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Abstract. Let R be a commutative ring with identity and let I be a proper ideal of R.
In this paper, we study the ideal based extended zero-divisor graph Γ

′

I(R) and prove that
Γ′
I(R) is connected with diameter at most two and if Γ′

I(R) contains a cycle, then girth
is at most four girth at most four. Furthermore, we study affinity the connection between
the ideal based extended zero-divisor graph Γ′

I(R) and the ideal-based zero-divisor graph
ΓI(R) associated with the ideal I of R. Among the other things, for a radical ideal of a
ring R, we show that the ideal-based extended zero-divisor graph Γ′

I(R) is identical to the
ideal-based zero-divisor graph ΓI(R) if and only if R has exactly two minimal prime-ideals
which contain I.

1. Introduction

Throughout this paper let R be a commutative ring identity, I be a proper ideal of R
which is not a prime ideal of R, Z(R) be the set of zero-divisors of R, Z∗(R) = Z(R)\{0},
Z∗

I (R) = {u /∈ I | uv ∈ I for some v /∈ I}, ZI(R) = Z∗
I (R) ∪ I and N(R) be the set of

nilpotent elements of R. Let B be a submodule of an R-module M and X be any subset
of M. Then (B : X) = {r ∈ R | rx ∈ B for all x ∈ X}. MinI(R) will denote the set of
minimal prime ideals of R which contain I. Let β(I) = {r ∈ R | rn ∈ I for some n ∈ N} be
a prime radical of I in R, then β∗(I) = β(I)\I and I is said to be radical ideal if β(I) = I.
R/I denotes the quotient ring of R, and for any x+ I ∈ R/I we use the notation [x]. For
any subset A of R, we have A∗ = A \ {0}.

Let G = (V (G), E(G)) be a graph, where V (G) denotes the set of vertices and E(G)
be the set of edges of G. We say that G is connected if there exists a path between any two
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distinct vertices of G. For vertices a and b of G, d(a, b) denotes the length of the shortest
path from a to b. In particular, d(a, a) = 0 and d(a, b) = ∞ if there exists no such path.
The diameter of G, denoted by diam(G) = sup{d(a, b) | a, b ∈ V (G)}. A cycle in a
graph G is a path that begins and ends at the same vertex. The girth of G, denoted
by gr(G), is the length of a shortest cycle in G, (gr(G) = ∞ if G contains no cycle).
A complete graph G is a graph where all distinct vertices are adjacent. The complete
graph with |V (G)| = n is denoted by Kn. A graph G is said to be complete k-partite

if there exists a partition
k
⋃

i=1

Vi = V (G), such that u − v ∈ E(G) if and only if u and

v are in different part of partition. If |Vi| = ni, then G is denoted by Kn1,n2,··· ,nk
and

in particular G is called complete bipartite if k = 2. K1,n is said to be a star graph.
G denotes the complement graph of G. A graph H = (V (H), E(H)) is said to be a
subgraph of G, if V (H) ⊆ V (G) and E(H) ⊆ E(G). Moreover, H is said to be induced
subgraph of G if V (H) ⊆ V (G) and E(H) = {u − v ∈ E(G) | u, v ∈ V (H)} and is
denoted by G[V (H)]. Let H1 and H2 be two disjoint graphs. The join of H1 and H2,
denoted by H1∨H2, is a graph with vertex set V (H1∨H2) = V (H1)∪V (H2) and edge set
E(H1∨H2) = E(H1)∪E(H2)∪{u−v | u ∈ V (H1), v ∈ V (H2)}. Also G is called a null graph
if E(G) = φ. For a graph G, a complete subgraph of G is called a clique. The clique number,
ω(G), is the greatest integer n > 1 such that Kn ⊆ G, and ω(G) = ∞ if Kn ⊆ G for all
n > 1. The chromatic number χ(G) of a graph G is the minimum number of colours needed
to colour all the vertices of G such that every two adjacent vertices get different colours.
A graph G is perfect if χ(H) = ω(H) for every induced subgraph H of G. For a connected
graph G, δ(G) = min{deg(x) | x ∈ V (G)}, V (δ(G)) = {x | x ∈ V (G), deg(x) = δ(G)}
and ∆(G) = max{deg(x) | x ∈ V (G)}, V (∆(G)) = {x | x ∈ V (G), deg(x) = ∆(G)}. A
subset D ⊆ V (G) is said to be a dominating set if every vertex in V (G) \D is adjacent
to a vertex in D. A dominating set D is called a weak (or strong) dominating set if for
every u ∈ V (G) \D there exists v ∈ D with deg(v) ≤ deg(u) (or deg(u) ≤ deg(v)) and u
is adjacent to v. The domination number γ(G) of G is defined to be minimum cardinality
of a dominating set of G and such a dominating set of G is called a γ-set of G. In a
similar way, we define the weak (or strong) domination number γw(G) (or γs(G)) of G. A
graph G is said to be excellent, if for every u ∈ V (G), there exists a γ-set D containing u.
Graph-theoretic terms are presented as they appear in Diestel [9].
The study of algebraic structure associated with graph is an active and interesting area of
research. Several authors have done a lot of work in this area for instance, see [1–4,7,8,12].
The idea of a zero-divisor graph of a commutative ring R with identity was introduced by
I. Beck in [8], who defined the graph on the vertex set R in which distinct vertices u, v ∈ R
are adjacent if and only if uv = 0. He was mainly interested in coloring of rings. The first
simplification of Beck’s zero divisor graph was introduced by Anderson and Livingston
in [2]. We recall from [2] that a zero-divisor graph Γ(R) of R is the (undirected) graph
with set of vertices Z∗(R) and on the vertex set Z∗(R), in which any two distinct vertices u
and v of Γ(R) are adjacent if and only if uv = 0. In [13] Redmond introduced an ideal-based
zero-divisor graph ΓI(R) with set of vertices Z∗

I (R) and vertex set Z∗
I (R), in which any two

distinct vertices u and v of ΓI(R) are adjacent if and only if uv ∈ I. In [5] Bakhtyiari et al.
introduced the extended zero-divisor graph Γ′(R). The extended zero-divisor graph of R
is an (undirected) graph Γ′(R) with the vertex set Z∗(R) and two distinct vertices u and
v of Γ′(R) are adjacent if and only if either Ru ∩ annR(v) 6= {0} or Rv ∩ annR(u) 6= {0}.

In this paper we generalize the extended zero divisor graph Γ′(R) to an ideal-based
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extended zero-divisor graph Γ′
I(R). The ideal based extended zero-divisor graph Γ′

I(R) is
the (undirected) graph with the vertex set Z∗

I (R), in which two distinct vertices u and v
are adjacent if and only if either (Ru+ I)∩ (I : {v}) 6= I or (Rv+ I)∩ (I : {u}) 6= I. If we
take I = (0), then Γ′

I(R) = Γ′(R). It follows that the ideal-based zero-divisor graph ΓI(R)
is a subgraph of Γ′

I(R). We prove that Γ′
I(R) is connected with diameter at most two, and

if Γ′
I(R) contain a cycle, then girth is at most four. Furthermore, we study the connection

between the ideal based extended zero-divisor graph Γ′
I(R) and the ideal-based zero-divisor

graph ΓI(R) associated with the ideal I of a commutative ring R. Among the other things,
for a radical ideal of a commutative ring R, we show that ideal-based extended zero-divisor
graph Γ′

I(R) is identical to the ideal-based zero-divisor graph ΓI(R) if and only if R has
exactly two minimal prime-ideals which contain I.

2. Fundamental Properties of Ideal-based Extended Zero-divisor Graph

In this section, we generalize the notion of an extended zero-divisor graph Γ′(R) to
an ideal-based extended zero-divisor graph Γ′

I(R) and study fundamental properties of
Γ′
I(R).

Definition 2.1. Let I be an ideal in a commutative ring R with unity. An ideal-based
extended zero divisor graph Γ′

I(R) is an undirected graph with the set of vertices Z∗
I (R),

where any two distinct vertices u, v of Γ′
I(R) are adjacent if and only if either (Ru+I)∩(I :

{v}) 6= I or (Rv + I) ∩ (I : {u}) 6= I.

Proposition 2.2. Let I be an ideal in a commutative ring R with unity. Then
(i) ΓI(R) is a subgraph of Γ′

I(R).
(ii) if I = (0), then Γ′

I(R) = Γ′(R) and Γ(R) is a subgraph of Γ′
I(R).

Proof. Let I be an ideal of a commutative ring R.
(i) Clearly, V (Γ′

I(R)) = V (ΓI(R)) and let u and v be any two adjacent vertices of ΓI(R).
Then uv ∈ I and u ∈ (Ru+ I) ∩ (I : {v}), v ∈ (Rv + I) ∩ (I : {u}), i.e., (Ru+ I) ∩ (I :
{v}) 6= I, (Rv+I)∩(I : {u}) 6= I. Hence u and v also adjacent in Γ′

I(R), and by definition
ΓI(R) is a subgraph of Γ′

I(R).

