Rp is Noetherian for each
prime w-ideal p of R.

Proof. It follows from Proposition 4.3 and Theorem 3.9. □
It is easy to verify that, for any two submodules A and B of a GV -torsionfree

R-module M , (A+B)w = (Aw +Bw)w. Here we have:

Proposition 4.5. Let M1,M2, . . . ,Mn be w-modules. Then
⊕n

i=1 Mi is a
w-Noetherian module if and only if Mi is a w-Noetherian module for each
1 ⩽ i ⩽ n.

Proof. “Only if” part is trivial.
“If” part. It suffices to prove the case n = 2. Let M = M1

⊕
M2, and let N

be a w-submodule of M . Set B = N
∩
M1 and C = π(N), where π : M → M2

is a projective map. Then we have the following commutative diagram with
exact rows:

0 // B //

��

N
π //

��

C //

��

0

0 // M1
// M

π // M2
// 0

Since M1 and M2 are both w-Noetherian modules, we have B = (B1)w and
Cw = π(N1)w, where B1 and N1 are finitely generated submodules of B and
N , respectively. Next we show N = (B1 +N1)w.

Let x ∈ N . Then π(x) ∈ C. Thus Jπ(x) ⊆ π(N1) for some J ∈ GV (R).
It follows that Jx ⊆ (B +N1). Hence x ∈ (B +N1)w = ((B1)w + (N1)w)w =
(B1 +N1)w, and so N = (B1 +N1)w. Therefore, M is a w-Noetherian module
by Proposition 4.2. □

We adopt Kennedy’s definition of a Krull ring. Recall from [10] that a ring
R is called a Krull ring if there exists a family {(Vα, Pα) |α ∈ Γ} of discrete
rank one valuation pairs of T (R) with associated valuations {να |α ∈ Γ} such
that:

(1) R =
∩
{Vα |α ∈ Γ}.

(2) να(a) = 0 almost everywhere on Γ for each regular element a ∈ T (R),
and each Pα is a regular ideal of Vα.
So we do not assume that Krull rings are Marot rings. Recall that a ring R
is said to be a Marot ring if every regular ideal can be generated by a set
of regular elements. There is another definition of a Krull ring (see [7, 15]),
which is precisely a Marot Krull ring. In [10] Kennedy showed that a Krull
ring is completely integral closed and satisfies the ACC on regular v-ideals. In
response to Kennedy’s question, Matsuda [12] proved that the converse is also
true. We will see below that R is a Krull ring if and only if R is completely
integrally closed and satisfies the ACC on regular w-ideals.
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Theorem 4.6. Let R be a commutative ring. Then the following are equivalent:
(1) R is a Krull ring.
(2) Every regular ideal is w-invertible.
(3) Every regular w-ideal is w-invertible.
(4) Every regular prime ideal is w-invertible.
(5) Every regular prime w-ideal is w-invertible.
(6) R is completely integrally closed and satisfies the ACC on regular w-

ideals.
(7) R is completely integrally closed and satisfies the ACC on regular v-

ideals.
(8) R is completely integrally closed and every regular t-ideal is a v-ideal.
(9) R is completely integrally closed and every regular maximal w-ideal is a

v-ideal.
(10) R is completely integrally closed and every regular w-ideal is a v-ideal.

Proof. (1) ⇔ (7) follows from [12].
(2) ⇔ (3) is clear.
(2) ⇒ (4) ⇒ (5). Trivial.
(5) ⇒ (3) is similar to the proof of (vi) ⇒ (v) of [17, Theorem 5.4].
(2) ⇒ (6). Let I be a regular ideal of R. Then (II−1)w = R, and so

(II−1)v = R. Thus, by [10, Proposition 1.1], R is completely integrally closed.
On the other hand, since every regular ideal of R is w-finite, every non-empty
set of regular w-ideals of R has a maximal element. Therefore, R satisfies the
ACC on regular w-ideals.

(6) ⇒ (7) ⇒ (8) ⇒ (9) are obvious.
(9) ⇒ (2). Let I be a regular ideal of R. Then (II−1)v = R by [10,

Proposition 1.1]. Suppose (II−1)w ̸= R. Then there exists a maximal w-ideal
m such that (II−1)w ⊆ m. Thus (II−1)v ⊆ mv = m, a contradiction.

