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ABSTRACT. Let R be a commutative ring with identity and let I be a proper ideal of R.
In this paper, we study the ideal based extended zero-divisor graph F;(R) and prove that
I'7(R) is connected with diameter at most two and if I';(R) contains a cycle, then girth
is at most four girth at most four. Furthermore, we study affinity the connection between
the ideal based extended zero-divisor graph I'7(R) and the ideal-based zero-divisor graph
I';(R) associated with the ideal I of R. Among the other things, for a radical ideal of a
ring R, we show that the ideal-based extended zero-divisor graph I';(R) is identical to the
ideal-based zero-divisor graph I';(R) if and only if R has exactly two minimal prime-ideals
which contain I.

1. Introduction

Throughout this paper let R be a commutative ring identity, I be a proper ideal of R
which is not a prime ideal of R, Z(R) be the set of zero-divisors of R, Z*(R) = Z(R)\ {0},
Zi(R)y={u ¢ 1| uvelfor somev ¢ I}, Z;(R) = Z;(R)UI and N(R) be the set of
nilpotent elements of R. Let B be a submodule of an R-module M and X be any subset
of M. Then (B: X) ={r € R| rz € B for all x € X}. Min;(R) will denote the set of
minimal prime ideals of R which contain I. Let 8(I) = {r € R| r™ € I for some n € N} be
a prime radical of I in R, then 5*(I) = S(I)\ I and I is said to be radical ideal if 8(I) = I.
R/I denotes the quotient ring of R, and for any = + I € R/I we use the notation [z]. For
any subset A of R, we have A* = A\ {0}.

Let G = (V(G), E(G)) be a graph, where V(G) denotes the set of vertices and E(G)
be the set of edges of G. We say that GG is connected if there exists a path between any two
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distinct vertices of G. For vertices a and b of G, d(a,b) denotes the length of the shortest
path from a to b. In particular, d(a,a) = 0 and d(a,b) = oo if there exists no such path.
The diameter of G, denoted by diam(G) = sup{d(a,b) | a,b € V(G)}. A cycle in a
graph G is a path that begins and ends at the same vertex. The girth of G, denoted
by gr(G), is the length of a shortest cycle in G, (gr(G) = oo if G contains no cycle).
A complete graph G is a graph where all distinct vertices are adjacent. The complete
graph with |V(G)| = n is denoted by K,. A graph G is said to be complete k-partite

k
if there exists a partition |J Vi = V(G), such that u — v € E(G) if and only if u and

i=1

v are in different part of partition. If |V;| = n;, then G is denoted by K, g, n, and
in particular G is called complete bipartite if k = 2. K, is said to be a star graph.
G denotes the complement graph of G. A graph H = (V(H),E(H)) is said to be a
subgraph of G, if V(H) C V(G) and E(H) C E(G). Moreover, H is said to be induced
subgraph of G if V(H) C V(G) and E(H) = {u —v € E(G) | u,v € V(H)} and is
denoted by G[V(H)]. Let Hi and Hs be two disjoint graphs. The join of Hy and Ha,
denoted by Hy V Ha, is a graph with vertex set V/(H1V Hz) = V(H1) UV (H2) and edge set
E(H\VH) = E(H\)UE(H2)U{u—v |u € V(H1),v € V(Hz2)}. Also G is called a null graph
if E(G) = ¢. For a graph G, a complete subgraph of G is called a clique. The clique number,
w(@), is the greatest integer n > 1 such that K,, C G, and w(G) = o if K, C G for all
n > 1. The chromatic number x(G) of a graph G is the minimum number of colours needed
to colour all the vertices of G such that every two adjacent vertices get different colours.
A graph G is perfect if x(H) = w(H) for every induced subgraph H of G. For a connected
graph G, 6(G) = min{deg(z) | x € V(G)}, V(§(GQ)) = {z | z € V(G),deg(x) = §(G)}
and A(G) = max{deg(z) | z € V(G)}, V(A(G)) = {z | z € V(G),deg(z) = A(G)}. A
subset D C V(G) is said to be a dominating set if every vertex in V(G) \ D is adjacent
to a vertex in D. A dominating set D is called a weak (or strong) dominating set if for
every u € V(G) \ D there exists v € D with deg(v) < deg(u) (or deg(u) < deg(v)) and u
is adjacent to v. The domination number (G) of G is defined to be minimum cardinality
of a dominating set of G and such a dominating set of G is called a y-set of G. In a
similar way, we define the weak (or strong) domination number 7., (G) (or vs(G)) of G. A
graph G is said to be excellent, if for every u € V(G), there exists a y-set D containing u.
Graph-theoretic terms are presented as they appear in Diestel [9].

The study of algebraic structure associated with graph is an active and interesting area of
research. Several authors have done a lot of work in this area for instance, see [THA[T|8/12].
The idea of a zero-divisor graph of a commutative ring R with identity was introduced by
I. Beck in [§], who defined the graph on the vertex set R in which distinct vertices u,v € R
are adjacent if and only if uv = 0. He was mainly interested in coloring of rings. The first
simplification of Beck’s zero divisor graph was introduced by Anderson and Livingston
in [2]. We recall from [2] that a zero-divisor graph I'(R) of R is the (undirected) graph
with set of vertices Z*(R) and on the vertex set Z*(R), in which any two distinct vertices u
and v of I'(R) are adjacent if and only if uv = 0. In [13] Redmond introduced an ideal-based
zero-divisor graph I';(R) with set of vertices Z7 (R) and vertex set Z7 (R), in which any two
distinct vertices u and v of I';(R) are adjacent if and only if uv € I. In [5] Bakhtyiari et al.
introduced the extended zero-divisor graph I''(R). The extended zero-divisor graph of R
is an (undirected) graph I"(R) with the vertex set Z*(R) and two distinct vertices u and
v of I"(R) are adjacent if and only if either Ru N anng(v) # {0} or Rv Nanng(u) # {0}.

In this paper we generalize the extended zero divisor graph I''(R) to an ideal-based
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extended zero-divisor graph I';(R). The ideal based extended zero-divisor graph I'7(R) is
the (undirected) graph with the vertex set Z7 (R), in which two distinct vertices v and v
are adjacent if and only if either (Ru+1)N (I :{v}) # I or (Ro+I)N(I: {u}) # I. If we
take I = (0), then I';(R) = I"(R). It follows that the ideal-based zero-divisor graph I'; (R)
is a subgraph of I';(R). We prove that I';(R) is connected with diameter at most two, and
if T';(R) contain a cycle, then girth is at most four. Furthermore, we study the connection
between the ideal based extended zero-divisor graph I';(R) and the ideal-based zero-divisor
graph I';(R) associated with the ideal I of a commutative ring R. Among the other things,
for a radical ideal of a commutative ring R, we show that ideal-based extended zero-divisor
graph I'7(R) is identical to the ideal-based zero-divisor graph I';(R) if and only if R has
exactly two minimal prime-ideals which contain I.

2. Fundamental Properties of Ideal-based Extended Zero-divisor Graph

In this section, we generalize the notion of an extended zero-divisor graph I'"(R) to
an ideal-based extended zero-divisor graph I';(R) and study fundamental properties of
' (R).

Definition 2.1. Let I be an ideal in a commutative ring R with unity. An ideal-based
extended zero divisor graph T';(R) is an undirected graph with the set of vertices Z;(R),
where any two distinct vertices u, v of I';(R) are adjacent if and only if either (Ru+1)N(T :

{v})#Tor (Ro+I)N(I:{u}) #1I.

Proposition 2.2. Let I be an ideal in a commutative ring R with unity. Then
(i) T1(R) is a subgraph of T';(R).
(1) if T = (0), then T7(R) = T'(R) and T'(R) is a subgraph of T7(R).