(ii) It trivially holds.

Lemma 2.3. Let I be a radical ideal in a commutative ring R which is not prime, and let
u ∈ Z∗

I (R). Then

(i) (I : {u}) = (I : {un}) for each positive integer n > 2,

(ii) (Ru+ I) ∩ (I : {u}) = I.

Proof. Assume that I is a radical ideal of a ring R which is not prime and u ∈ Z∗
I (R).

(i) Let n ≥ 2. It is clear that (I : {u}) ⊆ (I : {un}). If v ∈ (I : {un}), then vun ∈ I. Since
I is a radical ideal, vu ∈ I and v ∈ (I : {u}). Thus (I : {un}) = (I : {u}).

(ii) This is clearly true.

The following lemma gives several useful properties of Γ′
I(R) and plays an important

role in this section.
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Lemma 2.4. Let I be a proper ideal of a ring R.

(i) If u− v is not an edge of Γ′
I(R) for some u, v ∈ Z∗

I (R), then (I : {u}) = (I : {v}).
If I is a radical ideal, then the converse is also true.

(ii) If (I : {u}) * (I : {v}) or (I : {v}) * (I : {u}) for some u, v ∈ Z∗
I (R), then u− v is

an edge of Γ′
I(R).

(iii) If (Ru + I) ∩ (I : {u}) 6= I for some u ∈ Z∗
I (R), then u is adjacent to all other

vertex in Γ′
I(R). In particular if u ∈ β∗(I), then u is adjacent to every other vertex

of Γ′
I(R).

(iv) Γ′
I(R)[β∗(I)] is a complete subgraph of Γ′

I(R).

Proof. Assume that I is an ideal of a ring R.
(i) If u − v is not an edge of Γ′

I(R) for some u, v ∈ Z∗
I (R), then (Ru+ I) ∩ (I : {v}) = I

and (Rv + I) ∩ (I : {u}) = I. Thus (Ru + I)(I : {v}) ⊆ (Ru + I) ∩ (I : {v}) = I and
(Rv + I)(I : {u}) ⊆ (Rv + I) ∩ (I : {u}) = I and hence (I : {u}) = (I : {v}). If I is a
radical ideal of R, then by Lemma 2.3(ii), (Ru+ I)∩ (I : {v}) = (Ru+ I) ∩ (I : {u}) = I
and (Rv + I) ∩ (I : {u}) = (Rv + I) ∩ (I : {v}) = I. Thus u− v is not an edge of Γ′

I(R).

(ii) This is clear by part (i).

(iii) Assume that (Ru + I) ∩ (I : {u}) 6= I for some u ∈ Z∗
I (R), and let v be another

vertex of Γ′
I(R). If u is not adjacent to v, then by part (i), (I : {u}) = (I : {v}) and hence

(Ru+ I) ∩ (I : {u}) = I, a contradiction.

(iv) This is clearly true by (iii).

Theorem 2.5. Let I be an ideal of R. Then Γ′
I(R) is connected and dia(Γ′

I(R)) ≤ 2.
Moreover if Γ′

I(R) contains a cycle, then gr(Γ′
I(R)) ≤ 4.

Proof. By Lemma 2.2(i), ΓI(R) is a connected subgraph of Γ′
I(R) such that V (ΓI(R)) =

V (Γ′
I(R). Therefore Γ′

I(R) is connected and gr(Γ′
I(R)) ≤ 4. Now we prove that

dia(Γ′
I(R)) ≤ 2. If I is a non-radical ideal of R, then β(I) 6= I and by Lemma 2.4(iii),

dia(Γ′
I(R)) ≤ 2. If I is a radical ideal of R, then β(I) = I. Let u, v ∈ V (Γ′

I(R)) such
that d(u, v) 6= 1. Then by Lemma 2.4(i), (I : {u}) = (I : {v}). Since β(I) = I, by Lemma
2.3(ii), (Rv+I)∩(I : {v}) = I. Therefore, for every w ∈ (I : {v})\I both u, v are adjacent
to w and d(u, v) = 2. Thus diam(Γ′

I(R)) ≤ 2. This completes the proof.

Lemma 2.6. Let I be a proper ideal of a commutative ring R. Then ZI(R) is a union of
prime ideals of R which contain I.

Proof. Let us define a map F : R −→ R/I by F (x) = [x]. Clearly, F is a homomorphism
from R onto R/I. By [11, p. 3], Z(R/I) =

⋃

Pi where Pi is a prime ideal in R/I. clearly,
ZI(R) =

⋃

F−1(Pi) where F−1(Pi) is a prime ideal in R which contains I.

Corollary 2.7. Let I be a radical ideal of a commutative ring R. Then ZI(R) =
⋃

Pi,
where Pi ∈ MinI(R).

Proof. The corollary is immediate from Lemma 2.6 and [10, Corollory 2.4].
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Theorem 2.8. Let I be a proper ideal of a commutative ring R and let Γ′
I(R) contain a

cycle. Then gr(Γ′
I(R)) = 4 if and only if I is a radical ideal with |MinI(R)| = 2.

Proof. First assume that gr(Γ′
I(R)) = 4. If I is not a radical ideal, then β(I) 6= I and by

Lemma 2.4(iii) gr(Γ′
I(R)) = 3, a contradiction. Hence I must be a radical ideal of R. Let

u ∈ Z∗
I (R). We will prove that (I : {u}) is a prime ideal of R. Suppose that ab ∈ (I : {u})

such that a, b /∈ (I : {u}) but aubu ∈ I. Hence for every c ∈ (I : {u}) \ I, it is easy to
see that c − au − bu − c is a triangle, a contradiction. Hence (I : {u}) is a prime ideal.
Since I is a radical ideal and by Lemma 2.3(ii) together with [10, Theorem 2.1] implies
that (I : {u}) is a minimal prime ideal which contains I. i.e., (I : {u}) ∈ MinI(R). By
similar arguments (I : {v}) ∈ MinI(R), for each v ∈ (I : {u}) \ I. Now we prove that
MinI(R) = {(I : {u}), (I : {v})}. It is sufficient to show that (I : {u}) ∩ (I : {v}) = I.
Assume on contrary (I : {u})∩(I : {v}) 6= I and a ∈ (I : {u})∩(I : {v})\I. Then a−u−v−a
is a triangle as uv ∈ I, a contradiction. Hence MinI(R) = {(I : {u}), (I : {v})}.
Conversely, assume that I is a radical ideal of R and |MinI(R)| = 2. Let Q1, Q2 ∈
MinI(R). Since I is a radical ideal, we have ZI(R) = Q1 ∪ Q2 and Q1 ∩ Q2 = I, by
Corollary 2.7. It is not difficult to check that Γ′

I(R) = K|Q∗

1
|,|Q∗

2
|, where |Q∗

1| = |Q1 \ I |
and |Q∗

2| = |Q2 \ I |. Since Γ′
I(R) contains a cycle, gr(Γ′

I(R)) = 4.

Example 2.9. For R = Z6 ×Z3 and I = (0)×Z3, it may be observed that Q1 = (3)×Z3

and Q2 = (2) × Z3 are the only two minimal prime ideals of R, which contain radical
ideal I, where ZI(R) = Q1 ∪ Q2 and Q1 ∩ Q2 = I. Since |Q∗

1| = 3 and |Q∗
2| = 6, it can

be easily seen in the following Figure 2.1 that Γ′
I(R) = ΓI(R) = K|Q∗

1
|,|Q∗

2
| = K3,6 and

gr(Γ′
I(R)) = 4.

(2,0) (2,1) (4,0) (4,2) (2,2) (4,1)

(3,0) (3,1) (3,2)

(0,1,0) (0,1,1)

(1,0,1) (1,0,0)

Figure 2.1 Figure 2.2

Example 2.10. For R = Z2 ×Z2 ×Z2 and I = (0)× (0)×Z2, it can be easily seen in the
above Figure 2.2, K2,2 is realizable as Γ′

I(R), which is not realizable as Γ′(R).

Corollary 2.11. Let I be a proper ideal of a commutative ring R. Then Γ′
I(R) is K2,2

if and only if I is a radical ideal of R with |MinI(R)| = 2 and each element of MinI (R)
contains exactly two elements other than I.
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Example 2.12. For R = Z24 and I = (8), it can be easily seen from the following Figures
2.3 and 2.4 that the ideal-based extended zero divisor graph Γ′

I(R) = K9 is different from
ideal-based zero divisor graph ΓI(R) and ΓI(R) is a subgraph of Γ′

I(R) = K9.

2

6

10

14

18

22

4 12

20

(2) (6) (10) (14) (18) (22)

(4)

(12)

(20)

Γ′
I(R) = K9

R = Z24 and I = (8)

Figure 2.4

ΓI(R)

R = Z24 and I = (8)

Figure 2.3

3. When Ideal-based Extended Zero Divisor Graph Γ′
I(R) and Ideal-based Zero

Divisor Graph ΓI(R) are Identical?

