Ideal Theory in Commutative A-semirings

  • Received : 2004.11.29
  • Published : 2006.06.23

Abstract

In this paper, we investigate and characterize the class of A-semirings. A characterization of the Thierrin radical of a proper ideal of an A-semiring is given. Moreover, when P is a Q-ideal in the semiring R, it is shown that P is primary if and only if R/P is nilpotent.

Keywords

References

  1. P. J. Allen, A fundamental theorem of homomorphisms for semirings, Proc. Amer. Math. Soc., 21(1969), 412-416. https://doi.org/10.1090/S0002-9939-1969-0237575-4
  2. I. Dolinka, Minimal varieties of semirings with involution, Algebra Univ., 44(2000), 143-151. https://doi.org/10.1007/s000120050176
  3. S. Ghosh, A Note on regularity in matrix semirings, Proc. Japan Acad., 44(2004), 1-4.
  4. J. S. Golan, Semirings and their applications, Kluwer Academic, Dordrecht, 1999.
  5. S. A. Huq, The semiring of quotionts of commutative semirings, Colloq. Math., 28(1973), 185-188. https://doi.org/10.4064/cm-28-2-185-188
  6. K. Iseki, Notes on topological spaces V, Proc. Japan Acad., 32(1956), 426-429. https://doi.org/10.3792/pja/1195525309
  7. K. Iseki, Ideal theory of semirings, Proc. Japan Acad., 32(1956), 554-559. https://doi.org/10.3792/pja/1195525272
  8. K. Iseki, Ideals in semirings, Proc. Japan Acad., 34(1958), 29-31. https://doi.org/10.3792/pja/1195524845
  9. K. Iseki, Quasiideals in semirings without zero, Proc. Japan Acad., 34(1958), 79-81. https://doi.org/10.3792/pja/1195524783
  10. K. Iseki, On ideals in semiring, Proc. Japan Acad., 34(1958), 507-509. https://doi.org/10.3792/pja/1195524563
  11. H. S. Kim, On quotient semiring and extension of quotient halfring, Comm. Korean Math. Soc., 4(1989), 17-22.
  12. M. K. Sen, On maximal k-ideals of semirings, Proc. Amer. Math. Soc., 119(1993), 699-703.
  13. J. Zeleznikow, Regular semirings, Semigroup Forum, 23(1981), 119-136.