Proof. Let I be an ideal of a commutative ring R.

() Clearly, V(I';(R)) = V(I'1(R)) and let w and v be any two adjacent vertices of I'r(R).
Then uv € I and u € (Ru+1)N (I :{v}), ve (Rv+I)N{:{u}), e, (Ru+I)N(:
{v}) # I, (Ro+I)N(I : {u}) # I. Hence u and v also adjacent in I';(R), and by definition
T';(R) is a subgraph of I'7(R).

(41) It trivially holds. a
Lemma 2.3. Let I be a radical ideal in a commutative ring R which is not prime, and let
u € Z7(R). Then

(i) (I:{u})=(I:{u"}) for each positive integer n > 2,

(i) (Ru+I)N(I:{u})=1.
Proof. Assume that I is a radical ideal of a ring R which is not prime and u € Zj (R).

(7) Let n > 2. It is clear that (I : {u}) C (I : {u"}). If v € (I : {u™}), then vu" € I. Since
I is a radical ideal, vu € I and v € (I : {u}). Thus (I : {u"}) = (I : {u}).

(4¢) This is clearly true. a

The following lemma gives several useful properties of I';(R) and plays an important
role in this section.
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Lemma 2.4. Let I be a proper ideal of a ring R.

(i) If u— v is not an edge of T';(R) for some u,v € Zf(R), then (I : {u}) = (I : {v}).
If I is a radical ideal, then the converse is also true.

(ii) If (I:{u}) € (L :{v}) or (I:{v}) L (I:{u}) for some u,v € Z;(R), then u—v is
an edge of T'7(R).

(i) If (Ru+1)N (I : {u}) # I for some u € Zj(R), then u is adjacent to all other
vertez in I';(R). In particular if uw € B*(I), then u is adjacent to every other vertex
of It (R).

(iv) T7(R)[B*(I)] is a complete subgraph of T';(R).

Proof. Assume that [ is an ideal of a ring R.

(i) If u — v is not an edge of I';(R) for some u,v € Zj(R), then (Ru+I)N (I :{v}) =1
and (Ro+1I)N (I : {u}) = 1. Thus (Ru+ I)({ : {v}) C (Ru+I)N(I: {v}) =1 and
(Ro+ 1) :{u}) C(Rv+I)Nn(I:{u}) =1 and hence ({ : {u}) = ({1 : {v}). IfI'is a
radical ideal of R, then by Lemma [23|i7), (Ru+I)N(I: {v}) = (Ru+ )N :{u}) =1
and (Rv+I)N (I :{u}) =(Rv+I)N(I:{v}) =1I. Thus u— v is not an edge of I';(R).

(4¢) This is clear by part (4).

(49t) Assume that (Ru+ I) N (I : {u}) # I for some u € Z;(R), and let v be another
vertex of I'7(R). If u is not adjacent to v, then by part (i), (I : {u}) = (I : {v}) and hence
(Ru+1I)n(I:{u}) =1, a contradiction.

(#v) This is clearly true by (7). d

Theorem 2.5. Let I be an ideal of R. Then T';(R) is connected and dia(T'7(R)) < 2.
Moreover if T';(R) contains a cycle, then gr(I';(R)) < 4.

Proof. By Lemma [22(i), T';(R) is a connected subgraph of I';(R) such that V(I';(R)) =
V(T'7(R). Therefore T';(R) is connected and gr(I';(R)) < 4. Now we prove that
dia(T'7(R)) < 2. If I is a non-radical ideal of R, then B(I) # I and by Lemma 244ii),
dia(T7(R)) < 2. If T is a radical ideal of R, then 8(I) = I. Let u,v € V(I';(R)) such
that d(u,v) # 1. Then by Lemma 24(), (I : {u}) = (I : {v}). Since S(I) = I, by Lemma
23Kii), (Rv+I)N(I : {v}) = I. Therefore, for every w € (I : {v})\I both u,v are adjacent
to w and d(u,v) = 2. Thus diam(T'7(R)) < 2. This completes the proof. |

Lemma 2.6. Let I be a proper ideal of a commutative ring R. Then Z;(R) is a union of
prime ideals of R which contain I.

Proof. Let us define a map F : R — R/I by F(x) = [z]. Clearly, F is a homomorphism
from R onto R/I. By [11l p. 3], Z(R/I) = |J Pi where P; is a prime ideal in R/I. clearly,
Z1(R) = U F~'(P;) where F~'(P;) is a prime ideal in R which contains I. d

Corollary 2.7. Let I be a radical ideal of a commutative ring R. Then Zi(R) = |J P
where P; € Ming(R).

Proof. The corollary is immediate from Lemma [2:6] and [10, Corollory 2.4]. |
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Theorem 2.8. Let I be a proper ideal of a commutative ring R and let T;(R) contain a
cycle. Then gr(T';(R)) = 4 if and only if I is a radical ideal with |Minr(R)| = 2.

Proof. First assume that gr(I'7(R)) = 4. If I is not a radical ideal, then 3(I) # I and by
Lemma 24(ii7) gr(I'7(R)) = 3, a contradiction. Hence I must be a radical ideal of R. Let
u € Z7(R). We will prove that (I : {u}) is a prime ideal of R. Suppose that ab € (I : {u})
such that a,b ¢ (I : {u}) but aubu € I. Hence for every ¢ € (I : {u}) \ I, it is easy to
see that ¢ — au — bu — ¢ is a triangle, a contradiction. Hence (I : {u}) is a prime ideal.
Since I is a radical ideal and by Lemma [23|i7) together with [I0, Theorem 2.1] implies
that (I : {u}) is a minimal prime ideal which contains I. i.e., (I : {u}) € Min;(R). By
similar arguments (I : {v}) € Min;(R), for each v € (I : {u}) \ I. Now we prove that
Min;(R) = {({ : {u}), (I : {v})}. It is sufficient to show that (I : {u}) N (I : {v}) = I.
Assume on contrary (I : {u})N(I: {v}) # ITanda € (I : {u})N(I : {v})\I. Then a—u—v—a
is a triangle as uv € I, a contradiction. Hence Min;(R) = {(I : {u}), (I : {v})}.

Conversely, assume that I is a radical ideal of R and |Min;(R)| = 2. Let Q1,Q2 €
Minr(R). Since I is a radical ideal, we have Z;(R) = Q1 U Q2 and Q1 N Q2 = I, by
Corollary 271 Tt is not difficult to check that T'7(R) = K|g#|,1q3), Where |Q7] = [Q1 \ I|
and |Q3| =|Q2 \ I|. Since I';(R) contains a cycle, gr(I';(R)) = 4. O

Example 2.9. For R = Z¢ X Z3 and I = (0) X Zs, it may be observed that Q1 = (3) X Zs
and Q2 = (2) x Zs are the only two minimal prime ideals of R, which contain radical
ideal I, where Z;(R) = Q1 U Q2 and Q1 N Q2 = I. Since |Q7| = 3 and |Q3| = 6, it can
be easily seen in the following Figure 2.1 that I'7(R) = T'1(R) = K|g:|,103| = Ks,6 and
gr(I'1(R)) = 4.

(0,1,0) (0,1,1)

(1,0,1) (1,0,0)

(2,0 (2,1 (4,

o

) 42) (22 4D

Figure 2.1 Figure 2.2

Example 2.10. For R = Za X Za X Z2 and I = (0) x (0) X Zz, it can be easily seen in the
above Figure 2.2, K>, is realizable as I'7(R), which is not realizable as I (R).