As we have seen in the previous section, ideal-based extended zero divisor graphs
and ideal-based zero-divisor graphs are close to each other, it would be interesting to
characterize ideals of a ring whose ideal-based extended zero-divisor graph and ideal-based
zero divisor graph are identical. We first study the case when I is a radical ideal of R.

Theorem 3.1. Let I be a radical ideal of a commutative ring R with |MinI (R)| = k ≥ 2.
Then k = 2 if and only if Γ′

I(R) = ΓI(R).
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Proof. First assume that Γ′
I(R) = ΓI(R). To prove that k = 2, assume on the contrary

Q1, Q2, Q3 are distinct minimal prime ideals of R which contain I. Let u ∈ Q1 \Q2 ∪Q3.
Thus Q2 ∪ Q3 * (I : {u}) as (I : {u}) ⊆ Q2 ∩ Q3. So one may choose uv /∈ I, for some
v ∈ Q2 ∪ Q3 \ Q1. Without loss of generality, assume that v ∈ Q2 \ Q1. Obviously, (I :
{v}) ⊆ Q1. Also, it follows from [10, Theorem 2.1], there exists an element w ∈ (I : {u})
such that w /∈ Q1. Therefore, (I : {u}) 6= (I : {v}) and by Theorem 2.4(ii), u − v is an
edge of Γ′

I(R), a contradiction.
Conversely, assume that Q1 and Q2 are only two distinct minimal prime ideals of

R which contain I. It is not difficult to check that ΓI(R) = Γ′
I(R) =K|Q∗

1
|,|Q∗

2
|. Where

Q∗
1 = Q1 \ I and Q∗

2 = Q2 \ I.

The following corollary follows from Theorem 3.1.

Corollary 3.2. Let I be a radical ideal of a commutative ring R, which is not a prime
ideal. Then the following statements are equivalent:

(i) gr(Γ′
I(R)) = 4.

(ii) Γ′
I(R) = ΓI(R) and gr(ΓI(R)) = 4.

(iii) |MinI (R)| = 2 and each minimal prime ideal of MinI(R) has at least two different
elements other then elements of I.

(iv) Γ′
I(R) = Km,n for some m,n ∈ N and m,n > 2.

In the rest of this section we study the case that I is a non radical ideal of R

Theorem 3.3. Let I be a non radical ideal of a commutative ring R. Then the following
statements are equivalent.

(i) Γ′
I(R) = ΓI(R).

(ii) If uv /∈ I for some u, v ∈ Z∗
I (R), then (I : {u}) = (I : {v}) and (I : {u}) is a prime

ideal of R.

Proof. (i) ⇒ (ii) Assume that uv /∈ I, for some u, v ∈ Z∗
I (R). Since Γ′

I(R) = ΓI(R), we
deduce that (I : {u}) = (I : {v}), by Lemma 2.4(i). We now show that (I : {u}) is a prime
ideal of R. Let ab ∈ (I : {u}), a /∈ (I : {u}) and b /∈ (I : {u}). Then au /∈ I and bu /∈ I,
a, b ∈ Z∗

I (R). By Lemma 2.4(iii), u, v /∈ β(I) and hence u 6= a or u 6= b. Without loss of
generality, one may assume that u 6= b. But since au ∈ (Ru+ I) ∩ (I : {v}), we find that
ub ∈ I, a contradiction. Therefore, (I : {u}) is a prime ideal of R, as desired.

(ii) ⇒ (i) If uv ∈ I for all u, v ∈ Z∗
I (R), then ΓI(R) is complete and by Proposition 2.2(i),

Γ′
I(R) is complete. i.e., Γ′

I(R) = ΓI(R). To complete the proof, we prove that if uv /∈ I.
Then (Ru+ I) ∩ (I : {v}) = I and (Rv + I) ∩ (I : {v}) = I. Since (I : {u}) = (I : {v}) If
u ∈ (I : {u}), then u ∈ (I : {v}) and hence uv ∈ I, a contradiction. Thus u /∈ (I : {u}).
Also, if (Ru + I) ∩ (I : {u}) 6= I, then there exists r ∈ R such that ru /∈ I and ru2 ∈ I.
Since u2 /∈ (I : {u}) as (I : {u}) is a prime ideal of R, r ∈ (I : {u}), a contradiction. Hence
(Ru+ I) ∩ (I : {u}) = I. Similarly, (Rv + I) ∩ (I : {v}) = I.

Corollary 3.4. Let I be a non radical ideal of a commutative ring R and Γ′
I(R) = ΓI(R).

Then the following hold.

(i) ZI(R) is an ideal of R.
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(ii) β(I)2 ⊆ I.

(iii) (I : ZI(R)) = β(I).

Proof. Assume that I is not a radical ideal of R.
(i) Since I is a non radical ideal of R, β∗(I) 6= φ. Let u ∈ β∗(I). Then by Lemma
2.4 (iii) u is adjacent to every other vertex of Γ′

I(R). Since Γ′
I(R) = ΓI(R), u is adjacent

to every other vertex of ΓI(R), and hence by [13, Theorem 2.5(b)] [u], is adjacent to every
other vertex of Γ(R/(I) and by [2, Theorem 2.5], we find that Z(R/I) is an annihilator
ideal, i.e., Z(R/I) = annR/I([u]). Since Z(R/I) = annR/I([u]), we find that (I : {u}) =
ZI(R) and thus ZI(R) is an ideal of R.

(ii) By the first part, clearly β(I)2 ⊆ I.

(iii) By the first part, clearly (I : ZI(R)) = β(I).

Corollary 3.5. Let I be a non radical ideal of a commutative ring R. Then Γ′
I(R) =

ΓI(R) = Kp ∨Kq if and only if (I : ZI(R)) is a prime ideal.

Proof. First assume that ΓI(R) = Γ′
I(R) = Kp∨Kq. Hence every vertex of Kp is adjacent

to all the other vertices. But there is no adjacency between any two vertices of Kq. This
implies that (I : ZI(R)) = V (Kp) ∪ I, thus uv /∈ I, for every u, v ∈ V (Kq), and hence
(I : {u}) = (I : {v}) = (I : ZI(R)). By Theorem 3.3 (I : ZI(R)) is a prime ideal of R.
Conversely since (I : ZI(R)) is a prime ideal of R, we find that uv ∈ I,
for all u, v ∈ (I : ZI(R)) and uv /∈ I for all u, v ∈ ZI(R) \ (I : ZI(R)). Now it is enough
to show that ΓI(R)[(I : Z∗

I (R))] is complete, ΓI(R)[ZI(R) \(I : ZI(R))] is null graph and
ΓI(R) = ΓI(R)[(I : Z∗

I (R))] ∨ ΓI(R)[ZI(R) \ (I : ZI(R))]. We finally show that ΓI(R) =
Γ′
I(R). Obviously, uv /∈ I if and only if u, v ∈ ZI(R) \ (I : ZI(R)). This together with

(I : ZI(R)) is a prime ideal, imply that if uv /∈ I, then (I : {u}) = (I : {v}) = (I : ZI(R)).
Thus (I : {u}) is a prime ideal of R. Now by Theorem 3.3, ΓI(R) = Γ′

I(R).

Corollary 3.6. Let I be a non trivial non-radical ideal of a commutative ring R. Then
the following statements are equivalent.

(i) Γ′
I(R) is a star graph.

(ii) gr(Γ′
I(R)) = ∞.

(iii) ΓI(R) = Γ′
I(R) and gr(ΓI(R)) = ∞.

(iv) (I : ZI(R)) is a prime ideal of R, |I | = |β∗(I)| = |Z∗
I (R)| = 2.

(v) Γ′
I(R) = K1,1.

(vi) ΓI(R) = K1,1.

Proof. (i) ⇒ (ii) It is clear.

(ii) ⇒ (iii) If a ∈ β∗(I), then a is adjacent to every other vertex in Γ′
I(R). Since

gr(Γ′
I(R)) = ∞ and ΓI(R) is a connected subgraph of Γ′

I(R), we conclude that Γ′
I(R) =

ΓI(R), and hence gr(ΓI(R)) = ∞.

(iii) ⇒ (iv) Since I is a non trivial non radical ideal of R, it can be easily seen that Γ′
I(R)

is a star graph and Γ′
I(R) = ΓI(R). Therefore by Corollary 3.5, (I : ZI(R)) is a prime ideal

of R. Since I is a nontrivial non radical ideal of R, |I | ≥ 2 and |β(I)| ≥ 4. If |I | = m > 2,
then β(I)| = n ≥ 6 and we can assume that u, v, w ∈ β∗(I) such that by Lemma 2.4 (iii),
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u − v − w − u is a triangle and Γ′
I(R) is not a star graph. Thus |I | = 2. If |I | = 2, then

|β(I)| = 4, otherwise by Lemma 2.4 (iii), Γ′
I(R) is not a star graph. Thus |I | = |β∗(I)| = 2.