(3) + (6) ⇒ (10). Note that every w-invertible regular w-ideal is a v-ideal.
(10) ⇒ (9) is trivial. □
One can borrow the techniques from [17, 18] to obtain easily the following

results, so the proofs are omitted.

Theorem 4.7. Let R be a commutative ring.
(1) (The Cohen Theorem for w-Noetherian rings) R is a w-Noetherian ring

if and only if each prime w-ideal of R is of finite type.
(2) (The Krull Intersection Theorem for w-Noetherian rings) Let R be a w-

Noetherian ring and M a w-Noetherian module. If B =
∩∞

n=1(I
nM)w, where

I is an ideal of R, then B = (IB)w.
(3) (The Generalized PIT for w-Noetherian rings) Let R be a w-Noetherian

ring, and let I = (a1, a2, . . . , an)w be a w-ideal of R. If p is a prime ideal of R
minimal over I, then htp ⩽ n.

It is worth noting that for a w-Noetherian ring R, if p is a prime ideal of R
minimal over a ∈ R which is a regular element, then htp = 1.
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Proposition 4.8. A direct product of finitely many w-Noetherian rings is a
w-Noetherian ring.

Proof. Let R1, R2, . . . , Rn be w-Noetherian rings. Set R = R1×R2×· · ·×Rn.
It is enough to prove the case n = 2. Let I be a w-ideal of R. Then I = I1×I2,
where Ii is an ideal of Ri for i = 1, 2. By Proposition 4.3, (Ii)w = (Bi)w for
a finitely generated subideal Bi of Ii, where i = 1, 2. To complete the proof,
we only need to show that I = (B1 × B2)w. Obviously, (B1 × B2)w ⊆ I.
Conversely, let a = (a1, a2) ∈ I, where ai ∈ Ii for i = 1, 2. Then there exists
Ji ∈ GV (Ri) such that Jiai ⊆ Bi for i = 1, 2. Thus (J1×J2)(a1, a2) ⊆ B1×B2.
Hence a ∈ (B1 ×B2)w by Proposition 1.2(5), and so I ⊆ (B1 ×B2)w. □
Theorem 4.9 (The Hilbert Basis Theorem for w-Noetherian rings). If R is a
w-Noetherian ring, then R[X] is likewise a w-Noetherian ring.

Proof. Let H be a w-ideal of R[X]. Suppose that Is is the ideal of R generated
by leading coefficients of polynomials of degree s inH, where s = 0, 1, . . .. Then
Is ⊆ Is+1, and thus there exists a nonnegative integer m such that (Im)w =
(Im+1)w = · · · and I0, I1, . . . , Im are w-finite. Let (Is)w = (as1, . . . , asns)w,
where as1, . . . , asns

∈ Is for s = 0, 1, . . . ,m. Then there exists polynomial fsi
in H whose leading coefficient is asi, where i = 1, . . . , ns and s = 0, 1, . . . ,m.
Set A =

∑m
s=0

∑ns

i=1 R[X]fsi. To show that R[X] is a w-Noetherian ring, it
suffices by Proposition 4.3 to show that H = AW , where AW denotes the w-
envelope of A as an R[X]-module. Obviously, AW ⊆ H. On the other hand,
let f ∈ H. First, 0 ∈ AW . Now let f = axs + · · · have degree s. Then a ∈ Is.

We prove by induction that f ∈ AW for every s ⩾ 0. For s ⩽ m the assertion
is clear. Let s > m and assume the statement holds for all deg(f) < s. Then
a ∈ (Is)w = (Im)w. Thus there exists J = (d1, . . . , dt) ∈ GV (R) such that
Ja ⊆ (am1, . . . , amnm), and so dja =

∑nm

i=1 biami for 1 ⩽ j ⩽ t, where bi ∈ R.
Set gj = djf−

∑nm

i=1 bix
s−mfmi for each 1 ⩽ j ⩽ t. Then gj has degree less than

s, and hence gj ∈ AW by the induction hypothesis. Consequently, djf ∈ AW

for each 1 ⩽ j ⩽ t, and so J [X]f ⊆ AW . By Proposition 1.2, J [X] ∈ GV (R[X])
and thus f ∈ AW , as required. □
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