Corollary 2.11. Let I be a proper ideal of a commutative ring R. Then T';(R) is K22
if and only if I is a radical ideal of R with |Min;(R)| = 2 and each element of Min;(R)
contains exactly two elements other than I.
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Example 2.12. For R = Z24 and I = (8), it can be easily seen from the following Figures
2.3 and 2.4 that the ideal-based extended zero divisor graph I';(R) = Ky is different from
ideal-based zero divisor graph I';(R) and I';(R) is a subgraph of I';(R) = K.

(14) (18) (22)

I'r(R) I'7(R) = Ko
R=Z24 andI:(S) R:Z24 andI:(S)
Figure 2.3 Figure 2.4

3. When Ideal-based Extended Zero Divisor Graph I';(R) and Ideal-based Zero
Divisor Graph I';(R) are Identical?

As we have seen in the previous section, ideal-based extended zero divisor graphs
and ideal-based zero-divisor graphs are close to each other, it would be interesting to
characterize ideals of a ring whose ideal-based extended zero-divisor graph and ideal-based
zero divisor graph are identical. We first study the case when I is a radical ideal of R.

Theorem 3.1. Let I be a radical ideal of a commutative ring R with |[Min;(R)| =k > 2.
Then k = 2 if and only if T (R) = T'1(R).
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Proof. First assume that I';7(R) = T';(R). To prove that k = 2, assume on the contrary
Q1, @2, Q3 are distinct minimal prime ideals of R which contain I. Let u € Q1 \ Q2 U Qs.
Thus Q2 UQs € (I : {u}) as (I : {u}) € Q2N Q3. So one may choose uv ¢ I, for some
v € Q2U Q3 \ Q1. Without loss of generality, assume that v € Q2 \ Q1. Obviously, (I :
{v}) C Q1. Also, it follows from [I0] Theorem 2.1], there exists an element w € (I : {u})
such that w ¢ Q1. Therefore, (I : {u}) # (I : {v}) and by Theorem 24(ii), u — v is an
edge of I';(R), a contradiction.

Conversely, assume that Q1 and @2 are only two distinct minimal prime ideals of
R which contain I. Tt is not difficult to check that I'1(R) = I'7(R) =K|qx| @3- Where
Qi =Qi\Tand Q5 =Qu\I. O

The following corollary follows from Theorem [3.11

Corollary 3.2. Let I be a radical ideal of a commutative ring R, which is not a prime
ideal. Then the following statements are equivalent:

(i) gr(TY(R) = 4.
(i) T7(R) =T1(R) and gr(T'1(R)) = 4.

(#i1) |Min;(R)| = 2 and each minimal prime ideal of Mini(R) has at least two different
elements other then elements of I.

(iv) T7(R) = Km,n for some m,n € N and m,n > 2.
In the rest of this section we study the case that I is a non radical ideal of R

Theorem 3.3. Let I be a non radical ideal of a commutative ring R. Then the following
statements are equivalent.

(i) T7(R) =T1(R).

(i3) If uwv ¢ I for some u,v € Zj(R), then (I : {u}) = (I : {v}) and (I : {u}) is a prime
ideal of R.

Proof. (i) = (i) Assume that uv ¢ I, for some u,v € Zj(R). Since I';(R) = T'1(R), we
deduce that (I : {u}) = (I : {v}), by Lemma[24%). We now show that (I : {u}) is a prime
ideal of R. Let ab € (I : {u}), a ¢ ({ : {u}) and b ¢ (I : {u}). Then au ¢ I and bu ¢ I,
a,b € Z;(R). By Lemma 2.44i:), u,v ¢ B(I) and hence u # a or u # b. Without loss of
generality, one may assume that u # b. But since au € (Ru+ 1) N (I : {v}), we find that
ub € I, a contradiction. Therefore, (I : {u}) is a prime ideal of R, as desired.

(#3) = (i) fuv € I for all u,v € Z7(R), then I'7(R) is complete and by Proposition [22%),
I'7(R) is complete. i.e., T'7(R) = T'r(R). To complete the proof, we prove that if uv ¢ I.
Then (Ru+1)N(I:{v})=1and (Rv+I)N(I:{v}) =1 Since (I:{u})=(I:{v})If
u € (I :{u}), then v € (I : {v}) and hence uv € I, a contradiction. Thus u ¢ (I : {u}).
Also, if (Ru+I)N (I : {u}) # I, then there exists r € R such that ru ¢ I and ru® € I.
Since u? ¢ (I : {u}) as (I : {u}) is a prime ideal of R, 7 € (I : {u}), a contradiction. Hence
(Ru+1I)N (I :{u}) =1I. Similarly, (Rv+I)N (I : {v}) =1. O

Corollary 3.4. Let I be a non radical ideal of a commutative ring R and I';(R) = T'1(R).
Then the following hold.

(i) Zi(R) ts an tdeal of R.
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(i) B(I)* C 1.
(iii) (I: Z1(R)) = B(I).

Proof. Assume that I is not a radical ideal of R.

(¢) Since I is a non radical ideal of R, f*(I) # ¢. Let u € B*(I). Then by Lemma
24 (4ii) u is adjacent to every other vertex of I';(R). Since I';(R) = I'r(R), u is adjacent
to every other vertex of I'7(R), and hence by [I3] Theorem 2.5(b)] [u], is adjacent to every
other vertex of I'(R/(I) and by [2] Theorem 2.5], we find that Z(R/I) is an annihilator
ideal, i.e., Z(R/I) = anng/;([u]). Since Z(R/I) = anng/r([u]), we find that (1 : {u}) =
Zr(R) and thus Z;(R) is an ideal of R.

(i7) By the first part, clearly B(I)* C I.
(244) By the first part, clearly (I : Z;(R)) = B(I). O

Corollary 3.5. Let I be a non radical ideal of a commutative ring R. Then T'}(R) =
T'1(R) = Kp V Kq if and only if (I : Z1(R)) is a prime ideal.

Proof. First assume that T'7(R) = I';(R) = K,V K,. Hence every vertex of K, is adjacent
to all the other vertices. But there is no adjacency between any two vertices of K,. This
implies that (I : Z;(R)) = V(K,) U I, thus uv ¢ I, for every u,v € V(K,), and hence
(I:{u})=({T:{v}) =({:Zi(R)). By Theorem B3| (I : Z;(R)) is a prime ideal of R.

Conversely since (I : Zi;(R)) is a prime ideal of R, we find that wv € I,
for all w,v € (I: Zr(R)) and uwv ¢ I for all u,v € Z;(R)\ ({ : Z;(R)). Now it is enough
to show that I';(R)[(I : Z7(R))] is complete, I';(R)[Z:(R) \({ : Z;(R))] is null graph and
I'i(R) =T;(R)|(I: Z;(R)]VITI(R)[Zi(R)\ (I : Z;(R))]. We finally show that I';(R) =
I';(R). Obviously, uv ¢ I if and only if u,v € Z;(R)\ (I : Z;(R)). This together with
(I : Z1(R)) is a prime ideal, imply that if uv ¢ I, then (I : {u}) = (I : {v}) = (I : Z;(R)).
Thus (I : {u}) is a prime ideal of R. Now by Theorem B3] I';(R) = I';(R). d

Corollary 3.6. Let I be a non trivial non-radical ideal of a commutative ring R. Then
the following statements are equivalent.
(i) T7(R) is a star graph.
(ii) gr(T}(R)) = .
(i1i) T1(R) =T7(R) and gr(T1(R)) = .
() (I:Z1(R)) is a prime ideal of R, |I| = |B*(1)| = |Z7 (R)| = 2.
(v) T1(R) = K11
(vi) Tr(R) = K1,1.

Proof. (i) = (it) It is clear.

(ii) = (#d) If a € B*(I), then a is adjacent to every other vertex in I';(R). Since
gr(T7(R)) = oo and I';(R) is a connected subgraph of I';(R), we conclude that I';(R) =
I';(R), and hence gr(I';(R)) = oco.