If |Z∗
I (R)| ≥ 3, the we can assume that β1, β2 ∈ β∗(I) and z ∈ Z∗

I (R) \ β∗(I) such that by
Lemma 2.4 (iii), β1 − β2 − z − β1 forms a triangle. Hence |I | = |β∗(I)| = |Z∗

I (R)| = 2.

(iv) ⇒ (v) It is clear by Corollary 3.5.

(v) ⇒ (vi) It is clear.

(vi) ⇒ (i) It is clear.

4. Results on Relationship Between Γ′
I(R) and Γ′(R/I)

In this section, we study the graph theoretical relationship between Γ′
I(R) and Γ′(R/I)

under certain parameters like clique number, max (or min) degree, vertex chromatic num-
ber, also determine a necessary and sufficient condition for Γ′

I(R) to be regular and Eule-
rian.

Theorem 4.1. Let I be an ideal of a commutative ring R and let u, v ∈ Z∗
I (R). Then

(i) if [u] is adjacent to [v] in Γ′(R/I), then u is adjacent to v in Γ′
I(R),

(ii) if u is adjacent to v in Γ′
I(R) and [u] 6= [v], then [u] is adjacent to [v] in Γ′(R/I),

(iii) if u adjacent to v in Γ′
I(R) and [u] = [v], then there exists r ∈ Z∗

I (R) such that
ru /∈ I and rv /∈ I, but ru2 ∈ I and rv2 ∈ I,

(iv) if u is adjacent to v in Γ′
I(R), then all (distinct) elements of [u] and [v] are adjacent

in Γ′
I(R). If there exists r ∈ R such that ru /∈ I and ru2 /∈ I, then all the distinct

elements of [u] are adjacent in Γ′
I(R).

Proof. (i) If [u] is adjacent to [v] in Γ′(R/I), then either (R/I)[u] ∩ annR/I([v]) 6= {I}
or (R/I)[v] ∩ annR/I([u]) 6= {I}. This implies that either (Ru + I) ∩ (I : {v}) 6= I or
(Rv + I) ∩ (I : {u}) 6= I. By definition u is adjacent to v in Γ′

I(R).

(ii)If u is adjacent to v in Γ′
I(R) then either (Ru+I)∩(I : {v}) 6= I or (Rv+I)∩(I : {u}) 6=

I. Since [u] 6= [v], either (R/I)[u]∩annR/I([v]) 6= {I} or (R/I)[v]∩annR/I([u]) 6= {I}. By
definition [u] is adjacent to [v] in Γ′(R/I).

(iii) If u is adjacent to v in Γ′
I(R), then either (Ru+ I) ∩ (I : {v}) 6= I or (Ru+ I) ∩ (I :

{v}) 6= I. i.e., either (Ru+ I) ∩ (I : {v}) \ I 6= φ or (Ru+ I) ∩ (I : {v}) \ I 6= φ. Suppose
that (Ru+ I) ∩ (I : {v}) \ I 6= φ. Then there exists α ∈ (Ru+ I) ∩ (I : {v}) \ I such that
α = ru+ i for some r ∈ R \ I, i ∈ I. Clearly ruv ∈ I. Since [u] = [v], u = v + j for some
j ∈ I, we find that ru2 = ruu = ru(v + j) = ruv + ruj ∈ I. Similarly rv2 ∈ I. Now if
(Ru + I) ∩ (I : {v}) \ I 6= φ, then by the similar proof there exists r′ ∈ R \ I such that
r′u2, r′v2 ∈ I.

(iv)If u is adjacent to v in Γ′
I(R), then either (Ru+ I) ∩ (I : {v}) 6= I or (Rv + I) ∩ (I :

{u}) 6= I. Let u + i ∈ [u], v + j ∈ [v]. Then (R(u + i) + I) ∩ (I : {v + j}) 6= I or
(R(v + j) + I) ∩ (I : {u+ i}) 6= I. By definition u+ i is adjacent to v + j in Γ′

I(R).

Proposition 4.2. Let I be an ideal of a ring R. Then Γ′
I(R) contains |I | disjoint subgraphs

isomorphic to Γ′(R/I).
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Proof. Let {aλ | λ ∈ Λ} ⊆ Z∗
I (R) be a set of coset representative vertices of Γ′(R/I),i.e.,

V (Γ′(R/I)) = {[aλ] : λ ∈ Λ} and for each α ∈ I, define a graph Gα = (Vα, Eα) with Vα =
{aλ+α : λ ∈ Λ}, where aγ+α is adjacent to aδ+α in Gα whenever, [aγ ] is adjacent to [aδ]
in Γ′(R/I). i.e., either (R/I)[aγ ]∩ann(R/I)([aδ]) 6= {I} or (R/I)[aδ]∩ann(R/I)([aγ ]) 6= {I}.
By Theorem 4.1 Gα is a subgraph of Γ′

I(R). Also each Gα ⋍ Γ′
I(R/I), and Gα ∩ Gβ are

disjoint if α 6= β because if α 6= β then V (Gα) ∩ V (Gβ) = φ.

There is a strong relation between Γ′
I(R) and Γ′(R/I). Next theorem shows that how

one can construct Γ′
I(R) from Γ′

I(R/I).

Theorem 4.3. Let Γ′
I(R) be an ideal based extended zero-divisor graph of a ring R. Then

we can always construct Γ′
I(R) from Γ′(R/I).

Proof. Let {[aλ] | λ ∈ Λ} be a set of coset representative vertices of Γ′(R/I), i.e.,
V (Γ′(R/I)) = {[aλ] : λ ∈ Λ} and for each α ∈ I, define a graph Gα = (Vα, Eα) with Vα =
{aλ+α : λ ∈ Λ}, where aγ+α is adjacent to aδ+α in Gα whenever, [aγ ] is adjacent to [aδ]
in Γ′(R/I), i.e., either (R/I)[aγ ]∩ann(R/I)([aδ]) 6= {I} or (R/I)[aδ]∩ann(R/I)([aγ ]) 6= {I}.
Define a graph H = (V (H), E(H)) where V (H) =

⋃

α∈I

V (Gα) and E(H) is:

(i) all edge contained in Gα for each α ∈ I.

(ii) For distinct γ, δ ∈ Λ and for any α, β ∈ I, aγ + α is adjacent to aδ + β if and only
if [aγ ] is adjacent to [aδ] in (Γ′(R/I)).

(iii) For γ ∈ Λ and distinct α, β ∈ I, aγ + α is adjacent to aγ + β if and only if there
exists a r ∈ R such that raγ /∈ I, but ra2

γ ∈ I.

Clearly, V (H) ⊆ V (Γ′
I(R)). Note that if u ∈ V (Γ′

I(R)), then by Theorem 4.1 [u] ∈
V (Γ′(R/I)) and therefore, V (Γ′

I(R)) ⊆ V (H)). So V (H) = V (Γ′
I(R)). By Theorem 4.1,

all edges which are defined above by (i) and (ii) are also edges in Γ′
I(R). If aγ+α is adjacent

to aγ + β for distinct α, β ∈ I, then there exists r ∈ R such that raγ /∈ I, but ra2
γ ∈ I.

Therefore, (R(aγ + β) + I) ∩ (I : {aγ + α}) 6= I and (R(aγ + γ) + I)∩ (I : {aγ + β)} 6= I.
Thus, the edges which are defined above by (iii) are also edge of Γ′

I(R). Let u and v
be distinct adjacent vertices of Γ′

I(R). Then there exist α, β ∈ I and γ, δ ∈ Λ such that
u = aγ +α and v = aδ + β. If γ 6= δ and u adjacent to v in Γ′

I(R). Hence by Theorem 4.1,
[aγ ] is adjacent to [aδ] in Γ′(R/I). Hence, the edge u − v corresponds to an edge of type
(i) or (ii) of H. If γ = δ, then there exists r ∈ R such that raγ /∈ I, but ra2

γ ∈ I and the
edge u− v corresponds to an edge of type (iii) of H.

Proposition 4.4. Let I be an ideal of a ring R. If Γ′(R/I) is infinite, then Γ′
I(R) is

infinite. If Γ′(R/I) is a graph with n vertices, then Γ′
I(R) is a graph with n|I | vertices.

Proof. This is immediate from Theorem 4.3.

Definition 4.5. Let {[aλ] | λ ∈ Λ} be a set of coset representative vertices of Γ′(R/I).
[aλ] is said to be a row of Γ′

I(R), and if there exists r ∈ R such that raλ /∈ I and ra2
λ ∈ I,

then we call [aλ] connected row of Γ′
I(R) and ξn denote the n connected row which is

contained in a maximal complete subgraph of Γ′(R/I).

Remark 4.6. Let I be an ideal in a commutative ring R with unity. Then every con-
nected column of ΓI(R) defined in [13] is a connected row of Γ′

I(R). By Example 2.12 and
Figures 2.2 and 2.4 we observe that [2] = {2, 10, 18} is a connected row of Γ′

I(R) which is
not a connected column of ΓI(R).



An Ideal-based Extended Zero-divisor Graph on Rings 605

Theorem 4.7. Let I be a ideal in a commutative ring R. Then ω(Γ′
I(R)) = ξn|I | +

ω(Γ′(R/I))− n.

Proof. Suppose that ω(Γ′(R/I)) = k and A = {[a1], [a2], · · · , [ak]} ⊆ V (Γ′(R/I)) such
that Γ′(R/I)[A] is an induced maximal complete subgraph of Γ′(R/I). Let B =

⋃

[ai]
where [ai] is a connected row and [ai] ∈ A, C = {ai | [ai] is a non-connected row, [ai] ∈ A}.
Then by Theorem 4.1, Γ′

I(R)[B ∪C] is a complete subgraph in Γ′
I(R). If B ∪C ∪ {u} is a

complete subgraph in Γ′
I(R), then {[u]} ∪ A forms a clique of size k + 1, a contradiction.

Thus Γ′
I(R)[B∪C] is a maximal complete subgraph. Consequently, ω(Γ′

I(R)) = |B∪C| =
ξn|I |+ ω(Γ′(R/I))− n.

Theorem 4.8. Let I be an ideal of a commutative ring R such that Γ′
I(R) has no connected

row. Then

(i) ω(Γ′
I(R)) = ω(Γ′(R/I)),

(ii) χ(Γ′
I(R)) = χ(Γ′(R/I)).

Proof. (i) Clearly, we observe that ω(Γ′(R/I)) ≤ ω(Γ′
I(R)). Consider the case, when

ω(Γ′(R/I)) = k < ∞, and suppose that H is a complete subgraph of Γ′
I(R) with the set

of (distinct) vertices u1, u2, · · · , uk+1. Since H is complete, we get a complete subgraph
of Γ′

I(R) with the set of vertices [u1], [u2], · · · , [uk+1]. Now ω(Γ′(R/I)) = k implies that
[ul] = [um] for some l 6= m and hence ul = um + i for some i ∈ I. Since H is complete, ul

adjacent to um in Γ′
I(R). Then we get r ∈ R such that ral /∈ I, but ra2

l ∈ I and [ul] is a
connected row Γ′

I(R), a contradiction. Hence ω(Γ′
I(R)) = k.

(ii) By Corollary 4.2, Γ′(R/I) is isomorphic to a subgraph of Γ′
I(R) and hence

χ(Γ′(R/I)) ≤ χ(Γ′
I(R). Suppose that χ(Γ′(R/I)) = n and C1, C2, · · · , Cn are distinct

color classes of Γ′(R/I). Consider the set Sj =
⋃

[a]∈Cj

[a]. Since Γ′
I(R) has no connected

row, each Sj is an independent set of Γ′
I(R) and V (Γ′

I(R)) =
n
⋃

j=1

Sj . Thus S1, S2, · · · , Sn

are distinct color classes for Γ′
I(R) and the graph Γ′

I(R) colored by n distinct proper colors,
and therefore χ(Γ′

I(R) ≤ n. Hence χ(Γ′(R/I)) = χ(Γ′
I(R).

Corollary 4.9. Let I be a radical ideal of a commutative ring R . Then

(i) ω(Γ′
I(R)) = ω(Γ′(R/I)).

(ii) χ(Γ′
I(R)) = χ(Γ′(R/I)).

Theorem 4.10. Let I be an ideal in a commutative ring R. If ω(Γ′(R/I)) = χ(Γ′(R/I)),
then ω(Γ′

I(R)) = χ(Γ′
I(R)).

Proof. Suppose that ω(Γ′(R/I)) = χ(Γ′(R/I)) = n. Let {aλ | λ ∈ Λ} ⊆ Z∗
I (R) be a

set of coset representative vertices of Γ′(R/I), i.e., V (Γ′(R/I)) = {[aλ] : λ ∈ Λ} and
C1, C2, · · · , Cn are distinct color classes of Γ′(R/I). Since ω(Γ′(R/I)) = n, there ex-
ists [a1], [a2], · · · , [an] ∈ V (Γ′(R/I)) such that any two of them lies in distinct color
classes. Without loss of generality, assume that [aj ] ∈ Cj , for all j ∈ {1, 2 · · · , n}.
A = {[a1], [a2], · · · , [an]}. Then Γ′(R/I)[A] is a maximal complete subgraph of Γ′(R/I).
Let B = {aj | [aj ] ∈ A} ∪ {aj + i | [aj ] ∈ A, raj /∈ I and ra2

j ∈ I for some r ∈ R, i ∈ I∗}.
Since Γ′(R/I)[A] is a maximal complete subgraph of Γ′(R/I), Γ′

I(R)[B] is a maximal com-
plete subgraph of Γ′

I(R), and therefore |B| ≤ ω(Γ′
I(R)). Hence we color the vertices of
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Γ′
I(R) with |B| distinct colours. Clearly [a], an induced independent set of Γ′

I(R) when
there does not exists any r ∈ R such that ra /∈ I and ra2 ∈ I with [a] ∈ A and color the
vertices a+ i ∈ [a] with the colour of a for all i ∈ I. Let U = {a : [a] ∈ A}. Then U have
distinct colors. For each y /∈ U, [y] = [at] such that t /∈ {1, 2, · · · , n}. Since [at] ∈ Sj and
S′
js are independent, for each i ∈ I color the vertices at + i with the color of aj + i. Hence

color the vertices of C = V (ΓI(R)) \ U in this way, and this coloring is proper, therefore
χ(ΓI(R)) ≤ |B|. Since ω(ΓI(R)) ≤ χ(ΓI(R)), χ(ΓI(R)) = ω(ΓI(R)). This completes the
proof.

Lemma 4.11. Let I be an ideal of a ring R and a ∈ V (Γ′
I(R)). Then

deg(a) =

{

|I |degΓ′([a]), if [a] is a non− connected row,
|I |degΓ′([a]) + |I | − 1, if [a] is a connected row.

Proof. Clearly, deg(a) ≥ |I |degΓ′([a]). If [a] is connected row, then Γ′
I(R)[[a]] is a complete

subgraph of Γ′
I(R). Thus deg(a) = |I |degΓ′([a]) + |I | − 1. If [a] is non-connected row, then

deg(a) = |I |degΓ′([a]).

Lemma 4.12. Let I be an ideal of a ring R Then

δ(Γ′
I(R)) =

{

|I |δ(Γ′(R/I)) + |I | − 1, if each [a] ∈ V (δ(Γ′(R/I)) is a connected row,
|I |δ(Γ′(R/I)), otherwise.

Proof. If [a] ∈ V (δ(Γ′(R/I)) is a connected row, then deg(a) ≤ deg(b) for all b ∈ V (Γ′
I(R)

and by Lemma 4.11, deg(a) = |I |degΓ′([a]) + |I | − 1 ( or deg(a) = |I |δ(Γ′(R/I))+ |I | − 1).
Thus δ(Γ′

I(R)) = |I |δ(Γ′(R/I)) +|I | − 1. Otherwise, deg(a) ≤ deg(b) for all b ∈ V (Γ′
I(R)

and by Lemma 4.11, deg(a) = |I |degΓ′([a]) (or deg(a) = |I |δ(Γ′(R/I)). Thus δ(Γ′
I(R)) =

|I |δ(Γ′(R/I)).

Lemma 4.13. Let I be an ideal of a ring R Then

∆(Γ′
I(R)) =

{

|I |∆(Γ′(R/I)) + |I | − 1, if each[a] ∈ V (∆(Γ′(R/I)) is a non connected row,
|I |∆(Γ′(R/I)), otherwise.

Proof. If [a] ∈ V (∆(Γ′(R/I)) is a non-connected row, then deg(b) ≤ deg(a) for all b ∈
V (Γ′

I(R) and by Lemma 4.11, deg(a) = |I |degΓ′([a]) ( or deg(a) = |I |∆(Γ′(R/I))). Thus
∆(Γ′

I(R)) = |I |δ(Γ′(R/I)).Otherwise, deg(b) ≤ deg(a) for all b ∈ V (Γ′
I(R) by Lemma 4.11,

deg(u) = |I |degΓ′([a] + |I | − 1) (or deg(a) = |I |∆(Γ′(R/I) + |I | − 1). Thus ∆(Γ′
I(R)) =

|I |∆(Γ′(R/I)) + |I | − 1.

Theorem 4.14. Let I be an ideal in a commutative ring R. If Γ′
I(R) has no connected

row, then Γ′
I(R) is Eulerian if and only if |I | is even or Γ′(R/I) is Eulerian.

Proof. Suppose that Γ′
I(R) is Eulerian. Then deg(a) is even for all a ∈ V (Γ′

I(R)). Since
Γ′
I(R) has no connected row, deg(a) = |I |degΓ′([a]) is even for all [a] ∈ V (Γ′(R/I)). Hence

either |I | is even or degΓ′([a]) is even for all [a] ∈ V (Γ′(R/I)), i.e., Γ′(R/I) is Eulerian.