(i4) = (iv) Since I is a non trivial non radical ideal of R, it can be easily seen that ' (R)
is a star graph and I';(R) = I';(R). Therefore by Corollary B35 (I : Z;(R)) is a prime ideal
of R. Since [ is a nontrivial non radical ideal of R, |I| > 2 and |B(I)| > 4. If [I| =m > 2,
then B(I)| = n > 6 and we can assume that u, v, w € 8*(I) such that by Lemma [24] (¢ii),
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u—v —w — u is a triangle and I';(R) is not a star graph. Thus |I| = 2. If |I| = 2, then
|B(I)| = 4, otherwise by Lemma[24] (4ii), T'7(R) is not a star graph. Thus |I| = |3*(I)| = 2.
If |Z7 (R)| > 3, the we can assume that 81, f2 € 8*(I) and z € Z}(R) \ 8*(I) such that by
Lemma [Z4] (4ii), f1 — B2 — z — B1 forms a triangle. Hence |I| = |8*(I)| = |Z] (R)| = 2.

(iv) = (v) It is clear by Corollary
(v) = (vi) It is clear.

(vi) = (4) It is clear. a

4. Results on Relationship Between I';(R) and I(R/I)

In this section, we study the graph theoretical relationship between I';(R) and IV (R/I)
under certain parameters like clique number, max (or min) degree, vertex chromatic num-
ber, also determine a necessary and sufficient condition for I';(R) to be regular and Eule-
rian.

Theorem 4.1. Let I be an ideal of a commutative ring R and let u,v € Zj(R). Then
(i) if [u] is adjacent to [v] in T'(R/I), then u is adjacent to v in I'1(R),
(ii) if u is adjacent to v in U7 (R) and [u] # [v], then [u] is adjacent to [v] in T'(R/I),

(iii) if u adjacent to v in T7(R) and [u] = [v], then there ewists r € Z;(R) such that
rud Il andrv @I, but ru € T and rv* € I,

() if u is adjacent to v in T';(R), then all (distinct) elements of [u] and [v] are adjacent
in T1(R). If there exists r € R such that ru ¢ I and ru® ¢ I, then all the distinct
elements of [u] are adjacent in T'7(R).

Proof. (i) If [u] is adjacent to [v] in IV(R/I), then either (R/I)[u] N anng/([v])) # {I}
or (R/I)[v] Nanng,;([u]) # {I}. This implies that either (Ru + I)N (I : {v}) # I or
(Rv+1)N (I :{u}) # I. By definition u is adjacent to v in T'7(R).

(#)If w is adjacent to v in I';(R) then either (Ru+I)N(I : {v}) # I or (Rv+I)N(I : {u}) #
I. Since [u] # [v], either (R/I)[u] Nanng/;([v]) # {1} or (R/I)[v]Nanng,;([u]) # {I}. By
definition [u] is adjacent to [v] in IV(R/I).

(#44) If u is adjacent to v in T';(R), then either (Ru+I)N(I:{v})# T or (Ru+1I)N(I:
{v}) # I.ie., either (Ru+1I)N(I:{v})\I# ¢or (Ru+1I)N(I:{v})\I# ¢. Suppose
that (Ru+ I)N (I : {v})\ I # ¢. Then there exists « € (Ru+ I) N (I : {v})\ I such that
a=ru+1 for some r € R\ I,i € I. Clearly ruv € I. Since [u] = [v], u = v + j for some
j € I, we find that ru® = ruu = ru(v + j) = ruv + ruj € I. Similarly rv? € I. Now if
(Ru+I)Nn(I:{v})\ I # ¢, then by the similar proof there exists ' € R\ I such that
r/uQ, r'v? el.

(10)If u is adjacent to v in T'7(R), then either (Ru+ I)N(I: {v}) # T or (Rv+1)N(I:
{u}) # 1. Let u+1i € [u], v+j € [v]. Then (R(u+i)+ )N : {v+j}) #1or
(Rlv+37)+I)n(I:{u+i}) # I. By definition u + i is adjacent to v + j in I';(R). a

Proposition 4.2. Let I be an ideal of a ring R. Then T';(R) contains |I| disjoint subgraphs
isomorphic to T (R/I).
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Proof. Let {ax | A € A} C Z;(R) be a set of coset representative vertices of TV(R/I),i.e.,
V(I (R/I)) = {[ax] : A € A} and for each « € I, define a graph Go = (Va, Eo) with V, =
{ax+a: X € A}, where ay + o is adjacent to as +« in G4 whenever, [a,] is adjacent to [as]
inI"(R/I).1i.e., either (R/I)[ay]Nann g, ([as]) # {I} or (R/I)[as]Nann g,/ 1) ([a]) # {I}.
By Theorem BT] G, is a subgraph of I';(R). Also each G4 = I';7(R/I), and Go N G are
disjoint if o # 8 because if a #  then V(Go) N V(Gp) = ¢. d

There is a strong relation between I';(R) and I''(R/I). Next theorem shows that how
one can construct I';(R) from I';(R/I).

Theorem 4.3. Let T';(R) be an ideal based extended zero-divisor graph of a ring R. Then
we can always construct T'7(R) from TV(R/I).

Proof. Let {[ax] | A € A} be a set of coset representative vertices of T'(R/I), i.e.,
V(I (R/I)) = {[ax] : A € A} and for each « € I, define a graph Go = (Va, Eo) with V, =
{ax+a: X € A}, where ay + o is adjacent to as +« in G« whenever, [a,] is adjacent to [as]
inI"(R/I), ie., either (R/I)|a]Nann g,/ ([as]) # {I} or (R/I)[as]Nann g, 1) ([a~]) # {I}.
Define a graph H = (V(H), E(H)) where V(H) = |J V(Ga) and E(H) is:
acl
(i) all edge contained in G for each « € I.

(i3) For distinct v, € A and for any o, 8 € I, ay + « is adjacent to as + 8 if and only
if [a4] is adjacent to [as] in (IV(R/I)).

(i) For v € A and distinct o, 8 € I, ay + « is adjacent to a, + (3 if and only if there
exists a 7 € R such that ra, ¢ I, but ra? € I.

Clearly, V(H) C V(I'7(R)). Note that if u € V(I';(R)), then by Theorem HEI] [u] €
V(I'(R/I)) and therefore, V(I';(R)) C V(H)). So V(H) = V(I';(R)). By Theorem [A1]
all edges which are defined above by (i) and (i7) are also edges in I';(R). If a4« is adjacent
to ay + B for distinct «, 8 € I, then there exists r € R such that ra, ¢ I, but rag, el
Therefore, (R(ay + 8)+I)N (I :{ay +a}) # I and (R(ay+7)+I1)N T :{ay+B)} # 1.
Thus, the edges which are defined above by (iii) are also edge of I';(R). Let uw and v
be distinct adjacent vertices of I';(R). Then there exist , 3 € I and «,5 € A such that
u=ay+aand v =as+ B. If v # ¢ and u adjacent to v in T';(R). Hence by Theorem [T}
[a4] is adjacent to [as] in TV(R/I). Hence, the edge u — v corresponds to an edge of type
(i) or (i3) of H. If v = 4, then there exists r € R such that ra, ¢ I, but ra? € I and the
edge u — v corresponds to an edge of type (iii) of H. a

Proposition 4.4. Let I be an ideal of a ring R. If T'(R/I) is infinite, then T7(R) is
infinite. If T'(R/I) is a graph with n vertices, then T'1(R) is a graph with n|I| vertices.

Proof. This is immediate from Theorem [£.3] O

Definition 4.5. Let {[ax] | A € A} be a set of coset representative vertices of I'V(R/I).
[ax] is said to be a row of T'(R), and if there exists r € R such that ray ¢ I and ra3 € I,
then we call [a)] connected row of I';(R) and &, denote the n connected row which is
contained in a maximal complete subgraph of I (R/I).