Conversely, assume that Γ′(R/I) is Eulerian. Hence degΓ′([a]) is even for all [a] ∈
V (Γ′(R/I)). Since Γ′

I(R) has no connected row, deg(a) = |I |degΓ′([a]) is even for all
a ∈ V (Γ′

I(R). i.e., Γ′
I(R) is Eulerian. If |I | is even, then Γ′

I(R) is Eulerian.

Theorem 4.15. Let I be an ideal in a commutative ring R. If Γ′
I(R) has a connected row,

then Γ′
I(R) is Eulerian if and only if |I | is odd and Γ′(R/I) is Eulerian.
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Proof. Suppose that Γ′
I(R) is Eulerian. Since Γ′

I(R) has a connected row, there exists
x ∈ V (Γ′

I(R)) such that [x] is a connected row in Γ′
I(R) and by Lemma 4.11, deg(x) =

|I |degΓ′ [x] + |I | − 1 is even. Thus we have the following cases:

Case(a) |I |degΓ′ [x] and |I | − 1 are odd. Then |I | is even. Since |I |degΓ′ [x] is odd and |I |
is even. Since |I | is even, |I |degΓ′ [x] can not be odd, and this case is not possible.
Case(b) |I |degΓ′ [x] and |I | − 1 are even. Thus |I |degΓ′ [x] is even for all [x] ∈ V (Γ′(R/I)).
i.e., degΓ′ [x] is even for all [x] ∈ V (Γ′(R/I)). Therefore Γ′(R/I) is Eulerian and |I | is odd.

Conversely, assume that Γ′(R/I) is Eulerian, |I | is odd and x ∈ V (Γ′
I(R)). If [x] is

a connected row, then deg(x) = |I |degΓ′ [x] + |I | − 1 is even and if [x] is a non-connected
row, then deg(x) = |I |degΓ′ [x] is also even. Hence Γ′

I(R) is Eulerian.

Theorem 4.16. Let I be an ideal in a commutative ring R. If Γ′
I(R) has no connected

row. Then Γ′
I(R) is regular if and only if Γ′(R/I) is regular.

Proof. Suppose that Γ′
I(R) is regular graph, deg(x) = n for all x ∈ V (Γ′

I(R)). Since Γ′
I(R)

has no connected row, by Lemma 4.11, deg(x) = |I |degΓ′ [x] = n for all [x] ∈ V (Γ′(R/I)).
Therefore degΓ′ [x] = n/|I | for all [x] ∈ V (Γ′(R/I)). Clearly, if n is prime, then
Γ′(R/I) ≅ K2. Otherwise Γ′(R/I) is a n

|I|
-regular.

Conversely, suppose that Γ′(R/I) is a regular graph. Then degΓ′ [x] = n ∀ [x] ∈

V (Γ′(R/I)). Since Γ′
I(R) has no connected row, by Lemma 4.11, for all x ∈ V (Γ′

′(R))
deg(x) = |I |degΓ′ [x] = n|I |. Therefore Γ′

I(R) is n|I |-regular.

Theorem 4.17. Let I be an ideal in a commutative ring R and each row is connected.
Then Γ′

I(R) is n-regular, where n 6= |I | − 1 if and only if Γ′(R/I) is regular.

Proof. Assume that Γ′
I(R) is a n-regular graph. Then deg(x) = n for all x ∈ V (Γ′

I(R)).
Since each row is connected, by Lemma 4.11, deg(x) = |I |degΓ′ [x] + |I | − 1, for all x ∈

V (Γ′
I(R)) and hence degΓ′ [x] = n−|I|+1

|I|
for all [x] ∈ V (Γ′(R/I)). Since degΓ′ [x] 6= 0 and

n 6= |I | − 1, Γ′(R/I) is a (n−|I|+1
|I|

)-regular graph.

Conversely, suppose that Γ′(R/I) is a regular graph. Then degΓ′ [x] = p for all [x] ∈

V (Γ′(R/I). Since each row is connected, by Lemma 4.11, deg(x) = p|I | + |I | − 1 for all
x ∈ V (Γ′

I(R). Thus Γ′
I(R is a n-regular.

Theorem 4.18. Let I be an ideal of a ring R. Then 1 ≤ χ(Γ′(R/I)) ≤ χ(Γ′
I(R)) ≤

|I |χ(Γ′(R/I)).

Proof. Clearly, 1 ≤ χ(Γ′(R/I)). Since Γ′(R/I) is isomorphic to a subgraph of Γ′
I(R),

χ(Γ′(R/I)) ≤ χ(Γ′
I(R)). Let χ(Γ′(R/I)) = n, and C1, C2, · · · , Cn be distinct color classes

for Γ′(R/I). Assume that each row is connected. Now for each 1 ≤ j ≤ n, and i ∈ I
define a set Dji = {x + j : [x] ∈ Cj}. Since Cj ’s are independent, Dji are independent.
Also

⋃

1≤j≤n

(
⋃

i∈I

)Dji = V (Γ′
I(R). Thus {Dji : 1 ≤ j ≤ n, i ∈ I} are distinct color

classes for Γ′
I(R). |I |n colors are required for colouring and this colouring is proper. Hence

χ(Γ′
I(R)) ≤ |I |χ(Γ′(R/I)).

Proposition 4.19. Let I be a proper ideal of a commutative ring R. If Γ′
I(R) has a

connected row, then |I | ≤ ω(Γ′
I(R)).
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Proof. Assume that [u] is a connected row in Γ′
I(R). Then there exists r ∈ R such that

ru /∈ I and ru2 ∈ I. If u1, u1 ∈ [u], then (Ru1 + I)∩ (I : {u2}) 6= I and by definition u1 is
adjacent to u2 in Γ′

I(R). i.e., K|I| is a subgraph of Γ′
I(R), and hence |I | ≤ ω(Γ′

I(R)).

Corollary 4.20. Let I be a proper ideal of a commutative ring R such that |I | = ∞. If
Γ′
I(R) has a connected row, then ω(Γ′

I(R)) = ∞.

Corollary 4.21. Let I be a proper ideal of a commutative ring R such that |V (Γ′
I(R))| ≥ 2.

If Γ′
I(R) has a connected row, then |I |+ 1 ≤ ω(Γ′

I(R)).

Lemma 4.22. Let I be an ideal of a commutative ring R. Then gr(Γ′
I(R)) ≤ gr(Γ′(R/I)).

Proof. If gr(Γ′
I(R)) = ∞, then our result holds. Now suppose that gr(Γ′(R/I)) = k < ∞.

Let [a1] − [a2]−, · · · ,−[ak] − [a1] be a cycle in Γ′
I(R) with k distinct vertices. Then

a1 − a2−, · · · ,−ak − a1 is also a cycle in Γ′
I(R) of length k. Hence gr(Γ′

I(R)) ≤ k.

5. When Γ′
I(R) is Weakly Perfect and Planar?

In this section, our aim is to study the planarity of ideal based extended zero-divisor
graph Γ′

I(R) and explore the condition under which Γ′
I(R) is planar. For a radical ideal I

of an Artinian ring R, we show that Γ′
I(R) is weakly perfect.

Theorem 5.1. Let I be an ideal of a commutative ring R. Then Γ′
I(R) is a complete

n-partite graph if and only if Γ′(R/I) is a complete n-partite graph.

Proof. Suppose that Γ′
I(R) = K|W1|,|W2|,··· ,|Wn| where V (Γ′

I(R)) =
n
⋃

i=1

Wi and Wj∩Wk =

φ for j 6= k. Define a map F : R −→ R/I by F (x) = [x]. Clearly F is a homomorphism from
R onto R/I. It is easy to check that Γ′(R/I) = K|F (W1)|,|F (W2)|,··· ,|F (Wn)| is a complete
n-partite graph.

Conversely, suppose that Γ′(R/I) = K|L1|,|L2|,··· ,|Ln| where V (Γ′(R/I)) =
n
⋃

i=1

Li and

Lj ∩ Lk = φ for j 6= k. Define a map S : R −→ R/I by S(y) = [y]. Clearly S is a homo-
morphism from R onto R/I. It is easy check that Γ′

I(R) = K|S−1(L1)|,|S−1(L2)|,··· ,|S−1(Ln)|

is a complete n-partite graph.

Lemma 5.2. Let I be an ideal of R such that R/I ≅ D1 ×D2 × · · · × Dk, where k > 2
is a positive integer and Dj is an integral domain, for every 1 6 j 6 k. Then Γ′

I(R) is a
complete (2k − 2)-partite.

Proof. Given R/I ≅ D1 ×D2 × · · · ×Dk. Then by [6, Lemma 2.1], Γ′(R/I) is a complete
(2k−2)-partite and by Theorem 5.1, Γ′

I(R) is a complete (2k−2)-partite hence proved.

Proposition 5.3. Let I be a radical ideal of a commutative ring R with |MinI(R)| < ∞
and suppose that P,Q are coprime, for every two distinct P,Q ∈ MinI(R). Then the
following statements are equivalent.

(i) |MinI (R)| = k.

(ii) Γ′
I(R) is a complete (2k − 2)-partite.
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Proof. (i) ⇒ (ii) Suppose that |MinI(R)| = k and define a map F : R −→ R/I by
F (x) = [x]. Clearly, F ({MinI(R)}) = Min(R/I) and |Min(R/I)| = k. Then by [6,
Corollory 2.2], Γ′(R/I) is a complete (2k − 2)-partite and by Theorem 5.1, Γ′

I(R) is a
complete (2k − 2)-partite.

(ii) ⇒ (i) Assume that Γ′
I(R) is a complete (2k − 2)-partite. Then by Theorem 5.1,

Γ′(R/I) is a complete (2k − 2)-partite and by [6, Corollary 2.2], |Min(R/I)| = k. Let us
define a map S : R −→ R/I by S(x) = [x]. Clearly, S−1({Min(R/I})) = MinI(R) and
|MinI(R)| = k.

Proposition 5.4. Let I be an ideal in a ring R such that R/I ≅ D1 × D2 × · · · × Dk,
where k > 2 is a positive integer and Dj is an integral domain for each j ∈ {1, 2, · · · , n}.
Then ω(Γ′(R/I)) = χ(Γ′

I(R)) = χ(Γ′(R/I)) = ω(Γ′
I(R)) = (2k − 2).

Proof. Given R/I ≅ D1 ×D2 × · · · ×Dk where k > 2 be a positive integer and Dj is an
integral domain for each j ∈ {1, 2, · · · , k}. Then by [6, Lemma 2.1], Γ′(R/I) is a (2k − 2)-
partite graph and by Lemma 5.2, Γ′

I(R) is a (2k − 2)-partite graph. Hence ω(Γ′(R/I))
= χ(Γ′

I(R)) = χ(Γ′(R/I)) = ω(Γ′
I(R)) = (2k − 2).

Corollary 5.5. let I be a radical ideal in a commutative ring R with unity such that
R/I is an Artinian ring. Then ω(Γ′(R/I)) = χ(Γ′

I(R)) = χ(Γ′(R/I)) = ω(Γ′
I(R)) =

2|Max(R/I)| − 2.

Corollary 5.6. let I be a radical ideal in an Artinian ring R. Then ω(Γ′(R/I)) = χ(Γ′
I(R))

= χ(Γ′(R/I)) = ω(Γ′
I(R)) = 2|Max(R/I)| − 2.

In order to achieve the goal, we need a celebrated Kuratowski’s theorem from Graph
Theory [14, Theorem 6.2.2].

Theorem 5.7. (Kuratowski’s Theorem) A Graph G is planar if and only if it contains no
subdivision of either K3,3 or K5.

Proposition 5.8. Let I be a proper ideal of R. If Γ′
I(R) is a planar graph. Then Γ′(R/I)

is also a planar graph but the converse need not be true in general.

Proof. Suppose that Γ′
I(R) is a planar graph. Since Γ′(R/I) is isomorphic to a sub graph

of Γ′
I(R). By Theorem 5.7, Γ′(R/I) is a planar graph. For the converse with the help of

Example 2.12, we note that in the Figure 2.4, Γ′
I(R) = K9 is not planar, but R/I = Z8

and Γ′(R/I) = K3 a planar graph.

Theorem 5.9. Let I be a radical ideal of a commutative ring R. Then the following
statements are equivalent.

(i) Γ′
I(R) is planar.

(ii) |MinI (R)| = 2 and one element of MinI(R) has at most two elements different
from I.

Proof. (i) ⇒ (ii) Assume that Γ′
I(R) is planar. Suppose on the contrary that |MinI(R)| ≥

3. Let us define a map F : R −→ R/I by F (x) = [x]. Clearly, F (MinI(R)) = Min(R/I)
and |Min(R/I)| ≥ 3. By [6, Theorem 3.4], Γ′(R/I) is not planar and by Lemma 5.8,
Γ′
I(R) is not planar, a contradiction. Therefore, |MinI(R)| = 2 and by Theorem 3.1,



610 M. Ashraf and M. Kumar

Γ′
I(R) = ΓI(R). Let PI , QI ∈ MinI(R) such that |PI \ I | ≥ 3, |QI \ I | ≥ 3. Then K3,3 is

a subgraph of Γ′
I(R) which is not Planar, a contradiction. Thus one element of MinI (R)

has at most two elements different from I.

(ii) ⇒ (i) Suppose that |MinI (R)| = 2 and one element of MinI(R) has at most two ele-
ments different from I. Then by Theorem 3.1, Γ′

I(R) = ΓI(R). Without loss of generality,
we may assume that PI , QI ∈ MinI(R) such that |PI \ I | = m, where 1 ≤ m ≤ 2 and
|QI \ I | = n. Thus Γ′

I(R) = Km,n, which is Planar.

Proposition 5.10. Let I be an ideal of a commutative ring R. Then Γ′
I(R) is not planar

if one of the following statements hold.

(i) |I | ≥ 5.

(ii) |β∗(I)| > 4.

(iii) I is a radical ideal of R and |I | ≥ 3.

Proof. Directly follows from Theorem 5.7.

Remark 5.11. It can be easily observed that if R is a commutative ring with unity, then
|Z(R)| = 2 if and only if R is ring-isomorphic to either Z4 or Z2(x)

(x2)
.

Theorem 5.12. Let I be a non-radical ideal of a commutative ring R such that |I | = 2.
Then Γ′

I(R) is planar if and only if one of the following statements hold.

(i) R/I is ring-isomorphic to either Z4 or Z2(x)

(x2)
.

(ii) (I : ZI(R)) is a prime ideal of R and |(I : ZI(R))| = 4.

(iii) ZI(R) = β(I) and |β(I)| = 6.

Proof. Assume that Γ′
I(R) is planar. If |β(I)| = ∞, then by Lemma 2.4 (iv), Γ′

I(R)[β∗(I)]
is not planar. Thus Γ′

I(R) is not planar and we find that |β(I)| < ∞. Since I is a proper
additive subgroup of β(I), |I | divides |β(I)| and |β(I)| = 2k, where k ∈ N \ {1}. Then the
following cases arises:

Case(1) k = 2, i.e., |β(I)| = 4. Then |Nil(R/I)| = 2.
Subcase(i) If |ZI(R)| < ∞, then |Z(R/I)| < ∞. If |Z(R/I)| = 2, then by Remark 5.11,

R/I is isomorphic to either Z4 or Z2(x)

(x2)
. If 2 6= |Z(R/I)| < ∞, then by [6, Theorem 3.6(1)],

R/I is isomorphic to either Z2 × Z4 or Z2 × Z2(x)

(x2)
. If R/I is isomorphic to Z2 × Z4, then

there exists an isomorphism g : R/I → Z2 × Z4.
Notice that there exist α1, α2, α3, α4 ∈ R \ I such that [α1], [α2], [α3], [α4] ∈
R/I and g([α1]) = (0, 1), g([α2]) = (0, 3), g([α3]) = (1, 0), g([α4]) = (1, 2). Since
Γ′(R/I)[{[α1], [α2][α3][α4]}] = K2,2

∼= Γ′(Z2×Z4)[{(0, 1), (0, 3), (1, 0), (1, 2)}], without loss
of generality, we may assume that α1, α1 + i, α2, α3, α3 + i, α4 ∈ R \ I, where i ∈ I∗

and by Theorem 4.1 (i), Γ′
I(R) [{α1, α1 + i, α2, α3, α3 + i, α4}] = K3,3, which is

not planar, a contradiction. If R/I is isomorphic to Z2 × Z2(x)

(x2)
, then there exists an

isomorphism f : R/I → Z2 × Z2(x)

(x2)
. Notice that there exist β1, β2, β3, β4∈ R \ I

such that [β1], [β2], [β3], [β4] ∈ R/I and g([β1]) = (0, (x2)), g([β2]) = (0, 1 + (x2)),
g([β3]) = (1, (x2)), g([β4]) = (1, x + (x2)). Since Γ′(R/I)[{[β1], [β2] [β3] [β4]}] = K2,2

∼=
Γ′(Z2 × Z4)[{(0, (x

2)), (0, 1 + (x2)), (1, (x2)), (1, x + (x2))}], without loss of generality,
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we may assume that β1, β1 + i, β2, β3, β3 + i, β4 ∈ R \ I, where i ∈ I∗ and by Theorem
4.1 (i), Γ′

I(R) [{β1, β1 + i, β2, β3, β3 + i, β4}] = K3,3, which is not planar, again we get a
contradiction.