Remark 4.6. Let I be an ideal in a commutative ring R with unity. Then every con-
nected column of I';(R) defined in [I3] is a connected row of I';(R). By Example and
Figures 2.2 and 2.4 we observe that [2] = {2, 10, 18} is a connected row of I';(R) which is
not a connected column of I'7(R).
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Theorem 4.7. Let I be a ideal in a commutative ring R. Then w(T'7(R)) = & |I] +
w(l(R/I)) — n.

Proof. Suppose that w(I'V(R/I)) = k and A = {[a1],[az], - ,[ax]} € V(IV(R/I)) such
that IV(R/I)[A] is an induced maximal complete subgraph of I'(R/I). Let B = Ja]
where [a;] is a connected row and [a;] € A, C' = {a; | [a;] is a non-connected row, [a;] € A}.
Then by Theorem 1] T';(R)[B U C] is a complete subgraph in I';(R). If BUC U {u} is a
complete subgraph in I';(R), then {[u]} U A forms a clique of size k + 1, a contradiction.
Thus I';(R)[BUC] is a maximal complete subgraph. Consequently, w(I';(R)) = |[BUC| =
EnlI| + w(T'(R/I)) — n. O

Theorem 4.8. Let I be an ideal of a commutative ring R such that T';(R) has no connected
row. Then

(i) w(I'(R)) = w(I'(R/I)),
(i) x(T1(R)) = x(I'(R/T)).

Proof. (i) Clearly, we observe that w(I'(R/I)) < w(I';(R)). Consider the case, when
w(I"(R/I)) = k < 0o, and suppose that H is a complete subgraph of I';(R) with the set
of (distinct) vertices wi,uz, - ,ugp+1. Since H is complete, we get a complete subgraph
of T7(R) with the set of vertices [u1], [uz],- -, [ur+1]. Now w(I"(R/I)) = k implies that
[w;] = [um] for some I # m and hence u; = um + ¢ for some i € I. Since H is complete, u;
adjacent to um in T7(R). Then we get r € R such that ra; & I, but raf € I and [uy] is a
connected row I'7(R), a contradiction. Hence w(I'7(R)) = k.

(¢¢) By Corollary B2 I'(R/I) is isomorphic to a subgraph of I'}(R) and hence
x(T'(R/I)) < x(I'7(R). Suppose that x(I'V(R/I)) = n and C1,Cs,---,C, are distinct

color classes of IV(R/I). Consider the set S; = |J [a]. Since I';(R) has no connected
la]leC;

row, each S; is an independent set of I';(R) and V(I';(R)) = |J S;. Thus S1,S2, -+, Sn
j=1

are distinct color classes for I';(R) and the graph I';(R) colored by n distinct proper colors,
and therefore x(I'7(R) < n. Hence x(I'"(R/I)) = x(T'7(R). O

Corollary 4.9. Let I be a radical ideal of a commutative ring R . Then

(i) w(T(R)) = w(l'(R/I)).

(i) x(T1(R)) = x(I'(R/T)).
Theorem 4.10. Let I be an ideal in a commutative ring R. If w(I'(R/I)) = x(T"(R/I)),
then w(I'(R)) = x(T'1(R)).

Proof. Suppose that w(I'(R/I)) = x(I'"(R/I)) = n. Let {ax | A € A} C Z;(R) be a
set of coset representative vertices of I'V(R/I), i.e., V(I'(R/I)) = {[ax] : A € A} and
C1,Cs, -+ ,Cy, are distinct color classes of IV(R/I). Since w(I''(R/I)) = n, there ex-

ists [a1],[az], - ,[an] € V(I'(R/I)) such that any two of them lies in distinct color
classes. Without loss of generality, assume that [a;] € Cj, for all j € {1,2---,n}.
A = {[a1],[a2], -, [an]}. Then I'V(R/I)[A] is a maximal complete subgraph of I'V(R/I).

Let B = {a; | [a;] € A} U{a; +i | [a;] € A, ra; & I and raj € I for some r € R,i € I*}.
Since IV (R/I)[A] is a maximal complete subgraph of I"(R/T), I'; (R)[B] is a maximal com-
plete subgraph of I';(R), and therefore |B| < w(I'7(R)). Hence we color the vertices of
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I'7(R) with |B| distinct colours. Clearly [a], an induced independent set of I';(R) when
there does not exists any r € R such that ra ¢ I and ra® € T with [a] € A and color the
vertices a + ¢ € [a] with the colour of a for all i € I. Let U = {a : [a] € A}. Then U have
distinct colors. For each y ¢ U, [y] = [a:] such that ¢t ¢ {1,2,--- ,n}. Since [a¢] € S; and
S;-S are independent, for each i € I color the vertices a: 4+ ¢ with the color of a; + i. Hence
color the vertices of C' = V(I'r(R)) \ U in this way, and this coloring is proper, therefore
x(T'r(R)) < |B|. Since w(I'1(R)) < x(T'7(R)), x(T'1(R)) = w('1(R)). This completes the
proof. O

Lemma 4.11. Let I be an ideal of a ring R and a € V(I';(R)). Then
deg(a) = |I|degr:([a]), if [a] is a non — connected row,
g\ = |I|degr:([a]) + |I| — 1, if [a] is a connected row.

Proof. Clearly, deg(a) > |I|degr([a]). If [a] is connected row, then T';(R)[[a]] is a complete
subgraph of T';(R). Thus deg(a) = |I|degr/([a]) + |I| — 1. If [a] is non-connected row, then
deg(a) = |I|degr-([a]). 0

Lemma 4.12. Let I be an ideal of a ring R Then
ST (R)) = [I|16(T'(R/I)) + |I| — 1, if each [a] € V(§(T'(R/I)) is a connected row,
! T HS(T(R/T)), otherwise.

Proof. 1f [a] € V(§(T'(R/I)) is a connected row, then deg(a) < deg(b) for all b € V(I';(R)
and by Lemma [ETT] deg(a) = |I|degr([a]) + |I| — 1 (or deg(a) = |I|6(T'(R/I))+|I] —1).
Thus §(I';(R)) = |I|6(T"(R/I)) +|I| — 1. Otherwise, deg(a) < deg(b) for all b € V(I';(R)
and by Lemma BTl deg(a) = |I|degr([a]) (or deg(a) = |I|§(T'(R/I)). Thus §(I';(R))
1I8(T(R/T)).

ml

Lemma 4.13. Let I be an ideal of a ring R Then
AT (R)) = { HATR/D) + |11 =1, if cachla] € V(A(L'(R/I)) is a non connected row,
! L HIAT(R/D)), otherwise.

Proof. 1f [a] € V(A(I'(R/I)) is a non-connected row, then deg(b) < deg(a) for all b €
V(T'7(R) and by Lemma Il deg(a) = |I|degr:([a]) ( or deg(a) = |[I|A(T'(R/I))). Thus
AT} (R)) = [I|6(T'(R/I)). Otherwise, deg(b) < deg(a) for all b € V(I';(R) by LemmalZTT]
deg(u) = |I|degr:([a] + |I| — 1) (or deg(a) = |I|A(TY(R/I) + |I| — 1). Thus A(T'}(R)) =
[T|A(T'(R/I)) + |I] — 1. O

Theorem 4.14. Let I be an ideal in a commutative ring R. If T;(R) has no connected
row, then I';(R) is Eulerian if and only if |I| is even or T'(R/I) is Eulerian.

Proof. Suppose that I';(R) is Eulerian. Then deg(a) is even for all a € V(I'7(R)). Since
I';(R) has no connected row, deg(a) = |I|degr/([a]) is even for all [a] € V(IV(R/I)). Hence
either |I| is even or degr/([a]) is even for all [a] € V(I"(R/I)), i.e., I"(R/I) is Eulerian.

Conversely, assume that IV(R/I) is Eulerian. Hence degr/([a]) is even for all [a] €
V(I'(R/I)). Since I';(R) has no connected row, deg(a) = |I|degr([a]) is even for all
a € V(I';(R). i.e., T7(R) is Eulerian. If || is even, then I';(R) is Eulerian. O

Theorem 4.15. Let I be an ideal in a commutative ring R. If T'7(R) has a connected row,
then T'1(R) is Eulerian if and only if |I| is odd and I"(R/I) is Eulerian.
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Proof. Suppose that I';(R) is Eulerian. Since I';(R) has a connected row, there exists
x € V(I';(R)) such that [z] is a connected row in I';(R) and by Lemma 1] deg(x) =
|I|degr[z] + |I| — 1 is even. Thus we have the following cases:

Case(a) |I|degr/[z] and |I| — 1 are odd. Then |I| is even. Since |I|degr[z] is odd and |I]
is even. Since |I| is even, |I|degr/[z] can not be odd, and this case is not possible.

Case(b) |I|degr[z] and |I| — 1 are even. Thus |I|degr[z] is even for all [z] € V(I (R/I)).
i.e., degrs[z] is even for all [z] € V(I"(R/I)). Therefore I"(R/I) is Eulerian and |I| is odd.

Conversely, assume that I[V(R/I) is Eulerian, |I| is odd and =z € V(I';(R)). If [z] is
a connected row, then deg(x) = |I|degr/[z] + |I| — 1 is even and if [z] is a non-connected
row, then deg(z) = |I|degr/[] is also even. Hence I'7(R) is Eulerian. |

Theorem 4.16. Let I be an ideal in a commutative ring R. If T'1(R) has no connected
row. Then T'7(R) is regular if and only if T'(R/I) is regular.

Proof. Suppose that I'7(R) is regular graph, deg(x) = n for all z € V(I';(R)). Since I';(R)
has no connected row, by Lemma 11l deg(z) = |I|degr/[z] = n for all [z] € V(T (R/I)).
Therefore degr/[z] = n/|I| for all [z] € V(I'(R/I)). Clearly, if n is prime, then
I"(R/I) = K». Otherwise I'"(R/I) is a fr-regular.

Conversely, suppose that IV(R/I) is a regular graph. Then degr/[z] = n V [z] €
V(I'(R/I)). Since I';(R) has no connected row, by Lemma Il for all z € V(I'(R))
deg(z) = |I|degr/[x] = n|I|. Therefore I';(R) is n|I|-regular. a

Theorem 4.17. Let I be an ideal in a commutative ring R and each row is connected.
Then T;(R) is n-reqular, where n # |I| — 1 if and only if T'(R/I) is regular.

Proof. Assume that I';(R) is a n-regular graph. Then deg(z) = n for all z € V(I';(R)).
Since each row is connected, by Lemma EIT] deg(z) = |I|degr/[z] + |I] — 1, for all z €

V(I'7(R)) and hence degr:[z] = % for all [z] € V(I'(R/I)). Since degr/[z] # 0 and

n# Il -1, T"(R/I) is a (%)—regular graph.

Conversely, suppose that I'V(R/I) is a regular graph. Then degr/[x] = p for all [z] €
V(I'(R/I). Since each row is connected, by Lemma [I1] deg(z) = p|I| + |I| — 1 for all
z € V(I'7(R). Thus I';(R is a n-regular. O

Theorem 4.18. Let I be an ideal of a ring R. Then 1 < x(I'(R/I)) < x(T'7(R)) <
[I|x(T"(R/1)).

Proof. Clearly, 1 < x(I"(R/I)). Since I'V(R/I) is isomorphic to a subgraph of I';(R),
x(T"(R/T)) < x(T'7(R)). Let x(I"(R/I)) = n, and C1,Cs,--- ,C, be distinct color classes
for T'(R/I). Assume that each row is connected. Now for each 1 < j < n, and i € |
define a set Dj; = {x +j : [z] € C;}. Since Cj’s are independent, Dj; are independent.
Also U (U)Dji = V(I'}(R). Thus {Dj; : 1 < j < n,i € I} are distinct color

1<j<n i€l
classes for I'; (R). |I|n colors are required for colouring and this colouring is proper. Hence
X(T7(R)) < [T[x(T"(R/T)). =

Proposition 4.19. Let I be a proper ideal of a commutative ring R. If T7(R) has a
connected row, then |I| < w(T'7(R)).
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Proof. Assume that [u] is a connected row in I'7(R). Then there exists r € R such that
ru ¢ I and ru® € I. If uy,u1 € [u], then (Rus 4+ 1) N (I : {u2}) # I and by definition u; is
adjacent to uz in T;(R). i.e., K/l is a subgraph of I';(R), and hence |I| < w(T';(R)). O

Corollary 4.20. Let I be a proper ideal of a commutative ring R such that |I| = co. If
I';(R) has a connected row, then w(T';(R)) = oo.

Corollary 4.21. Let I be a proper ideal of a commutative ring R such that |V (T7(R))| > 2.
If T3 (R) has a connected row, then |I|+1 < w(T'7(R)).

Lemma 4.22. Let I be an ideal of a commutative ring R. Then gr(T7(R)) < gr(T'(R/I)).

Proof. 1If gr(I';(R)) = oo, then our result holds. Now suppose that gr(I'(R/I)) = k < co.
Let [a1] — [a2]—, -+, —[ax] — [a1] be a cycle in T';(R) with k distinct vertices. Then
a1 —as—, -, —ap — a1 is also a cycle in I';(R) of length k. Hence gr(I';(R)) < k. |

5. When I'/(R) is Weakly Perfect and Planar?

In this section, our aim is to study the planarity of ideal based extended zero-divisor
graph I'7(R) and explore the condition under which I';(R) is planar. For a radical ideal I
of an Artinian ring R, we show that I';(R) is weakly perfect.

Theorem 5.1. Let I be an ideal of a commutative ring R. Then T';(R) is a complete
n-partite graph if and only if T'(R/I) is a complete n-partite graph.

Proof. Suppose that I'7(R) = Kjw,|,|wy|,...,|w,| Where V(I'7(R)) = |J Wi and W;NWj, =
i=1

¢ for j # k. Defineamap F' : R — R/I by F(z) = [z]. Clearly F'is aihomomorphism from
R onto R/I. It is easy to check that IV(R/I) = K|p(w,)|,|F(Wa)l, ,|F(Wy,)| IS a complete
n-partite graph.

Conversely, suppose that I'V(R/I) = K\r,|,/Ls|, /L] Where V(IV(R/I)) = U Li and
i=1

L;N Lk = ¢ for j # k. Define a map S : R — R/I by S(y) = [y]. Clearly S is a homo-
morphism from R onto R/I. It is easy check that T'7(R) = K|s—1(L,)[,|51(Lo)|, .|S—1(Ln)|
is a complete n-partite graph. O

Lemma 5.2. Let I be an ideal of R such that R/I &= D1 X Dy X -+ X Dy, where k > 2
is a positive integer and Dj is an integral domain, for every 1 < j < k. Then I';(R) is a
complete (28 — 2)-partite.

Proof. Given R/I 2 D1 x D3 x - X Dj. Then by [6], Lemma 2.1], IV(R/I) is a complete
(2% —2)-partite and by Theorem 5} T';(R) is a complete (2* —2)-partite hence proved. [

Proposition 5.3. Let I be a radical ideal of a commutative ring R with |[Min;(R)| < oo
and suppose that P,Q are coprime, for every two distinct P,Q € Minr(R). Then the
following statements are equivalent.