Subcase(ii) |ZI(R)| = ∞. Since |I | = 2 < ∞, |Z(R/I)| = ∞. Hence by [6, Theorem 3.6(2)],
Ann(Z(R/I)) is a prime ideal of R/I. This implies that (I : ZI(R)) is a prime ideal of R and
by Corollary 3.5, Γ′

I(R) = ΓI(R) = Kp ∨Kq , where p = |β∗(I)|, q = |ZI(R) \ β(I)| = ∞
and by Corollary 3.4 (iii), (I : ZI(R)) = β(I). Thus if we take |β∗(I)| = ℓ > 4, then
Γ′
I(R) = ΓI(R) = Kℓ ∨K∞ and Γ′

I(R) = ΓI(R) = Kℓ ∨K∞ contain K3,3 as a subgraph,
and hence Γ′

I(R) is not planar. If |β(I)| = 4, then Γ′
I(R) = ΓI(R) = K2 ∨K∞, which is

planar. Hence |β(I)| = |(I : ZI(R))| = 4.

Case(2) k = 3, i.e., |β(I)| = 6. Then |Nil(R/I)| = 3 and by [6, Theorem 3.8],
Ann(Z(R/I)) is a prime ideal of R/I. This implies that (I : ZI(R)) is a prime ideal of R
and by Corollary 3.5, Γ′

I(R) = ΓI(R) = Kp ∨Kq, where p = |β(I)∗|, q = |ZI(R) \ β(I)|. If
ZI(R) 6= β(I), then K5 = K4 ∨K1 is a subgraph of K4 ∨Kq, which is not planar. Hence
β(I) = ZI(R) and by Lemma 2.4 (iv), Γ′

I(R) = K4, which is Planar.
Case(3) k ≥ 3, i.e., |β(I)| ≥ 8. Then |β∗(I)| > 4 and by Proposition 5.10 (ii), Γ′

I(R) is

not Planar. Hence |β(I)| ≤ 6.
Converse part holds trivially.

Theorem 5.13. Let I be a non-radical ideal of a commutative ring R and |I | = 3. Then

Γ′
I(R) is planar if and only if R/I is ring-isomorphic to either Z4 or Z2(x)

(x2)
.

Proof. Assume Γ′
I(R) is planar. Since |I | = 3, |β(I)| = 6, and |Nil(R/I)| = 2. If

|Z(R/I)| > 2, then K3,3 is a subgraph of Γ′
I(R). By Theorem 5.7, Γ′

I(R) is not pla-
nar, a contradiction. Hence |Z(R/I)| = 2, then by Remark 5.11, R/I is isomorphic to

either Z4 or Z2(x)

(x2)
. Converse part holds trivially.

Proposition 5.14. Let I be a non-radical ideal of a commutative ring R and |I | = 4.

Then Γ′
I(R) is planar if and only if R/I is isomorphic to either Z4 or Z2(x)

(x2)
.

Proof. Assume that ΓI(R) is planar. Since |I | = 4, |β(I)| = 8. If β(I) 6= ZI(R), then there
exists α ∈ ZI(R) \ β(I) and by Lemma 2.4 (iv), ΓI(R)[{ α} ∪ β∗(I)] forms K5, which is
not planar. Hence β(I) = ZI(R), |Z(R/I)| = |Nil(R/I)| = 2, and by Remark 5.11, R/I

is isomorphic to either Z4 or Z2(x)

(x2)
. Converse part holds trivially.

Proposition 5.15. Let I be non-radical ideal of a commutative ring R. Then γ(Γ′
I(R))

= γs(Γ
′
I(R)) = 1.

Proof. Let x ∈ β∗(I). Then by Lemma 2.4, x is adjacent to every other vertex and
deg(x) ≥ deg(y), for every y in V (Γ′

I(R)). Thus {x} is a γ-set of Γ′
I(R) and γ(Γ′

I(R))
= γs(Γ

′
I(R)) = 1.

Proposition 5.16. Let I be a radical ideal of a commutative ring R. Then γ(Γ′
I(R)) = 2

and Γ′
I(R) is excellent graph if one of the following statements hold.

(i) R/I ≅ D1 ×D2 × · · · ×Dk where k > 2 be a positive integer and Dj is an integral
domain for each j ∈ {1, 2, · · · , k}.
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(ii) |MinI (R)| = k.

Proof. (i) Clearly by Lemma 5.2, Γ′
I(R) is a complete (2k−2)-partite. Assume that Γ′

I(R)
= K|V1|,|V2|,··· ,|Vk|. Clearly {x1, x2} is a γ-set, where x1 ∈ V1 and x2 ∈ V2. Since |I | ≥ 2,
|V1| ≥ 2 and |V2| ≥ 2. Clearly {y1, y2} is a γ-set, where y1 ∈ V1 \ {x1} and y2 ∈ V2 \ {x2}.
Therefore γ(Γ′

I(R)) = 2.

(ii) Clearly by Proposition 5.3, Γ′
I(R) is a complete (2k − 2)-partite any by part (i)

γ(Γ′
I(R)) = 2.

6. Ordering on the Vertices of Γ′
I (R)

In this section, we study the ordering on the vertices of Γ′
I(R).

Definition 6.1. Given a graph H with vertices u and v, we define the relations ≤,∼ and
⊥ on H as follows.

(i) u ≤ v if every vertex adjacent to v is also adjacent to u.

(ii) u ∼ v if u ≤ v and v ≤ u.

(iii) u ⊥ v if u and v are adjacent and no other vertex of H is adjacent to both u and v.

Remark 6.2. Graphs Γ′
I(R) and Γ′(R/I) are simple, so any vertex of these graphs is

never considered to be self adjacent. Hence, if u ≤ v, then u− v not an edge (otherwise v
is self adjacent).

Proposition 6.3. Let I be an ideal of a commutative ring R. Let u, v ∈ Z∗
I (R) such that

[u] and [v] are nonconnected row of Γ′
I(R). Then [u] ≤ [v] in Γ′(R/I) if and only if u ≤ v

in Γ′
I(R).

Proof. Assume [u] ≤ [v] in Γ′(R/I). Let z ∈ Z∗
I (R) be adjacent to v. Since [v] is noncon-

nected, [v] 6= [z] (otherwise, [v] is connected row). Thus, by Theorem 4.1, [z] is adjacent to
[v], since [u] ≤ [v] implies that [z] is adjacent to [u]. Hence, By Theorem 4.1, u is adjacent
to z.
Conversely, assume u ≤ v in Γ′

I(R). Let [z] ∈ Z∗(R/I) be adjacent to [v] in Γ′
I(R). Then,

by Theorem 4.1, z is adjacent to v in Γ′
I(R). Since u ≤ v implies that z is adjacent to u

in Γ′
I(R). Since [u] is nonconnected row implies that [z] 6= [u] and by Theorem 4.1, [u] is

adjacent to [z] in Γ′(R/I).

Corollary 6.4. Let I be a proper ideal of a commutative ring R, and let u, v ∈ Z∗
I (R)

such that [u] and [v] are nonconnected row of Γ′
I(R). Then [u] ∼ [v] in Γ′(R/I) if and only

if u ∼ v in Γ′
I(R).

Corollary 6.5. Let I be a proper ideal of a commutative ring R, and let u, v ∈ Z∗
I (R)

such that u, v ∈ [z], where [z] is a nonconnected row of Γ′
I(R). Then u ∼ v in Γ′

I(R).

Remark 6.6. In case of connected row, the conclusion of the above result fails, because in
case of connected row we find a self adjacent vertices, as mention in the previous remark.

Proposition 6.7. Let I be an ideal of a commutative ring R such that |V (Γ′
I(R))| > 3.

Suppose that u, v ∈ Z∗
I (R) such that [u] 6= [v] and both are nonconnected row of Γ′

I(R).
Then [u] ⊥ [v] in Γ′(R/I) if and only if u ⊥ v in Γ′

I(R).
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Proof. Assume u ⊥ v in Γ′
I(R). Then u − v is an edge of Γ′

I(R) and by Theorem 4.1,
[u]− [v] is an edge of Γ′

I(R). If [z] ∈ Z∗(R/I) such that [u]− [z] and [v]− [z] are edges in
Γ′(R/I), then by Theorem 4.1, u− z and v− z are edges in Γ′

I(R), a contradiction. Hence
[u] ⊥ [v] in Γ′(R/I).
Conversely suppose that [u] ⊥ [v] in Γ′(R/I). Then u − v is an edge in Γ′

I(R). Assume

that z ∈ Z∗
I (R) such that u − z and v − z are edges in Γ′

I(R). Then there exists r ∈ R
such that either ru /∈ I or rz /∈ I but ruz ∈ I. Similarly, there exists s ∈ R such that
either sv /∈ I or sz /∈ I, but svz ∈ I. Since [u] and [v] are non connected, [u] 6= [z] 6= [v].
Therefore, [u] − [z] and [v] − [z] are edges in Γ′(R/I), which contradicts, [u] ⊥ [v], and
hence u ⊥ v in Γ′

I(R).
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