(i) |Min;(R)| = k.
(i) T7(R) is a complete (2 — 2)-partite.
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Proof. (i) = (it) Suppose that |[Min;(R)| = k and define a map F : R — R/I by
F(z) = [z]. Clearly, F({Mini(R)}) = Min(R/I) and |Min(R/I)| = k. Then by [6]
Corollory 2.2], TY(R/I) is a complete (2% — 2)-partite and by Theorem [E1] T;(R) is a
complete (2F — 2)-partite.

(ii) = (i) Assume that T';(R) is a complete (2" — 2)-partite. Then by Theorem [E1]
I'(R/I) is a complete (2F — 2)-partite and by [6] Corollary 2.2], |Min(R/I)| = k. Let us
define a map S : R — R/I by S(x) = [z]. Clearly, S~'({Min(R/I})) = Min;(R) and
|Min;(R)| = k. O

Proposition 5.4. Let I be an ideal in a ring R such that R/I &= D1 X Da X -+ X Dy,
where k = 2 is a positive integer and D; is an integral domain for each j € {1,2,--- ,n}.
Then w(I'(R/1)) = x(T}(R)) = x(I'"(R/I)) = w(T'1(R)) = (2" - 2).

Proof. Given R/I = Dy x D3 X --+ X Dy, where k > 2 be a positive integer and D; is an
integral domain for each j € {1,2,---,k}. Then by [6, Lemma 2.1], I'(R/I) is a (2" — 2)-
partite graph and by Lemma 52} T7(R) is a (2% — 2)-partite graph. Hence w(I"(R/I))
= x(T7(R)) = x(I'(R/1)) = w(I1(R)) = (2" - 2). 0

Corollary 5.5. let I be a radical ideal in a commutative ring R with unity such that
R/I is an Artinian ring. Then w(I'(R/I)) = x(T7(R)) = x(I'(R/I)) = w(T'}(R)) =
olMaz(R/I)| _ o

Corollary 5.6. let I be a radical ideal in an Artinian ring R. Then w(I"(R/I)) = x(I';(R))
= x(I'(R/T)) = w(I}(R)) = 2Me=R/DI _ g

In order to achieve the goal, we need a celebrated Kuratowski’s theorem from Graph
Theory [14] Theorem 6.2.2].

Theorem 5.7. (Kuratowski’s Theorem) A Graph G is planar if and only if it contains no
subdivision of either K33 or Ks.

Proposition 5.8. Let I be a proper ideal of R. If T;(R) is a planar graph. Then T'(R/I)
s also a planar graph but the converse need not be true in general.

Proof. Suppose that T';(R) is a planar graph. Since I''(R/I) is isomorphic to a sub graph
of T'7(R). By Theorem 5.7} T'(R/I) is a planar graph. For the converse with the help of
Example we note that in the Figure 2.4, T';(R) = Ky is not planar, but R/I = Zs
and I'"(R/I) = K3 a planar graph. O

Theorem 5.9. Let I be a radical ideal of a commutative ring R. Then the following
statements are equivalent.

(i) T7(R) is planar.

(i3) |Min;(R)| = 2 and one element of Min;(R) has at most two elements different
from 1.

Proof. (i) = (ii) Assume that I';(R) is planar. Suppose on the contrary that |Min;(R)| >
3. Let us define a map F : R — R/I by F(x) = [z]. Clearly, F(Min;(R)) = Min(R/I)
and |Min(R/I)| > 3. By [6, Theorem 3.4], I'(R/I) is not planar and by Lemma [5.8]
I'7(R) is not planar, a contradiction. Therefore, |Min;(R)| = 2 and by Theorem [3.1]
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I'7(R) = T1(R). Let Pr,Qr € Minr(R) such that |Pr\ I| > 3,|Qr \ I| > 3. Then K33 is
a subgraph of I';(R) which is not Planar, a contradiction. Thus one element of Miny(R)
has at most two elements different from I.

(73) = () Suppose that |[Min;(R)| = 2 and one element of Min;(R) has at most two ele-
ments different from I. Then by Theorem Bl T';(R) = I';(R). Without loss of generality,
we may assume that Pr,Qr € Min;(R) such that |P; \ I| = m, where 1 < m < 2 and
|Qr \ I| = n. Thus I';(R) = Kum,n, which is Planar. O

Proposition 5.10. Let I be an ideal of a commutative ring R. Then T';(R) is not planar
if one of the following statements hold.

(1) =5
(i) 18" (1) > 4.
(i) I is a radical ideal of R and |I| > 3.

Proof. Directly follows from Theorem [(.7} O

Remark 5.11. It can be easily observed that if R is a commutative ring with unity, then
Zg ()

|Z(R)| = 2 if and only if R is ring-isomorphic to either Z4 or IR

Theorem 5.12. Let I be a non-radical ideal of a commutative ring R such that |I| = 2.
Then T (R) is planar if and only if one of the following statements hold.

Zg ()

(z2) *

(i) (I:Z;(R)) is a prime ideal of R and |(I : Z;(R))| = 4.

(iii) Z1(R) = B(I) and |B(I)| = 6.

Proof. Assume that I';(R) is planar. If |3(I)| = oo, then by Lemma 24 (iv), I'; (R)[8" (1))
is not planar. Thus I';(R) is not planar and we find that |3(I)| < oo. Since I is a proper
additive subgroup of 8(I), |I| divides |3(I)| and |8(I)| = 2k, where k € N\ {1}. Then the
following cases arises:

Case(1) k =2, i.e., |3(I)] = 4. Then |Nil(R/T)| = 2.
Subcase (i) If |Z;(R)| < oo, then |Z(R/I)| < oo. If |Z(R/I)| = 2, then by Remark [5.17]

R/I is isomorphic to either Z4 or Z(QI(;)) If 2 # |Z(R/I)| < oo, then by [6, Theorem 3.6(1)],

R/I is isomorphic to either Zs X Z4 or Za X Z(";(;)) If R/I is isomorphic to Za X Za, then
there exists an isomorphism g : R/I — Za X Za.

Notice that there exist o1, a2, a3, as € R\ I such that [ai], [a2], [as], [ou] €
R/I and g([aa]) = (0,1), g([e2]) = (0,3), g([as]) = (1,0), g([ea]) = (1,2). Since
I(R/Dl{[ax), ol as][aa]}] = Kz = T'(Za x Z4){(0, 1), (0,3), (1, 0), (1, 2)}], without loss
of generality, we may assume that ai,a1 + i, a2, a3, a3 + i,asa € R\ I, where i € I*
and by Theorem BT (i), T7(R) [{c1, a1 + 14, a2, a3, as +i, aa}] = Kaz, which is

not planar, a contradiction. If R/I is isomorphic to Za x Z&—(f)), then there exists an

isomorphism f : R/I — Za X L2(z) Notice that there exist B1, B2, B3, Ba€ R\ I

(x2) *
such that [B1], [Ba], [Bs], [Ba] € R/I and g([81]) = (0,(z*)), 9([B2]) = (0,1 + (2?)),
9([Bs]) = (1, (&%), g([8a]) = (1L, z + (2%)). Since I'(R/D)[{[B1], [B2] [Bs] [Ba]}] = Ka2 =
I(Z2 x Z4)[{(0, (z%)), (0,1+ (%)), (1,(x?)), (1,z + (z?))}], without loss of generality,

(i) R/I is ring-isomorphic to either Z4 or
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we may assume that 1,081 + 4, B2, 83,83 + 1,84 € R\ I, where i € I" and by Theorem
& (3), T7(R) [{B1,B1 + i, B2, B3, Bs + i, B1}] = K3,3, which is not planar, again we get a
contradiction.

Subcase(ii) | Z1(R)| = oco. Since |I| = 2 < oo, |Z(R/I)| = co. Hence by [6, Theorem 3.6(2)],
Ann(Z(R/I))is a prime ideal of R/I. This implies that (I : Z;(R)) is a prime ideal of R and
by Corollary BB, T (R) = It (R) = K, v Ky, where p = |8°(D), = |1(R) \ B(I)| = oo
and by Corollary B4l (i), (I : Z;(R)) = B(I). Thus if we take |8"(I)] = £ > 4, then
I''(R) =T1(R) = K¢V Koo and T7(R) = T'1(R) = K¢ V Ko contain K33 as a subgraph,
and hence T';(R) is not planar. If |3(I)| = 4, then T';(R) = T';(R) = K2 V Ko, which is
planar. Hence |3(1)| = |({ : Z1(R))| = 4.

Case(2) k = 3, ie, |B(I)] = 6. Then |Nil(R/I)] = 3 and by [6 Theorem 3.8],
Ann(Z(R/I)) is a prime ideal of R/I. This implies that (I : Z;(R)) is a prime ideal of R
and by Corollary BB T7(R) = '1(R) = K, V K, where p = |8(I)*|, ¢ = |Zr(R) \ B(I)|. If
Z1(R) # B(I), then K5 = K4V K; is a subgraph of K V K, which is not planar. Hence
B(I) = Z;(R) and by Lemma 24 (iv), I';(R) = K4, which is Planar.

Case(3) k > 3, i.e., |B(I)] > 8. Then |8*(I)| > 4 and by Proposition 10 (i), T'7(R) is

not Planar. Hence |3(I)| < 6.
Converse part holds trivially. O

Theorem 5.13. Let I be a non-radical ideal of a commutative ring R and |I| = 3. Then
Zy ()

(&2)

Proof. Assume I';(R) is planar. Since |I| = 3, |3(I)| = 6, and |Ni(R/I)| = 2. If
|Z(R/I)| > 2, then K33 is a subgraph of I';(R). By Theorem (.7 T';(R) is not pla-
nar, a contradiction. Hence |Z(R/I)| = 2, then by Remark EII] R/I is isomorphic to
either Z4 or %2%). Converse part holds trivially. O

T'7(R) is planar if and only if R/T is ring-isomorphic to either Z4 or

Proposition 5.14. Let I be a non-radical ideal of a commutative ring R and |I| = 4.
Zy(x)
(x2)

Then T;(R) is planar if and only if R/I is isomorphic to either Za or

Proof. Assume that I';(R) is planar. Since |I| =4, |3(I)| = 8. If 8(I) # Z:(R), then there
exists @ € Z7(R) \ B(I) and by Lemma 24 (iv), I';(R)[{ a} U 8*(I)] forms K5, which is
not planar. Hence 8(I) = Z;(R), |Z(R/I)| = |Nil(R/I)| = 2, and by Remark 511} R/I
is isomorphic to either Z4 or %;T). Converse part holds trivially. O

Proposition 5.15. Let I be non-radical ideal of a commutative ring R. Then v(I';(R))
=7(T7(R)) = 1.
Proof. Let © € B*(I). Then by Lemma 24 z is adjacent to every other vertex and

deg(z) > deg(y), for every y in V(I';(R)). Thus {z} is a v-set of I';(R) and v(I';(R))
=% (Th(R)) = 1. H

Proposition 5.16. Let I be a radical ideal of a commutative ring R. Then v(I'7(R)) = 2
and T';(R) is excellent graph if one of the following statements hold.

(i) R/I = Dy X Dy X -+ X Dy where k > 2 be a positive integer and D; is an integral
domain for each j € {1,2,--- ,k}.
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(ii) |Mini(R)| = k.

Proof. (i) Clearly by Lemmal52) T';(R) is a complete (2F —2)-partite. Assume that T'7(R)
= K\v,|,|va|,---,|vi|- Clearly {x1,z2} is a y-set, where z1 € V1 and x2 € Va. Since [I| > 2,
[Vi] > 2 and |Va2| > 2. Clearly {y1,y2} is a vy-set, where y1 € V1 \ {z1} and y2 € V2 \ {z2}.
Therefore v(I';(R)) = 2.

(i) Clearly by Proposition 53] I';(R) is a complete (2 — 2)-partite any by part (4)
Y(T7(R)) = 2. O

6. Ordering on the Vertices of I/, (%)
In this section, we study the ordering on the vertices of I';(R).

Definition 6.1. Given a graph H with vertices u and v, we define the relations <, ~ and
1 on H as follows.

(i) u <w if every vertex adjacent to v is also adjacent to u.
(ii) u~vifu<wvandov<u.

(#i) u L v if v and v are adjacent and no other vertex of H is adjacent to both u and v.

Remark 6.2. Graphs I'7(R) and I"(R/I) are simple, so any vertex of these graphs is
never considered to be self adjacent. Hence, if u < v, then u — v not an edge (otherwise v
is self adjacent).

Proposition 6.3. Let I be an ideal of a commutative ring R. Let u,v € Z7 (R) such that
[u] and [v] are nonconnected row of T';(R). Then [u] < [v] in TV(R/I) if and only if u < v
in T7(R).

Proof. Assume [u] < [v] in IV(R/I). Let z € Z7(R) be adjacent to v. Since [v] is noncon-
nected, [v] # [z] (otherwise, [v] is connected row). Thus, by Theorem[dT] [2] is adjacent to
[v], since [u] < [v] implies that [z] is adjacent to [u]. Hence, By Theorem 1] u is adjacent
to z.

Conversely, assume u < v in I'7(R). Let [2] € Z*(R/I) be adjacent to [v] in T'7(R). Then,

by Theorem 1] z is adjacent to v in T';(R). Since u < v implies that z is adjacent to u
in I'7(R). Since [u] is nonconnected row implies that [z] # [u] and by Theorem E1] [u] is
adjacent to [2] in T'(R/I). d

Corollary 6.4. Let I be a proper ideal of a commutative ring R, and let u,v € Zj(R)
such that [u] and [v] are nonconnected row of T;(R). Then [u] ~ [v] in TV(R/I) if and only
if u ~wv in T (R).

Corollary 6.5. Let I be a proper ideal of a commutative ring R, and let u,v € Zj(R)
such that u,v € [z], where [2] is a nonconnected row of T'7(R). Then u ~ v in T'7(R).

Remark 6.6. In case of connected row, the conclusion of the above result fails, because in
case of connected row we find a self adjacent vertices, as mention in the previous remark.

Proposition 6.7. Let I be an ideal of a commutative Ting R such that |V (T'7(R))| > 3.
Suppose that u,v € Zi(R) such that [u] # [v] and both are nonconnected row of T';(R).
Then [u] L [v] in T'(R/I) if and only if u L v in T7(R).
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Proof. Assume u L v in I'7(R). Then u — v is an edge of I';(R) and by Theorem (]
[u] — [v] is an edge of T'7(R). If [2] € Z*(R/I) such that [u] — [2] and [v] — [2] are edges in
I(R/I), then by Theorem 1] u — z and v — z are edges in I';(R), a contradiction. Hence
[u] L [v] in T'(R/I).

Conversely suppose that [u] L [v] in T'(R/I). Then v — v is an edge in I';(R). Assume
that z € Z7(R) such that v — z and v — z are edges in I';(R). Then there exists 7 € R
such that either ru ¢ I or rz ¢ I but ruz € I. Similarly, there exists s € R such that
either sv ¢ I or sz ¢ I, but svz € I. Since [u] and [v] are non connected, [u] # [z] # [v].
Therefore, [u] — [2] and [v] — [2] are edges in IV(R/I), which contradicts, [u] L [v], and
hence v L v in I'}(R). O
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